Towards Responsible Data-driven Decision Making in
Score-Based Systems *

Abolfazl Asudeh! H. V. J agadishf Julia Stoyanovich§
TUniversity of Illinois at Chicago, *University of Michigan, New York University
fasudeh @uic.edu, fjag@umich.edu, %stoyanovich@nyu.edu

Abstract

Human decision makers often receive assistance from data-driven algorithmic systems that provide a
score for evaluating the quality of items such as products, services, or individuals. These scores can
be obtained by combining different features either through a process learned by ML models, or using a
weight vector designed by human experts, with their past experience and notions of what constitutes item
quality. The scores can be used for different evaluation purposes such as ranking or classification.

In this paper, we view the design of these scores through the lens of responsibility. We present
technical methods (i) to assist human experts in designing fair and stable score-based rankings and (ii)
to assess and (if needed) enhance the coverage of a training dataset for machine learning tasks such as
classification.

1 Introduction

Big data technologies have affected every corner of human life and society. These technologies have made
our lives unimaginably more shared, connected, convenient, and cost-effective. Using data-driven technologies
gives us the ability to make wiser decisions, and can help make society safer, more equitable and just, and
more prosperous. However, while having an enormous potential to help solve societal issues, irresponsible
implementation of these technologies can not only fail to help, but may even make matters worse. Racial bias in
predictive policing and data-driven judgeship, harming marginalized people and poor communities, and sexism
in job recommendation systems are a few examples of such failures. In order to minimize societal harms of
data-driven technologies, and to ensure that objectives such as fairness, equity, diversity, robustness, accountability,
and transparency are satisfied, it is necessary to develop proper fools, strategies, and metrics.

Human decision makers often receive assistance from data-driven algorithmic systems that provide a score
for evaluating objects, including individuals. The scores can be computed by combining different attributes either
through a process learned by ML models (using some training data), or using a weight vector assigned by human
experts. For example, a support vector machine learns the parameter values that define a linear separator in some
regularized multi-dimensional feature space. Learning methods require that there be labeled data, and assume
that there is some known ground truth.
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In contrast, an expert-specified method does not require any la-
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example, a company may rank its employees, and then reward
high-ranked employees (with a raise or promotion) and fire low-
ranked employees. College admissions is another example where
the top-k applicants may be admitted by a college. Similarly, the
international football association FIFA considers its rankings as “a
reliable measure” for seeding the international tournaments such
as the World Cup [3].

Rankings are relative while labels in classification are absolute. That is, the rank of an individual depends on
the others in the dataset, while class labels are assigned solely based on the score of an individual. The scoring
mechanism for classification is usually learned by ML models. It can be a linear model such as regression and
SVM, or a complex deep learning model. On the other hand, scoring mechanism for ranking is usually designed
by human experts. US News university rankings, FIFA rankings, and CSRankings® are some of these examples.

Of course, the dichotomy above is not as clean as the preceding paragraph may suggest. Not all classification
scoring is machine-learned. For example PSA (Public Safety Assessment) scores’, used in data-driven judgeship,
are human-designed. Similarly, ranking can be the basis for classification through the introduction of a cut-off
rank, as in the case of college admissions.

Figure 1 shows the general architecture of score-based systems for data-driven decision making. The central
component in these systems are the score-based evaluators that assign a score to each individual in the input data
and generate the output by, for example, ranking or classifying the input. The output provides the evaluation of
individuals that is used for decision making. Note that the scoring module can be designed by experts, or be
learned by a machine, using some training data.

We, in our project Mithra, view human experts (for human-designed evaluators) and training data (for machine
learned evaluators) as the keys to achieving responsibility in score-based systems. That is, for human-designed
tasks such as ranking, we advocate designing assistive tools that help experts make sure their evaluators meet
the objectives of fairness and stability. On the other hand, for machine learning tasks such as classification,
we advocate assessing and repairing training data to make sure that, for example, the data is representative of
minority groups [4], and models trained on that data do not reflect results of historical discrimination [5]. In the
following, first in § 2, we explain our research for score-based ranking. Then in § 3, we provide our results for
machine learning tasks such as classification by assessing and enhancing coverage for a (given) training dataset.

