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Abstract

Online stores often utilize product relationships such as bundles and substitutes to improve their catalog
quality and guide customers through myriad choices. Entity resolution using pairwise product matching
models offers a means of inferring relationships between products. In mature data repositories, the
relationships may be mostly correct but require incremental improvements owing to errors in the original
data or in the entity resolution system. It is critical to devise incremental entity resolution (IER) approaches
for improving the health of relationships. However, most existing research on IER focuses on the addition
of new products or information into existing relationships. Little research has been done for detecting low
quality within current relationships and ensuring that incremental improvements affect only the unhealthy
relationships.

This paper fills the void in IER research by developing a novel method for identifying inconsistent
clusters (IC), existing groups of related products that do not belong together. We propose to treat the
identification of inconsistent clusters as a supervised learning task which predicts whether a graph of
products with similarities as weighted edges should be partitioned into multiple clusters. In this case, the
problem becomes a classification task on weighted graphs and represents an interesting application area
for modern tools such as Graph Neural Networks (GNNs). We demonstrate that existing Message Passing
neural networks perform well at this task, exceeding traditional graph processing techniques. We also
develop a novel message aggregation scheme for Message Passing Neural Networks that further improves
the performance of GNNs on this task. We apply the model to synthetic datasets, a public benchmark
dataset, and an internal application. Our results demonstrate the value of graph classification in IER and
the ability of graph neural networks to develop useful representations for graph partitioning.

A Introduction

Entity resolution, the problem of grouping related entities together, is an important problem in computer science
with many application domains, such as databases (when linking records from different databases that represent
the same object) or natural language processing (disambiguating nouns that refer to the same entity) [2, 6, 12].
Much of the research in entity resolution focuses on static systems where the resolution is performed as a one-time
exercise. In many applications, however, a large repository of existing relationships must be continually updated
in order to maintain correct groupings of entities. Incremental entity resolution, or dynamic entity resolution,
studies the problem of how to update repositories of existing relationships over time [15, 24, 33]. Studies of
incremental entity resolution typically focus on how to adapt to new entities and information as they are received.
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However, another important goal in practice is to make the resolved entities incrementally better while not
decreasing quality [32]. Where cluster quality is important, we must detect incorrect clusters of relationships
with high precision to ensure that healthy clusters are maintained. Incorrect clusters of related entities can arise,
for example, from poor quality in the original data, prior incorrect clustering decisions, changing item data,
or malicious actors that fool existing entity resolution systems. We refer to clusters or families of incorrectly
resolved entities as inconsistent clusters (IC).

As an example of where Inconsistent Cluster detection is important, consider entity resolution in the domain
of e-commerce products. Stores such as Amazon, AliExpress, WalMart, and eBay provide huge selections of
products for customers. These platforms often utilize product relationships to link relevant products together
or link them to customers. Examples of product relationships include duplicates, complements, substitutes,
and accessories. Many entity resolution approaches have been proposed for these product matching problems
[21, 23, 27]. Another useful but less researched relationship is product variations, which refer to families of
products that are functionally the same but differ in specific attributes. As an example, shoes that are identical in
all aspects other than size and/or color are variations of one another and are shown to customers on a single page
to simplify selection. In this case, the entire resolved cluster is shown to the customer, and the inclusion of any
shoe that does not belong will make the whole family inconsistent. In this case, IC defects are directly visible to
customers and are critical to fix. More generally, inconsistent clusters of items can be detrimental in any entity
resolution system.

Conventional entity resolution methods were not developed to detect ICs with high precision for IER. In the
conventional approach, a matching step generates the probability for a relationship between all pairs of items.
Matching is followed by a clustering step, wherein clusters are formed by applying a graph processing algorithm
such as transitive closure to all edges above a threshold value [2, 19]. To determine whether existing clusters
should be divided, one could apply matching and clustering within all existing families. However, it is possible
for pairwise scores to conflict [26], leading to incorrect cluster formation and preventing existing Inconsistent
Families from being detected. It has been observed that different clustering algorithms have different strengths
and weaknesses [19]. We propose instead a classification task to evaluate cluster quality that generates a score
for any given cluster being inconsistent. In addition to allowing us to escape the weaknesses of any particular
graph processing algorithm, this approach has the benefit that the score can be tuned to ensure high precision
identification of ICs. Before either forming a new cluster or disaggregating an existing cluster, IC detection can
be used to ensure high confidence that every cluster is incrementally improved. This ability is especially useful
when the quality of each individual cluster is important such as in the product variations problem above.

