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Abstract

Machine Learning (ML) algorithms are a standard component of modern software systems. The validation
of data ingested and produced by ML components has become a central challenge in the deployment and
maintenance of ML systems. Subtle changes in the input data can result in unpredictable behavior of an
ML algorithm that can lead to unreliable or unfair ML predictions. Responsible usage of ML components
thus requires well calibrated and scalable data validation systems. Here, we highlight some challenges
associated with data validation in ML systems. We review some of the solutions developed to validate data
at the various stages of a data pipeline in modern ML systems, discuss their strengths and weaknesses
and assess to what extent these solutions are being used in practice. The research reviewed indicates
that the increasing need for data validation in ML systems has driven enormous progress in an emerging
community of ML and Data Base Management Systems (DBMS) researchers. While this research has led
to a number of technical solutions we find that many ML systems deployed in industrial applications are
not leveraging the full potential of data validation in practice. The reasons for this are not only technical
challenges, but there are also cultural, ethical and legal aspects that need to be taken into account when
building data validation solutions for ML systems. We identify the lack of automation in data validation
as one of the key factors slowing down adoption of validation solutions and translation of research into
useful and robust ML applications. We conclude with an outlook on research directions at the intersection
of ML and DBMS research to improve the development, deployment and maintenance of ML systems.

1 Introduction

Machine Learning (ML) technology has become a standard component in modern software systems. Many
decisions are increasingly being automated with ML and the predictions of ML models are being exposed in data
products or consumed by other downstream software components. This trend gives rise to new research challenges
at the intersection between Data Base Management Systems (DBMS) community and the ML community. Many
of these challenges are related to data validation. In contrast to standard software systems, for which a large
arsenal of testing concepts and utilities exists, testing of ML systems is difficult. Depending on the ingested
data, ML systems can behave very different, and often subtle changes in the input data, that are hard to detect by
humans, can lead to very different ML predictions [4].
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This data dependency in the transformations induced by ML models is their very strength: It allows these
systems to adapt to any problem setting by learning from rules defined implicitly by a data set. But this flexibility
comes at a cost: The more complex and powerful ML systems become, the more difficult it becomes to validate
their predictions.

For decades ML scientists have been considering data validation rather an engineering challenge than a
research problem. Recently however with more ML systems being deployed in customer facing applications
newspaper headlines remind us that without proper validation of ML components we will see more racist chatbots1

or fatal car crashes2. Scientists in the field are beginning to take this problem very seriously. There is an emergent
field of research around data management tailored to ML workflows [36]. Testing, monitoring and validation
of ML systems and the data ingested and produced by ML models has become a major focus of research with
dedicated workshops at major conferences and a rapidly growing research community, as summarized in section 3.
Also the recent trend in ML to render models and their predictions more transparent [52] can be regarded as an
attempt to validate ML systems and training or prediction data [67]. However to the best of our knowledge there
is no commonly agreed upon data validation solution for ML systems that has reached broad adoption. Here, we
argue that one of the most important factors is that automating validation of ML systems is difficult. Especially
when systems learn autonomously and continuously, it can be challenging to ensure that the performance of an
ML system is not shifting due to accidental or adversarial changes in the data. Given the above examples for
how ML systems can fail in practice, it is obvious that ML systems require scalable, robust and automated data
validation solutions. This constraint does not apply to academic research, and thus the lack of automation in ML
system validation can be considered as a major blocker slowing down the transfer of the often rapidly evolving
advances in ML research into robust and trustworthy customer facing products.

But why is this so difficult to automate? Researchers in the DBMS community have been investigating data
profiling for decades [3] and many of these solutions are just right for some aspects of data validation also in the
context of ML systems. However some of the challenges in ML system monitoring go beyond that. Many data
validation aspects in ML systems depend on the state of the trained ML model, such as the performance of a ML
model under data set shift, or the differential privacy of a model [16, 2, 5]. Other aspects such as fairness of a ML
model require domain expertise that ML engineers often do not have. As illustrated in Figure 1 the competencies
required to validate data in the various stages of an ML system require competencies that are usually distributed
across several experts in a team or even separate teams.