Figure 1: General architecture of score-based
systems

"Note that in some contexts ranking or classification is done without scoring. For instance, rank aggregation from partial ranked
lists [1] or pairwise comparisons [2] is popular for group opinion collection. Our focus in this paper are evaluations (including ranking
and classification) based on scores.
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2 Responsible Ranking

Ranking of individuals is commonplace today, and is used, for example, for college admissions and employment.
Score-based evaluators, designed by human experts, are commonly used for ranking, especially when there are
multiple criteria to consider. The scores are usually computed by linearly combining (with non-negative weights)
the relevant attributes of each individual from some dataset D. Then, we sort the individuals in decreasing order
of score and finally return either the full ranked list or its highest-scoring sub-set, the top-k.

Formally, we consider a dataset D to consist of n items, each with d scalar scoring attributes. In addition to
the scoring attributes, the dataset may contain non-scoring attributes that are used for filtering, but they are not
our concern here. Thus we represent an item ¢ € D as a d-length vector of scoring attributes, (1, 2, ..., Zq).
Without loss of generality, we assume that the scoring attributes have been appropriately transformed: normalized
to non-negative values between 0 and 1, standardized to have equivalent variance, and adjusted so that larger
values are preferred. A scoring function fgz : R — R, with weight vector @ = (w1, wa,...,wy), assigns the
score fg(t) = Z;l:let[j] to any item ¢ € D.

Linear scoring functions are straightforward to compute and easy to understand [6]. That is the reason they
are popular for ranking, and for evaluation in general. However, it turns out that the rankings may highly depend
on the design of these functions. To further explain this, let us consider the following toy example.

Example 1: Consider a real estate agency with two offices in Chicago, IL and Detroit, MI. The owner assigns
agents based on need (randomly) to the offices. By the end of the year, she wants to give a promotion to the “best”
three agents. The criteria for choosing the agents are x1 : sales and x2 : customer satisfaction. Figure?2
shows the values in D, after normalization. Considering the two criteria to be (roughly) equally important, the
owner chooses the weights W = (1, 1) for scoring. That is, the score of every agent is computed as f = x1 + x2.
The 5th column in Figure 2 shows the scores, based on this function. According to function f, the top-3 agents
are tg, t4, and to, with scores 1.4, 1.38, and 1.37, respectively. Note that, according to f, all top-3 agents are
located in Chicago and no agent from Detroit is selected.

The specific weights chosen have a huge impact on the score and hence rank for an item. In Example 1, the
owner chose the weight vector « = (1, 1), in an ad-hoc manner, without paying attention to the consequences.
However, small changes in the weights could dramatically change the ranking. For example, the function f” with
the weight vector w = (1.1,.9) may be equally good for the owner and she may not even have a preference
between w and w’. Probably her choice of weights is only because 1 is more intuitive to human beings. The last
column in Figure 2 shows the scores based on f’, which produce the ranking f’ : (¢4, t¢, t3, to, t1, t5). Comparing
it with the ranking generated by f : (¢, t4, to, t3, t5, t1), one may notice that the rank of each and every individual
has changed. More importantly, while according to f all promotions are given to the agents of the Chicago office,
1 gives two promotions to Chicago and one to Detroit.

Many sports use ranking schemes. An example is the FIFA World Ranking of national soccer teams based
on recent performance. FIFA uses these rankings as “a reliable measure for comparing national A-teams” [3].

78



Despite the trust placed by FIFA in these rankings, many critics have questioned their validity. University rankings
is another example that is both prominent and often contested [7]: various entities, such as U.S. News and World
Report, Times Higher Education, and QS, produce such rankings. Similarly, many funding agencies compute
a score for a research proposal as a weighted sum of scores of its attributes. These rankings are, once again,
impactful, yet heavily criticized. Similarly, in criminal justice, COMPAS [8] was originally intended to provide
services and positive interventions, under resource constraints. That is, a score computed by COMPAS would
then be used to rank individuals to prioritize access to services. Many other impactful examples can be mentioned,
such as a company that evaluates its employees to promote some and let go some others, and a college admissions
officer who decides to admit a small portion of the applicants.

Surprisingly, similar to Example 1, despite the enormous impact of score-based rankers, attribute weights are
usually assigned in an ad-hoc manner, based only on intuitive reasoning and common-sense of the human designers.
For instance, in the case of FIFA rankings, the scoring formula combines the past four years of performance of
each team as 1 + 0.5x2 + 0.3x3 + 0.2x4, where x; is the team’s performance in the past ith year. Of course, the
designers tried to come up with a set of weights that make sense. For them 0.9827 4+ 0.5122 4+ 0.2923 + 0.19224
would probably be equally acceptable, since the weight values are virtually identical: they choose the former
formula simply because round numbers are more intuitive. This issue, in the context of university ranking, is
further elaborated by Malcolm Gladwell in [7].