We formulate the IC detection problem as a graph classification problem on weighted undirected graphs,
where edges represent the similarities between each node. We then develop a binary graph classifier to predict
whether the candidate items jointly form a consistent cluster. Although we have motivated it from an entity
resolution perspective, the problem represents a rich area of study for graph classification since the data are well
represented in graph form with node features associated with entities and pairwise similarity scores associated
with edges. We apply graph neural networks [5, 14, 16, 20, 30] to the problem of scoring a group of entities for
whether they belong together. We demonstrate that existing Graph Neural Network architectures perform well
at graph classification on weighted graphs, and we develop a novel message representation that concatenates
multiple node aggregation functions together to improve performance. We tested our methods in a variety of
problems, including an e-commerce application, open data, and synthetic datasets, and demonstrate the general
superiority of the proposed Graph Neural Network approach.

To summarize, we make the following major contributions in this work. First, we introduce the Inconsistent
Cluster detection problem as an important problem in Incremental Entity Resolution and demonstrate its usefulness
on a real-world product variations dataset. Second, we develop a Graph Neural Network-based binary classifier
for solving the Inconsistent Cluster detection problem. We demonstrate a novel message aggregation scheme that
significantly improves the performance of a GNN classifier on this task, and show that its performance exceeds
state of the art. Third, our extensive evaluations shed light on the superior performance of the proposed method
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against several existing methods. The results show that existing methods may still work well when positive and
negative edges are reasonably separated. But when the scores become more mixed and noisy, the advantage of
our graph classifier is clear. Finally, we demonstrate that Graph Neural Networks can learn robust representations
of weighted graphs for reasoning about partitioning decisions, which we believe will be a valuable area of study
for graph representation learning.

B Background

In this section, we review several areas of research that are closely related to this work.

B.1 Product matching

Much existing research on product relationships in e-commerce focuses on product matching, e.g., duplicates,
complements and substitutes. Product matching is usually formulated as an entity resolution problem [6, 12].
Konda et al. described an end-to-end entity resolution system that includes steps from data preprocessing
to product matching [21]. More recently, many deep learning-based methods have been developed for entity
resolution. Mudgal et al. evaluated several deep learning-based approaches for entity matching and found that deep
learning-based methods do not outperform existing approaches in more structured domains, but can significantly
outperform them on textual and noisy data [23]. Shah et al. discussed two approaches for product matching,
including a classification-based shallow neural network and a similarity-based on deep siamese network [28].
Ristoski et al. used both word embeddings from neural language models and image embeddings from a deep
convolutional neural network for product matching [27]. Li et al. studied using product titles and attributes for
product matching and evaluate their method in two application scenarios, either as a classification problem or as
a ranking problem [22]. Datasets that are specifically targeted for product matching have been published. For
example, a WDC dataset has been published by [25] for large-scale product matching. Its English language subset
consists of 20 million pairs of duplicate products that were extracted from 43 thousand e-commerce websites.

Another closely related area of research is product graphs [9, 18]. A product graph is a framework to capture
all aspects of entities in a unified representation, including both product attributes and the relations between
them. Such a unified view is beneficial because identifying relevant entity attributes and learning relationships are
tightly coupled and can benefit from being treated jointly.

B.2 Incremental entity resolution (IER)

IER has been studied previously with different objectives. [33, 34] address the problem from the perspective of
evolving matching rules, and point out that the IC problem arises in cases where a stricter matching rule requires
all existing clusters to be reevaluated. [15] discusses IER following record insertion, deletion, and change and
allows existing clusters to split apart in response to these operations. The main difference between these works
and our own is that we focus on the precision of updates to individual clusters rather than relying on the ER
clustering algorithm to cluster optimally. These goals are important in an IER system that may already have
relatively high cluster quality that needs to be preserved.

Repairing existing relationships has also been studied from an ER perspective [32] via the creation of a
provenance index that tracks how clustering has changed over time. In this work, we identify clusters that need
repairs with high precision when the provenance may not be known.