Assuming that the designers of rankings are willing to accept scoring functions similar to their initial functions,
Mithra provides a toolbox and algorithms to help human experts practice responsible ranking. In the following, we
start by providing some necessary background from computational geometry in § 2.2, followed by an explanation
of fairness and stability in our framework in § 2.1.

2.1 Fairness and Stability Models

Decisions based on rankings may impact the lives of individuals and even influence societal policies. For this
reason, it is essential to make the development and deployment of rankings transparent and otherwise principled.
Also, since rankings highly depend on what weights are chosen in the scoring function, it is necessary to make
sure that generated rankings are fair and robust.

2.1.1 Fairness

There is not a single universal definition of fairness. Impossibility theorems [9] have established that we cannot
simultaneously achieve all types of fairness. Indeed, the appropriate definitions of fairness greatly depend on
the context and on the perspective of the user. Sometimes, it may even be prescribed by law. As such, we
consider a general definition of fairness in our work. Our focus is on societal (v.s. statistical) bias [10] and group
fairness [11] (v.s. individual fairness [12]).

We consider some attributes, used for decision making (e.g. sales and customer satisfaction in Example 1), to
be non-sensitive. Some other attributes, such as race and gender (and location in Example 1), we consider to be
sensitive. We adopt the Boolean fairness model, in which a fairness oracle O takes as input an ordered list of
items from D, and determines whether the list satisfies a set of fairness constraints, defined over the sensitive
attributes: O : V(D) — {T, L}. A scoring function f that gives rise to a fair ordering over D is said to be
satisfactory. For instance, in Example 1, assume that the owner knows that, because of some hidden factors, sales
and customer satisfaction patterns are different in Chicago and Detroit. Hence, she considers the selection of the
top-3 agents to be fair, if it assigns at least one of the promotions to each one of the offices. Note that according
to this criterion, the ranking provided by f = x1 + x2 is not fair as it assigns all three promotions to the agents in
Chicago. On the other hand the ranking generated by function f’ = 1.1z + .9x5 assigns two of the promotions
to Chicago and one to Detroit, and hence is considered to be fair.
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2.1.2  Stability

We want a ranking to be stable with respect to changes in the weights used for scoring. Given a particular ranked
list of items, one question a consumer will ask is: how robust is the ranking? If small changes in weights can
change the ranked order, then there cannot be much confidence in the correctness of the ranking. We call a
ranking of items stable if it is generated by a large portion of scoring functions in the neighborhood of the initial
scoring function specified by the expert.

Every scoring function in a universe /* of scoring functions induces a single ranking of the items. But each
ranking is generated by many functions. For a dataset D, let Yip be the set of rankings over the items in D that are
generated by at least one scoring function f € U*. Consider the set of scoring functions that generate a ranking
t € Mp. Because this set of functions is continuous, we can think of it as a region in the space of all possible
functions in U*. We use the region associated with a ranking to define the ranking’s stability. The intuition is
that a ranking is stable if it can be induced by a large set of functions. If the region of a ranking is large, then
small changes in the weight vector are not likely to cross the boundary of a region and therefore the ranked order
will not change. For every region R, let its volume, vol(R), be the measure of its bulk. Given a ranking t € Rp,
the stability of v is the proportion of scoring functions in U/* that generate v. That is, stability is the ratio of the
volume of the ranking region of t to the volume of &/*. Formally:

_ vol(Rp(t))

Sp(r) = vol(U*) 20)

We emphasize that stability is a property of a ranking (not of a scoring function).

2.2 Geometric Interpretation

In the popular geometric model for studying data, each attribute is modeled as a dimension and items are
interpreted as points in a multi-dimensional space. We transform this Primal space into a dual space [13].
We use the dual space in R?, where an item ¢ is presented by a hyperplane d(t) given by the following

equation of d variables 7 ... xz4:
d(t) : t[l] xxy+ -+ tld xxg=1 (21)

Continuing with Example 1, Figure 3 shows the items in the dual space. In R?, every item ¢ is a 2-dimensional
hyperplane (i.e. simply a line) given by d(t) : ¢[1]x1 + ¢[2]x2 = 1. In the dual space, a scoring function fz is
represented as a ray starting from the origin and passing through the point [wy, we, ..., wy]. For example, the
function f with the weight vector @ = (1, 1) in Example 1 is drawn in Figure 3 as the origin-starting ray that
passes through the point [1, 1]. Note that every scoring function (origin-starting ray) can be identified by (d — 1)
angles (61,02, --- ,04_1), each in the range [0, 7/2]. Thus, given a function fz, its angle vector can be computed
using the polar coordinates of w. For example, the function f in Figure 3 is identified by the angle § = = /4.
There is a one-to-one mapping between these rays and the points on the surface of the origin-centered unit
d-sphere (the unit hypersphere in R%), or to the surface of any origin-centered d-sphere. Thus, (the first quadrant
of) the unit d-sphere represents the universe of functions I.

Consider the intersection of a dual hyperplane d(¢) with the ray of a function f. This intersection is in the
form of a x j, because every point on the ray of f is a linear scaling of «. Since this point is also on the
hyperplane d(t), ¢[1] X a x wy + - -- + t[d] X a x wg = 1. Hence, ) t[jlw; = 1/a. This means that the dual
hyperplane of any item with the score f(¢) = 1/a intersects the ray of f at point a x @. Following this, the
ordering of the items based on a function f is determined by the ordering of the intersection of the hyperplanes
with the vector of f. The closer an intersection is to the origin, the higher its rank. For example, in Figure 3, the
intersection of the line ¢g with the ray of f = x1 + x2 is closest to the origin, and ¢4 has the highest rank for f.

Consider the dual presentation of two items ¢1 : [1, 2] and ¢5 : [2, 1], shown in Figure 4, and a function that
passes through this intersection. We name this function the ordering exchange between t1 and t9. That is because
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this function partitions the space in two regions, where every function in the top-left region ranks ¢; higher than
to while every function in bottom-right ranks ¢, higher. In general, the ordering exchange between a pair of items
t; and ¢; is identified by (the set of function on) the following origin-passing hyperplane:

d
> (tilk] — t[E])wy, =0 (22)

k=1

2.3 Designing Fair Ranking Schemes

We interpret fairness to mean that (a) disparate impact, which may arise as a result of historical discrimination,
needs to be mitigated; and yet (b) disparate treatment cannot be exercised to mitigate disparate impact when
the decision system is deployed. Disparate impact arises when a decision making system provides outputs that
benefit (or hurt) a group of people sharing a value of a sensitive attribute more frequently than other groups
of people. Disparate treatment, on the other hand, arises when a decision system provides different outputs
for groups of people with the same (or similar) values of non-sensitive attributes but with different values of
sensitive attributes. To avoid disparate treatment, it is desirable (and in many cases mandated by law) to not
use information about an individual’s membership in a protected group as part of decision-making. Following
these, our goal is to build a system that helps human expert to design fair ranking schemes, in the sense that those
both mitigate disparate impact (by ensuring that appropriate proportionality constraints are satisfied) and do not
exercise disparate treatment (by not explicitly using information about an individual’s membership in a protected
group) during deployment. That is, a single evaluator will be used for all items in the dataset, irrespective of their
membership in a protected group.

Our goal [4] is to build a system to assist a human designer of a scoring function in tuning attribute weights
to achieve fairness. Formally, our closest satisfactory function problem is: Given a dataset D with n items over d
scalar scoring attributes, a fairness oracle O : V(D) — {T, L}, and a linear scoring function f with the weight
vector @ = (wy,w, - - - , wq), find the function f’ with the weight vector w’ such that O(V# (D)) =T and the
angular distance between « and w' is minimized.

Since the tuning process does not occur too often, it may be acceptable for it to take some time. However, we
know that humans are able to produce superior results when they get quick feedback in a design or analysis loop.
Ideally, a designer of a ranking scheme would want the system to support her work through interactive response
times. Our goal is to meet this need, to the extent possible, by providing a query answering system. From the
system’s viewpoint, the challenge is to propose similar weight vectors that satisfy the fairness constraints, in
interactive time. To accomplish this, our solution operates with an offline phase and then an online phase. In
the offline phase, we process the dataset, and develop data structures that will be useful in the online phase. In
the online phase, the user specifies a query in the form of a scoring function f. If the ranking based on f does
not meet the predefined fairness constraints, we suggest to the user an alternative scoring function that is both
satisfactory and similar to f. The user may accept the suggested function, or she may decide to manually adjust
the query and invoke our system once again.

The notion of ordering exchanges, explained in § 2.2 is a key in the preprocessing phase. Consider the set
of ordering exchange hyperplanes between all pairs of items in D. Similar to Figure 4, each hyperplane h; ;
(the ordering exchange between ¢; and ¢;) partitions the function space U/ in two regions where in one region ¢;
outranks ¢; while in the other ¢; is ranked higher. The collection of these hyperplanes provide an arrangement [14]
in the form of a dissection of the space into origin-starting connected d-cones with convex surfaces, we call
ranking regions. All functions in a ranking region generate the same ranking while every ranking is generated by
the functions of (at most) one ranking region. Hence, in the offline time it is enough to identify the satisfactory
ranking regions whose rankings satisfy fairness constraints.