B.3 Collective entity resolution

Collective entity resolution, broadly defined, treats clusters of products jointly in entity resolution [2]. Many
existing approaches to collective entity resolution can be described as a two-step process: matching and clustering.
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The matching step can be solved with the methods reviewed in the previous section and outputs scores of all
edges in a cluster. The clustering step can also be solved using many methods. One popular method is transitive
closure (TC) [2,19]. In this method, edges below a critical threshold t are removed and connected components are
computed for remaining edges. K-Core is another common method for the clustering step. In graph theory, k-cores
of the graph are connected components that remain after all vertices with degrees less than k are recursively
removed. These methods can be evaluated on our task by whether they split a cluster into more than one partition
after their application.

Finally, a more recent method called SuperPart is a cluster scoring model [26]. SuperPart directly formulates
classification of a weighted graph as having one or multiple partitions as a binary classification problem. The
SuperPart model featurizes a graph of pairwise edge scores by calculating graph-level features such as the mean
external edge (mean of the edges removed by transitive closure at a fixed threshold), the average edge score in the
cluster, and the number of connected components after filtering out edges below various thresholds. A random
forest is used to extract a cluster-level score from the table of features that represents a likelihood for the cluster
to remain as a single partition. To our knowledge, SuperPart is the only prior algorithm that assigns scores to
evaluate cluster quality. We will use it as a baseline algorithm in this work.

B.4 Graph neural networks

Graph neural networks (GNNs) have been an increasingly active research area in recent years [17]. GNNs
represent relationships between a set of entities as a graph, allowing the incorporation of both entity-level
features as well as edge-level features. Many real-world problems can be represented as graphs, such as social
networks [20], chemical and biological compounds [10, 13, 30] and product graphs [5]. One widely applicable
formulation of graph neural networks, Message Passing Neural Networks [13], uses message propagation to
iteratively update embedding representations of nodes, such that the embeddings capture the common patterns
between node features directly communicated via edge features. Graph representation learning has been studied
extensively, e.g., [5, 14, 16, 20, 30]; however, GNN research has focused more on learning node embeddings than
on graph classification. Gilmer et al. performed graph-level regression to predict 13 chemical properties on a large
graph dataset, whereas here we have a graph-level classification task related to the graph partitioning [13] . Chen
et al. perform graph partitioning at the node level given a fixed number of partitions [5]. This task is similar to the
classification task described here in that it involves graph partitioning, but is dissimilar in that we have weighted
rather than binary edges and are classifying entire graphs rather than nodes. Graph Neural Networks have been
explored for entity linkage in knowledge bases in Neural Collective Entity Linking (NCEL) [4], wherein the best
candidate edge for a given node is found using an existing clustering. Overall, graph neural network models are
particularly compelling for entity resolution because of their flexibility: they can learn from both node features
and edge features and make predictions for nodes, edges, or entire graphs. To our knowledge, graph neural
networks have not yet been applied to evaluating clusters in entity resolution, for which many applications still
use the traditional approach of calculating similarity scores followed by algorithmic clustering approaches.

C Method

C.1 Problem

Product variations are increasingly used by e-commerce websites to group similar products into families so that
each family can be shown on a single detail page. Again taking shoes as an example, the shoes that share key
aspects such as brand and style would be displayed on the same page; non-key aspects such as size and color are
shows as selectable (dropdown) options. Such aggregated views of products allow customers to select specific
products much more easily. Since all varied items are shown together, even a single item incorrectly grouped
with others creates a visibly inconsistent family. Importantly, stores such as WalMart, Amazon, and Shopify offer
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Figure 1: (a) Example of an IC in the context of product variations. Two items representing animal-themed
slippers should be separated from traditional Womens’ slippers. (b) Generic binary graph classification problem.
Existing fully connected graphs of items contain both correct relationships (solid green lines), and incorrect
relationships (dotted red lines) according to auditor labels. The edge labels encode a partitioning of the graph into
one subgraph in the case of healthy families (y = 0) or multiple subgraphs in the case of IC (y = 1). The goal of
the classifier is to find the correct graph label y without knowing the true partitioning. The classifier relies on
a probability for edge existence p derived from pairwise item similarity. As in the IC family in (b), the task is
challenging for algorithmic approaches because p might vary across two true clusters.

sellers the opportunity to upload information about variations directly, allowing for the possibility that incorrect
clusters can arise as a result of input data rather than as the output of an entity resolution system.