For 2D, we design a raw-sweeping algorithm. At a high level, using a min-heap for maintaining the ordering
exchanges, the algorithm sweeps a ray from the x to y-axis. It first orders the items based on the x-axis and
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gradually updates the ordering as it visits an ordering exchange along the way. As the algorithm moves from one
ranking region to the other, it checks if the new ranking is fair, and if so, marks the region as satisfactory. Each
satisfactory region in 2D is identified by two angles as its beginning and end. We construct a the sorted list of (the
borders of) satisfactory regions in the offline phase. Given a query function f in online phase, we apply a binary
search on the sorted list. If f falls in a satisfactory region, the algorithm returns f, otherwise it returns the closest
satisfactory border to f.

Discovering the satisfactory regions in MD is challenging when there are more than two attributes. That is
because the complexity of the arrangement of ordering exchanges is exponential in the number of attributes, d.
Even given the satisfactory regions, answering user queries in interactive time is not possible. The reason is
that we need to solve a non-linear programming problem for each satisfactory region, before answering each
query. To address this issue, we propose an approximation algorithm for obtaining answers quickly, yet accurately.
Our approach relies on first partitioning the function space, based on a user-controlled parameter N, into N
equi-volume cells, where each cell is a hypercube of (d — 1)-dimensions. During preprocessing, we assign a
satisfactory function f to every cell ¢ such that, for every function f, the angle between f and f/ is within a
bounded threshold (based on the value of N) from f and its optimal answer. To do so, we first identify the cells
that intersect with a satisfactory region, and assign the corresponding satisfactory function to each such cell.
Then, we assign the cells that are outside of the satisfactory regions to the nearest discovered satisfactory function.
In the online phase, given an unsatisfactory function f, we need to find the cell to which f belongs, and to return
its satisfactory function. This can be done in O(log N) by performing binary searches on the partitioned space.

2.4 Obtaining Stable Rankings

Magnitude of the ranking regions that produces an observed ranking identify its stability. Stability is a natural
concern for consumers of a ranked list. If a ranking is stable, then the same ranking would be obtained for many
choices of weights. But if this region is small, then we know that only a few weight choices can produce the
observed ranking. This may suggest that the ranking was engineered or “cherry-picked” by the producer to obtain
a specific outcome. Human experts who produce scoring functions for generating the rankings desire to produce
stable results. We argued in [15] that stability in a ranked output is an important aspect of algorithmic transparency,
because it allows the producer to justify their ranking methodology, and to gain the trust of consumers. Of course,
stability cannot be the only criterion in the choice of a scoring function: the result may be weights that seem
“unreasonable” to the ranking producer. To support the producer, we allow them to specify a range of reasonable
weights, or an acceptable region in the space of functions, and help the producer find stable rankings within this
region.

We develop a framework [16] that can be used to assess the stability of a provided ranking and to obtain a
stable ranking within the the acceptable region of scoring functions. We address the case where the user cares
about the rank order of the entire set of items, and also the case where the user cares only about the top-k
items. We focus on efficiently evaluating an operator we call GET-NEXT, which can be used to discover the stable
rankings, ordered by their stability. Formally, for a dataset D, a region of interest {*, and the top-(h — 1) stable
rankings in U*, discovered by the previous GET-NEXT calls, our goal is to find the h-th stable ranking v € R. Note
that the GET-NEXT operator enables discovering the top-£ stable rankings, for any arbitrary . That simply can be
done by calling the operator ¢ times. Our technical contribution for 2D is similar to the one for fair rankings. The
2D algorithm first discovers the ranking regions in U/* by sweeping a ray in it. The discovered rankings, along
with their stabilities, are moved to a heap data structure. Then, every call of GET-NEXT returns the next stable
ranking from heap.

For MD, we design a threshold-based algorithm that uses an arrangement [4] tree data structure, AKA cell
tree [17], to partially construct the arrangement of ordering exchange hyperplanes. Specifically, given that our
objective is to find stable rankings and that the user will likely be satisfied after observing a few rankings, rather
than discovering all possible rankings, we target the discovery of only the next stable ranking and delay the
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arrangement construction for other rankings. Arrangement construction is an iterative process that starts by
partitioning the space into two half-spaces by adding the first hyperplane. The construction then iteratively adds
the other hyperplanes; to add a new hyperplane, it first identifies the set of regions in the arrangement of previous
hyperplanes with which the new hyperplane intersects, and then splits each such region into two new regions.
The GET-NEXT operator, however, only breaks down the largest region at every iteration, delaying the construction
of the arrangement in all other regions. Please refer to [16] for more details about the algorithm.