In this paper, we focus on the problem of detecting whether a family of items form a true cluster, which
we define as the Inconsistent Cluster (IC) problem. Due to the need to treat product families collectively, IC
detection can be much more challenging than simple pairwise entity matching. Imagine a family of products with
10 members, and only one of them does not belong. The family as a whole is clearly defective. However, if we
consider the problem as pairwise product matching, a majority of the 45 product pairs (10 choose 2) are correct
matches, with only 9 of them as mismatches. Although we can add a clustering step to further decide whether the
family is defective or not, classic clustering approaches such as transitive closure or k-core may not work well for
real world problems where noisy data are prevalent [26]. For example, one or two of the 9 scores for mismatched
edges may be high.

Importantly, because we use an independent algorithm to classify clusters into consistent and inconsistent
clusters, our method can detect errors in the decision made by an entity resolution system. This is an important
contrast with other IER approaches because, as our data will show, clustering methods used in entity resolution
do not always make correct decisions. Even in this context of noisy pairwise scores, our method can be used to
enforce high precision for resolved clusters.

C.2 Formulation

We solve the IC detection problem by formulating it as a binary graph classification problem. Given an input
graph G(V,E), a signal y ∈ {0, 1} is to be reported for each graph (Figure 1). A graph with a negative label
corresponds to a healthy family and a positive label corresponds to an IC. As noted before, this graph classification
task arises not only in finding existing families that are IC, but in confirming that items to be combined have a
healthy score. The nodes represent items and all candidate families of items are fully connected with edge scores
pij that represent item similarity between items i and j.

For maximum generality, in this work, we assume only that there is a means available to produce the pairwise
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node similarity feature p between all candidate related items. We create these pairwise edge scores for an internal
e-commerce application, the inconsistent variation family detection problem, by using a random forest on edge
features generated from each pair of records; these edge features are generated by a general record matching
platform similar to [8]. We also test the method on open data from [26] which contains weighted graphs with
ground truth partitionings. Finally, we can test our method on synthetic data. For this purpose, we adopt the
Weighted Stochastic Block Model [1], wherein scores between two partitions come from one exponential family
distribution, and scores within a given partition come from another.

C.3 Baseline Methods

One common method for making partitioning decisions in entity resolution is transitive closure (TC). In this
method, edges below a critical threshold t are removed and connected components are computed for remaining
edges. When enough edges fall below t to divide a candidate family into two or more connected components,
we predict y = 1 for the family-level label; otherwise, we predict y = 0. Unlike other models studied here, this
method does not provide a continuous score for how the cluster is likely to be classified. However, we note that at
a given threshold t, TC is a binary classifier which considers more families to be inconsistent as t increases. We
can therefore create a precision-recall curve for the purpose of comparing to other graph classifiers by sweeping t.
To do this, we construct a family-level score sTCi ≡ 1− tmini where tmini is minimum pairwise threshold at which
family i will have multiple connected components. If tmini is low (sTCi is high), then the cluster breaks apart
easily; however, if tmini is high (sTCi is low), even edges with high scores must be filtered out to divide the cluster.
We use the score sTCi as a binary graph classification score for the purpose of constructing a precision / recall
curve, where only families with score greater than or equal to a family-level threshold tf will be considered IC.

For k-core, we allow tunable k ∈ [3, 9], which is chosen in the validation job to optimize the F1 metric we
report. The k-core algorithm recursively prunes nodes with degree less than k. As for TC, we can calculate a
PR-curve for k-core using the minimum pairwise threshold at which k-core would separate or reduce the size of a
family.

We also implement the SuperPart algorithm from [26], which explicitly solves the classification task of
deciding whether a weighted graph should be broken into multiple partitions. To our knowledge, SuperPart is
the only existing graph classification method intended to classify clusters according to whether they should be
partitioned.

C.4 Proposed Model

Going beyond prior work, we propose to solve the graph classification problem by applying graph neural network
models (GNNs). In particular, we adopt the message passing neural network (MPNN) framework outlined
in [13] but propose a new message aggregation scheme that significantly improves the classification performance.
MPNNs can be described by their message passing, update, and readout functions. Given a graph G with node
features xv and edge features evw, the MPNN works by aggregating (AGG) messages Mt at each node v from
neighboring nodes N(v) at each timestep t. These collected message mt

v can depend both on the neighboring
node features as well as the edges. The messages are then used to update the hidden state hv of the node according
to an update function Ut. Finally, after T timesteps, the graph label is read from all node states according to a
readout function R:

mt+1
v = AGGw∈N(v)[Mt(h

t
v, h

t
w, evw)] (11)

ht+1
v = Ut(h

t
v,m

t+1
v ) (12)

ŷ = R({hTv |v ∈ G}) (13)
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Table 15: Performance on real and synthetic data.

Dataset TC K-Core SuperPart GCN-E MAG-GCN (Ours)
Softlines 0.716 (0.006) 0.624 (0.014) 0.721 (0.005) 0.705 (0.005) 0.721 (0.009)
Hardlines 0.873 (0.008) 0.663 (0.002) 0.880 (0.004) 0.877 (0.003) 0.887 (0.003)
IC-Stratified 0.725 (0.012) 0.746 (0.026) 0.754 (0.023) 0.757 (0.003) 0.774 (0.003)
Beta(1,1), Beta(3,1.5) 0.375 (0.047) 0.433 (0.041) 0.619 (0.071) 0.576 (0.061) 0.687 (0.061)
Beta(2.5,4), Beta(4,2) 0.706 (0.057) 0.640 (0.067) 0.819 (0.04) 0.737 (0.039) 0.843 (0.039)
Beta(1,2), Beta(4,1.5) 0.624 (0.051) 0.762 (0.051) 0.914 (0.028) 0.813 (0.048) 0.932 (0.029)
Beta(1.5,4), Beta(3,1) 0.907 (0.03) 0.856 (0.04) 0.95 (0.016) 0.825 (0.037) 0.967 (0.014)
Beta(1.5,4), Beta(4,1) 0.936 (0.035) 0.924 (0.028) 0.976 (0.019) 0.907 (0.036) 0.973 (0.009)
Beta(1,4), Beta(4,1) 0.979 (0.01) 0.972 (0.016) 0.981 (0.02) 0.93 (0.025) 0.989 (0.014)
We report mean F1 score with parentheses enclosing standard error.

Of the MPNNs, we draw on the design of the Graph Convolutional Network (GCN) [20] and ideas from [35]
to produce an architecture that performs well at the task of deciding whether a weighted graph should be divided
into one or more partitions. The message passing function for our proposed approach, the MAG-GCN (Mixture
AGgregation Graph Convolutional Network), is

mt+1
v = (MEAN(hw, evw),MAX(evw),MIN(evw)), (14)

where (·, ·) denotes concatenation. We found the concatenation of the edge feature to the node features be
important, as observed in [11]. Moreover, the inclusion of the min and max aggregation represents a significant
departure from the message passing function of the GCN: mt+1

v ∼ MEAN(hw). We found that for reasoning
about partitioning in a weighted graph, it was helpful for the message passing function to carry more information
about the distribution of incoming edge weights than just the mean. To demonstrate these points, we compare the
MAG-GCN to an architecture that we refer to as GCN-E [11], which is the same but with message passing

mt+1
v = MEAN(hw, evw). (15)

We also tried adding a sum aggregator to our mixed aggregation, but found that this did not yield any benefit.
We also note that for the graphs studied here, where all of the information is contained in the edge weights, it is
not obvious how to adopt a vanilla GCN architecture such as that in [20], where the focus is on learning from
node features. After completion of this work, we became aware of [7], which demonstrates that a similar mixed
aggregation scheme enhances GNN performance in a broad array of applications.

For all of the GNN architectures we studied, the update function consists of a fully connected neural network
fU with ReLU activation, and the readout function consists of a fully connected network that operates on the
mean of the hidden states h̄v, R = fR(h̄v). Following readout the loss is calculated with binary cross-entropy.
We utilized learning rates between 10−2 and 10−3. Initial node features were set to a vector of zeros and the
edge weights evw were set to the pairwise edge similarity. Hyperparameters were tuned on synthetic datasets.
Our graph neural network models were built with Deep Graph Library [31], a general framework for building
Message Passing Neural Networks.