While being efficient in practice for medium-size settings, the algorithms based on arrangement construction
are not scalable, as their worst-case complexities are cursed by the complexity of the arrangement. Next, we
discuss function sampling as a powerful technique for aggregate estimation using Monte-carlo methods [18], as
well as an effective technique for search-space exploration.

2.5 Function Sampling for Scalability

Uniform sampling from the scoring function space enables designing randomized algorithms for evaluating and
designing score-based evaluators. In the following, we first discuss sampling from the complete function space
and then propose an efficient unbiased sampling from a region of interest I/*.

As explained in § 2.2, there is a 1-1 mapping between the universe of scoring functions and the points on the
surface of (the first quadrant of) the unit d-sphere. That is, every point one the surface of the d-sphere correspond
to a scoring function and vice versa. Hence, the problem of choosing functions uniformly at random from &/
is equivalent to choosing random points from the surface of a d-sphere. As also suggested in [19], we adopt a
method for uniform sampling of the points on the surface of the unit d-sphere [20, 21]. Rather than sampling the
angles, this method samples the weights using the Normal distribution, and normalizes them. This works because
the normal distribution function has a constant probability on the surfaces of d-spheres with common centers [21].
Therefore, in order to generate a random function in U/, we set each weight as w; = |[N(0, 1)|, where N'(0, 1)
draws a sample from the standard normal distribution.

In order to compute an aggregate (or conduct exploration) by perturbing in a region of interest L{* in the
neighborhood of some function f, we need to only sample from the set of functions with the maximum angle
around the ray of f. An acceptance-rejection method [22] can be used for this purpose. That is, to draw a sample,
uniformly at random, from ¢/ and accept it, if it belongs to U*. The efficiency of this method, however, depends
on the volume of U/*, as if it is small, the algorithm will reject most of the generated samples. Alternatively, we
propose a sampler that works based on the following observation: modeling L/* as the surface unit d-spherical
cap, each Riemannian piece of the surface forms a (d — 1)-sphere. Following this observation, our sampler first
selects a Riemannian piece, randomly, proportional to its volume. Then it uses the Normal distribution to draw
a sample from the surface of the Riemannian piece. Please refer to [16] for more details about the design of
this sampler. We would like to emphasize that the proposed sampler has a linear complexity to the number of
attributes d. It therefore provides a powerful tool for studying the score-based evaluators in higher dimensions.

We use function sampling for different purposes, including (i) evaluating the stability of a given ranking,
(ii) designing a randomized algorithm for finding the stable rankings, and (iii) on-the-fly query processing for
discovering fair functions. For (i) and (ii), in [16], we design Monte-carlo methods [18] that consume a set of
N function samples for finding the rankings in &/* and computing their stabilities. For (iii), function sampling
provides a heuristics for on-the-fly fair ranking scheme query processing in large-scale settings [4].

We used function sampling in MithraRanking [23], our web application®, designed for responsible ranking
design. After uploading a dataset, or choosing among available datasets, the application allows the user to specify
the fairness constraints she wants to satisfy. For instance, in Figure 5, the user has added a constraint that the
top-30% of the ranking should contain at most 30% with age more than 56 years old. Note that the interface
gives the user the ability to add multiple fairness constraints. She then, as in Figure 6, specifies the weight vector

*http://mithra.eecs.umich.edu/demo/ranking/
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Mithra Ranking Ranking Attributes
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Figure 5: Specifying fairness con- Figure 6: Specifying a weight vector Figure 7: System results

straints

of the initial scoring function and a region of interest around it, by specifying a cosine similarity. The system
then ranks the data based on the specified function and checks if the ranking satisfies the fairness criteria. It also
draws unbiased function samples from the region of interest to estimate the stability of the generated ranking.
The system also uses the samples for finding the most stable rankings in the region of interest, the most similar
fair function to the initial function, and a function (not necessarily the most similar) that generates a fair and
stable ranking (Figure 7). The user can then accept any of those suggestions and change the ranking accordingly.