D Results

D.1 Experimental design

To evaluate model performance, we choose transitive closure, k-core, and SuperPart as baseline methods. For
evaluating performance on a test set, we use F1 score. For the F1 score metric, a threshold is first chosen to
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Figure 2: Performance of cluster scoring on: (a) Softlines , (b) Hardlines, (c) An open dataset introduced in [26]
and referred to in that work as IC-Stratified. F1 scores for the same datasets can be found in Table 15.

maximize F1 score on a validation set, and the F1 score is evaluated on a test set.
We first evaluated all of the methods in an internal application. Several audited datasets are created as follows.

A group of items was shown to auditors on a single page, and the auditors were given the task of partitioning it into
one or more Variation families. One audited dataset consists of approximately 8,500 such families from a Softlines
product line containing 76,000 items which have been partitioned according to auditor labels; approximately
3,800 of these families were split by the auditors and are therefore IC. The second audited dataset consists of
approximately 6,500 families from a Hardlines product line containing 124,000 items; 2,700 families are IC.

We also use a publicly available dataset released in [26] called IC-Stratified; this dataset contains a training
set with 2649 nodes and a test set with 2424 nodes with ground truth partitionings into one or more families.

Finally, we evaluated our methods on synthetic datasets. When generating the datasets, we tested different
degrees of separation between positive and negative pairs, as well as the specific distributions for generating the
weights of these pairs. The systematic study on synthetic datasets allow us to gain deep insights on the advantages
and disadvantages of the different methods under different conditions. We generate synthetic data by creating
graphs of 1 or 2 ground truth families, where the latter is an IC example. Each node had probability of 0.97 to be
part of the first true family and 0.03 to from the second. All edges within true families were drawn from one Beta
distribution, and all edges between true families were drawn from another.

D.2 Real-World Datasets

For the Softlines and Hardlines datasets, we trained and tested the models on a fixed training, validation, and
test set 5 times, each with a different random seed for the pairwise classifier training. For IC-Stratified, pairwise
scores are provided and we split the training set into training and validation 5 different ways. A comparison of
the cluster scoring models can be found in Table 15, with PR-AUC curves shown in Figure 2. Overall, we find
that a model-based cluster scoring mechanism helps with the task of identifying inconsistent clusters, with both
SuperPart and MAG-GCN outperforming the TC baseline. We find that the MAG-GCN model performs the best
overall in Softlines, Hardlines, and the public dataset IC-Stratified from [26]. The GNN model is particularly
effective at improving recall at high precisions, an important metric for applications. An example precision-recall
comparison between the MAG-GCN and the TC baseline can be found in Figure 2.

To understand the origin of the improved performance, we plot the GNN score against the TC score in
Figure 3. We observe that the MAG-GCN derives its improved performance by boosting the scores of TC’s false
negatives more than reducing the scores of false positives. We also observe that larger families tend to benefit
more often from the GNN than their smaller counterparts. This pattern can be better understood by examining
some examples. The lower portion of Figure 3 shows example families that were correctly labeled positive by the
GCN but incorrectly by transitive closure. We see that while the pairwise model correctly drew low-probability
edges between clusters in many cases, there is often a structural component in the graph that makes it difficult to
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Figure 3: Study of improved performance. Upper: MAG-GCN score is displayed against the TC score for (a)
Softlines, (b) Hardlines, (c) IC-Stratified. Blue points are ground truth negative ICs, red points are ground truth
positive ICs, and size represents the number of items in the family. The upper left hand corner of the graph
represents the area where the GCN increased the score compared to TC. The primary effect of the GCN is to
boost the scores of positive examples more than negative examples. Lower: example families of products that
were classified as non-IC by TC but were correctly classified as IC by MAG-GCN. The red points represent items,
black edges represent true positive edges, and blue dotted lines represent true negative edges. The width of the
line is proportional to the pairwise model prediction p. For example, in the rightmost plot, owing to a single edge
with weight 0.85 between two true clusters, TC did not suggest partitioning into two families with high likelihood
(score = 0.15); however, MAG-GCN correctly did (score was 0.78, true label was 1.0)

partition by transitive closure. For example, in the example from Softlines (a), there is a central node that holds
three separate clusters together. In the examples from Hardlines (b) and IC-Stratified (c) there are widely varying
edges between two true clusters.

D.3 Synthetic datasets

A study of synthetic data is shown in Figure 4. As mentioned previously, we produced artificial families of
items ranging from size 5 to 15 using a different distribution for true positive edges and true negative edges. By
varying the parameters of the distribution, we were able to determine how methods of cluster scoring perform
across different levels of difficulty. The distributions and corresponding performances are shown in Figure 4
and Table 15. We find that MAG-GCN consistently outperforms or is competitive with the other methods, with
particular performance increases for noisy data. For example, when positive edges are drawn from Beta(3, 1.5)
and negative edges are drawn from a uniform distribution – a noisy setting – MAG-GCN has an F1-score of
0.687 vs. 0.375 for TC and 0.619 for Superpart - an 83% and 11% improvement over the baselines, respectively.
However, when both positive and negative distributions are well-separated, most methods do well. This points to
the usefulness of our method in the noisy data setting, which is common in applied settings such as our internal
task.
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Figure 4: Performance on synthetic data. Top: beta distributions used generate synthetic data. Negative edges are
drawn from the red distributions while positive edges are drawn from the blue distribution. Bottom: different
cluster scoring techniques are applied to each distribution. We utilize the synthetic datasets from Table 15 (N =
1000).

We also tested all methods against the GCN-E, which is similar to MAG-GCN but uses only mean node
aggregation rather than the mixture of mean, min, and max. We note that the concatenation of the edge feature
into a GCN alone is insufficient to learn this task as successfully as our method.

E Discussion

As in previous work [26], we find that by applying an additional cluster scoring model we can improve performance
on the joint task of classifying an entire family as inconsistent. Of the cluster scoring mechanisms we tested, we
find that the MAG-GCN is most effective, outperforming its immediate competitor SuperPart. We also found
that the benefit of the MAG-GCN is most dramatic for recall in the high precision regime, which is a relevant
metric for production use cases where we wish to fix only high-confidence IC families. The performance of
the MAG-GCN in comparison to SuperPart was also interesting. We noticed that when little data was available,
SuperPart performed well and once better than MAG-GCN (second to last plot in Figure 4), suggesting that
the SuperPart model may be better regularized. However, MAG-GCN appears to be more flexible and able to
learn effective representations of a wide variety of weighted graphs. Understanding the power of Graph Neural
Networks relative to featurized representations of graphs is an interesting topic for further study.
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We also make note that MAG-GCN is significantly better than GCN-E, where the edge feature is simply
concatenated and the aggregation function is the mean. Xu et al. [35] note the mean aggregation function is
effective at learning the distribution of its surroundings while the max aggregation function is more effective at
distinguishing outliers. We note that the mean aggregation function provides information about the center of the
distribution of incoming edges, while the min and max aggregation functions provide some sense of its spread.

To frame the results in terms of our IC detection application, the decision at the cluster level, rather than
pairwise, appears to add value over TC primarily by increasing model score for families that would be false
negatives under TC because they are tied together by outlier edges. In Figure 3, the benefit of the GNN score
appears to increase for larger families, where there is more opportunity to have an outlier edge. We suspect that in
real-world applications of inconsistent family detection to product graphs, where there may be hundreds or even
thousands of products linked together, the benefits of this technique will grow.

Despite the performance enhancements achieved by the MAG-GCN, further work including raw node features
such as images and text is needed to take full advantage of the graph neural network paradigm for product
relationships. For the use case of automatically cleaving high confidence families, further work is recommended
on using GNNs to learn the correct partitioning within the IC. Models whose loss depends on the categorization
of each node such as the Line Graph Neural Network [5] might be well suited for this task.

F Conclusions

Using graph neural networks that leverage graph structure, we are able to significantly improve the ability of
cluster scoring models to detect Inconsistent Clusters for e-commerce applications. More generally, we show
that graph neural networks can learn robust graph representations of weighted graphs for partitioning decisions.
Future work will focus on incorporating additional node and edge features, as well as studying graph neural
network structures that partition the graph explicitly rather than classify the entire graph as either consistent or
inconsistent. For the binary classification problem, we hypothesize that methods allowing learnable coarsening
of the graph [3, 29] could be useful. Graph neural networks offer an interesting path forward for other entity
resolution problems because node features can be included along with the edge weights studied here.