3 Coverage in Training Data

So far in this paper, we discussed responsible design of scoring functions by a human expert. Scoring models
are also used for tasks such as classification and prediction Such scoring models can be complex and are often
determined using machine learning techniques. An essential piece to the learning is a labeled training dataset.
This dataset could be collected prospectively, such as through a survey or a scientific experiment. In such a case,
a data scientist may be able to specify requirements such as representation and coverage. However, more often
than not, analyses are done with data that has been acquired independently, possibly through a process on which
the data scientist has limited, or no, control. This is often called “found data” in the data science context. It is
generally understood that the training dataset must be representative of the distribution from which the actual
test/production data will be drawn. More recently, it has been recognized that it is not enough for the training
data to be representative: it must include enough examples from less popular “categories”, if these categories
are to be handled well by the trained system. Perhaps the best known story underlining the importance of this
inclusion is the case of the “google gorilla” [24]. An early image recognition algorithm released by Google had
not been trained on enough dark-skinned faces. When presented with an image of a dark African American,
the algorithm labeled her as a “gorilla”. While Google very quickly patched the software as soon as the story
broke, the question is what it could have done beforehand to avoid such a mistake in the first place. The Google
incident is not unique: there have been many other such incidents. For example, Nikon introduced a camera
feature to detect whether humans in the image have their eyes open — to help avoid the all-too-common situation
of the camera-subject blinking when the flash goes off resulting in an image with eyes closed. Paradoxically for a
Japanese company, their training data did not include enough East Asians, so that the software classified many
(naturally narrow) open Asian eyes as closed [25].

The problem becomes critical when the data is used for training models for data-driven algorithmic decision
making. For example, consider a tool designed to help judges in sentencing criminals by predicting how likely
an individual is to re-offend. Such a tool can provide insightful signals for the judge and have the potential to
make society safer. On the other hand, a wrong signal can have devastating effects on individuals’ lives. So it is
important to make sure that the tool is trained on data that includes adequate representation of individuals similar
to each person that will be scored by it. In [26], we study a real dataset of criminals used for building such a tool,
published by Propublica [8]. We demonstrate that a model with an acceptable overall accuracy had an accuracy
worse than random guess for Hispanic females, due to inadequate representation.

While Google’s resolution to the gorilla incident was to “ban gorillas” [27], a better solution is to ensure that
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the training data has enough entries in each category. Referring to the issue as “disparate predictive accuracy”,
[28] also highlights that the problem often is due to the insufficient or skewed sample sizes. If the only category
of interest were race, as in (most of) the examples above, there are only a handful of categories and this problem
is easy. However, in general, objects can have tens of attributes of interest, all of which could potentially be
used to categorize the objects. For example, survey scientists use multiple demographic variables to characterize
respondents, including race, sex, age, economic status, and geographic location. Whatever be the mode of data
collection for the analysis task at hand, we must ensure that there are enough entries in the dataset for each object
category. Drawing inspiration from the literature on diversity [29], we refer to this concept as coverage.

Lack of coverage in a dataset also opens up the room for adversarial attacks [30]. The goal in an adversarial
attack is to generate examples that are misclassified by a trained model. Poorly covered regions in the training
data provide the adversary with opportunities to create such examples. For instance, consider the gorilla incident
again. Knowing that black people are under-represented in the dataset gives the adversary the information that the
models trained using this dataset are not well-trained for this category. The adversary can use this information to
generate examples that are misclassified by the model.

Our objective here is two-fold. First, we want to help the dataset users to assess the coverage, as a characteri-
zation, of a given dataset, in order to understand such vulnerabilities. For example, we use information about
lack of coverage as a widget in the nutritional label [15] of a dataset, in our Mithral.abel system5 [31]. Once the
lack of coverage has been identified, next we would like to help data owners improve coverage by identifying the
smallest number of additional data points needed to hit all the “large uncovered spaces”.

Given multiple attributes, each with multiple possible values, we have a combinatorial number of possible
patterns, as we call combinations of values for some or all attributes. Depending on the size and skew in
the dataset, the coverage of the patterns will vary. Given a dataset, our first problem is to efficiently identify
patterns that do not have sufficient coverage (the learned model may perform poorly in portions of the attribute
space corresponding to these patterns of attribute values). It is straightforward to do this using space and time
proportional to the total number of possible patterns. Often, the number of patterns with insufficient coverage
may be far fewer. In [26], we develop techniques, inspired from set enumeration and association rule mining
(apriori) [32], to make this determination efficient.