In terms of incremental entity resolution, focusing on the IC problem allows us to handle the important case
where we want to enforce that cluster quality does not degrade with ER updates. Having an Inconsistent Cluster
detection mechanism is an efficient way to accomplish this regardless of the quality of pairwise scores, since
precision and recall for cluster-level updates can be tuned along the curves shown in Figure 2. In this paper, we
mainly studied the IC detection problem in the context of existing clusters prior to splitting, but the same cluster
quality checks can be applied to clusters prior to being merged or split. Future work will include evaluating how
to combine merging and splitting to optimize the IER in the general case.

References

[1] Christopher Aicher, Abigail Z Jacobs, and Aaron Clauset. Learning latent block structure in weighted networks.
Journal of Complex Networks, 3, 2 221–248, 2015.

[2] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in relational data. ACM Transactions on
Knowledge Discovery from Data (TKDD) 1, 1 (2007), 5–es.
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Aggregation for Graph Nets. Advances in Neural Information Processing Systems 33 (2020).

[8] J De Bruin. 2019. Python Record Linkage Toolkit: A toolkit for record linkage and duplicate detection in Python.
https://doi.org/10.5281/zenodo.3559043

[9] Xin Luna Dong. 2018. Challenges and innovations in building a product knowledge graph. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2869–2869.

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik,
and Ryan P Adams. 2015. Convolutional networks on graphs for learning molecular fingerprints. In Advances in
neural information processing systems. 2224–2232.

[11] Vijay Dwivedi, Chaitanya Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. 2020. Benchmarking Graph
Neural Networks. arXiv preprint arXiv:2003.00982 (2020).

[12] Ivan P Fellegi and Alan B Sunter. 1969. A theory for record linkage. J. Amer. Statist. Assoc. 64, 328 (1969),
1183–1210.

[13] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. 2017. Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 1263–1272.

[14] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., Vol. 2. IEEE, 729–734.

[15] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. 2014. Incremental record linkage. Proceedings of the VLDB
Endowment 7, 9 (2014), 697–708.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances
in neural information processing systems. 1024–1034.

[17] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584 (2017).

[18] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. 2011. Handbook of product graphs. CRC press.

[19] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J Miller. 2009. Framework for evaluating clustering
algorithms in duplicate detection. Proceedings of the VLDB Endowment 2, 1 (2009), 1282–1293.

[20] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907 (2016).

[21] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan, Jeffrey R Ballard, Han Li, Fatemah
Panahi, Haojun Zhang, Jeff Naughton, et al. 2016. Magellan: Toward building entity matching management systems.
Proceedings of the VLDB Endowment 9, 12 (2016), 1197–1208.

[22] Juan Li, Zhicheng Dou, Yutao Zhu, Xiaochen Zuo, and Ji-Rong Wen. 2020. Deep cross-platform product matching in
e-commerce. Information Retrieval Journal 23, 2 (2020), 136–158.

[23] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,Ganesh Krishnan, Rohit Deep,
Esteban Arcaute, and Vijay Raghavendra. 2018. Deep learning for entity matching: A design space exploration. In
Proceedings of the 2018 International Conference on Management of Data. 19–34.

[24] Markus Nentwig and Erhard Rahm. 2018. Incremental clustering on linked data. In 2018 IEEE International Conference
on Data Mining Workshops (ICDMW). IEEE, 531–538.

[25] Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019. The WDC training dataset and gold standard for large-scale
product matching. In Companion Proceedings of The 2019 World Wide Web Conference. 381–386.

49



[26] Russel Reas, Stephen Ash, Rob Barton, and Andrew Borthwick. 2018. SuperPart: Supervised graph partitioning for
record linkage. In International Conference on Data Mining. ICDM.

[27] Petar Ristoski, Petar Petrovski, Peter Mika, and Heiko Paulheim. 2018. A machine learning approach for product
matching and categorization. Semantic web 9, 5 (2018), 707–728.

[28] Kashif Shah, Selcuk Kopru, and Jean David Ruvini. 2018. Neural network based extreme classification and similarity
models for product matching. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers). 8–15.

[29] Pawel Swietojanski and Steve Renals. 2015. Differentiable pooling for unsu- pervised speaker adaptation. In 2015
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 4305–4309.
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