A more interesting question for the dataset owners is what they can do about lack of coverage. Given a list of
patterns with insufficient coverage, they may try to fix these, for example by acquiring additional data. In the
ideal case, they will be able to acquire enough additional data to get sufficient coverage for all patterns. However,
acquiring data has costs, for data collection, integration, transformation, storage, etc. Given the combinatorial
number of patterns, it may just not be feasible to cover all of them in practice. Therefore, we may seek to
make sure that we have adequate coverage for at least any combination of ¢ attributes, where we call ¢ the
maximum covered level. Alternatively, we could identify important pattern combinations by means of a value
count, indicating how many combinations of attribute values match that pattern. Hence, our goal becomes to
determine the patterns for the minimum number of items we must add to the dataset to reach a desired maximum
covered level or to cover all patterns with at least a specified minimum value count.

We consider the low-dimensional categorical (sensitive) attributes A = {A;, A, ..., Ag} such as race,
gender, and age for studying coverage. Where attributes are continuous valued or of high cardinality, we
consider using techniques such as (a) bucketization: putting similar values into the same bucket, or (b) considering
the hierarchy of attributes in the data cube for reducing the cardinality of any one attribute. To capture lack of
coverage in the dataset, we define a pattern P as a vector of size d, in which P[i] is either X (meaning that its
value is unspecified) or is a value of attribute A;. We name the elements with value X as non-deterministic and
the others as deterministic. We say an item ¢ matches a pattern P (written as M (¢, P) = T), if for all ¢ for which
P[i] is deterministic, £[¢] is equal to P[i]. For example, consider the pattern P = X 1X0 on four binary attributes
Aj to Ay. It describes the value combinations that have the value 1 on As and 0 on A4. Hence, for example,

>http://mithra.eecs.umich.edu/demo/label/
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t1 = [1,1,0,0] matches P, while t3 = [1,0, 1, 0] does not match it, because P[2] = 1 and ¢3[2] = 0. Using the
patterns to describe the space of value combinations, we define the coverage of a pattern P as the number of items
in D that match it. We say a pattern P is dominated by another pattern P’ if all value combinations matching it
also match P’. Our (lack of coverage) identification problem is to discover Maximal Uncovered Patterns (MUPs),
the set of uncovered patterns (patterns with coverage less than a threshold) that are not dominated by another
uncovered pattern. This problem is #P-complete. At a high level, we define a directed acyclic graph (DAG) that
captures the domination relation between the patterns and transform the problem into an enumeration on this
graph while using the monotonicity property of coverage for pruning the search space.

We note that not all combinations of attribute values are of interest. Some may be extremely unlikely, or
even infeasible. For example, we may find few people with attribute age as “teen” and attribute education
as “graduate degree”. A human expert, with sufficient domain knowledge, is required to be in the loop for
(i) identifying the attributes of interest, over which coverage is studied, (i1) setting up a validation oracle that
identifies the value combinations that are not realistic, and (iii) identifying the uncovered patterns and the
granularity of patterns that should get resolved during the coverage enhancement.

Our coverage enhancement problem is: given a dataset D, its set of material MUPs Mp, and a positive
integer number ), to determine the minimum set of additional tuples to collect such that, after the data collection,
the maximum number of deterministic values in any MUP is at least A. The problem, using a polynomial-time
reduction from the vertex cover problem, turns out to be NP-complete. Since a single tuple could contribute to the
coverage of multiple patterns, we shall show that this problem translates to a hitting set [33] instance. Using this
transformation, we show that the greedy approach provides a logarithmic approximation-ratio for the problem.
Given the exponential number of value combinations, the direct implementation of hitting set techniques can be
very expensive. Hence, we also provide an efficient implementation of the greedy approach.

4 Final Remarks

In this article we explained our results towards responsible data-driven decision making in score-based systems.
The scores, in these systems, are obtained by combining some features using either machine learning models or
human-designed weight vectors. We provided our results for (i) assisting the experts to design fair and stable
rankings, and (ii) assessing and enhancing coverage in a (given) training dataset for tasks such as classification.

So far, in (i) our focus has been on ranking, where the scores are used for comparing the items in a pool.
Human-designed scores are also used for tasks such as classification. Extending our results for these tasks is part
of our future work. Also, we would like to adopt the proposed techniques for linear machine learning models.
The idea is to first train a machine learning model and then adjust the model to, for example, satisfy some fairness
criteria. A similar idea can also be applied for designing ensemble methods for combining the outcome of
multiple ML models. In (ii), we used a fixed threshold across different value combinations, representing ‘“minor
subgroups”. We consider further investigations on identifying threshold value and minor subgroups for future
work. We will also investigate other properties (in addition to coverage) for assessing and enhancing the fitness of
training data for responsible data science tasks.
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