In the following chapters we will first review the challenges associated with data validation in ML systems
and highlighting some of the practical implications. Afterwards we review some of the data validation solutions,
with a special focus on the practical applicability of these approaches. Finally we will conclude with an outlook of
technical and non-technical challenges associated with ML system validation in order to ensure more responsible
usage of ML systems in production software systems.

2 Data Validation Dimensions

As ML systems learn from data, validation of the data ingested during training and prediction is a fundamental
prerequisite for well functioning and robust ML systems [58, 10]. Relevant data validation dimensions for ML
systems can be broadly categorized into those notions of data quality commonly considered in classical data base
management systems (DBMS) and ML model dependent dimensions. In the following, we highlight some of the
dimensions and provide examples for each category.

1https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
2https://www.nytimes.com/2016/09/15/business/fatal-tesla-crash-in-china-involved-autopilot-

government-tv-says.html

52



Data  
Engineer

ML  
Engineer

User

ML ModelFeaturesData

ML  
Scientist

Product 
Manager

Figure 1: Responsibilities for a machine learning (ML) production software system are often distributed across
different roles and teams [1]. Data from various sources is integrated, features are extracted and ML models
transform these into predictions, which are then served to users whose behavioural signals are fed back to the
system. Monitoring and validating these data streams at scale is only feasible with automated tests. But validating
the data in each of these stages requires different competencies and often domain expertise. This imposes novel
technical and conceptual challenges on engineering teams when automating ML production systems.

2.1 Classical DBMS dimensions

Independent of ML applications there are many data validation dimensions that have been investigated in the
DBMS community, more specifically in the data profiling literature[3]:

Data Correctness: This dimension refers to schema violations, such as string values in numeric columns, or
generally syntactically wrong data. Defects in this dimension can often break ML processing pipelines. Some of
these violations can be detected easily for instance by type checks, and corrupted data instances can be filtered
out.

Data Consistency refers to defects that are not captured by syntactic correctness, including duplicate entries or
invalid values. Detecting these cases can be difficult and computationally challenging, but there exist efficient
approaches to de-duplication and detection of semantic inconsistencies. Violations of semantic inconsistencies
can for instance be detected by validation of functional or approximate functional dependencies [46, 35].

Completeness of a data source reflects the ratio of missing values in a data set. In principle this dimension is
simple to probe, however only under the assumption that the missing value symbol is known. Unfortunately this
assumption is often violated. As missing values often cause problems in data pipelines feeding into ML systems,
a common strategy of avoid such problems is to replace missing values with syntactically valid values. These
transformations often make the missing values pass validations for correctness and consistency.
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Statistical Properties: This dimension includes basic descriptive statistics of an attribute, such as mean of a
numeric or mode of a categorical variable, and more complex parametric or non-parametric statistical aggregates
of a data set. A popular validation strategy in this data dimension is anomaly detection.

2.2 ML model dependent dimensions

Validating the above data quality dimensions can be challenging, but these tests of the input data are independent
of the downstream ML model. This implies that testing only for these dimensions can lead to both false negatives,
when a data corruption is not detected that has a negative impact on the downstream ML model, as well as
false positives, when a data corruption raises an alarm but does not have any effect on the downstream ML
model. Examples for false negatives of ML model independent validations include adversarial attacks, such as
for instance avoiding filters for adult language by leet speak3 strings obfuscated by misspellings and replacing
letters with numeric characters. Examples for false positive alarms are ML models employing strong L1 or
sparsity-enforcing regularization constraints. In these models, a large number of input features is often not
affecting the ML model output, hence distributional shifts in these input features would not be reflected in shifts
of the ML model outputs and validation of the input data independent of the model outputs will raise false alarms.

Data validation in the context of ML production systems thus has to take into account the current state of
the downstream ML model to ensure robust and reliable performance. The state of the ML model and and the
impact of data corruptions on ML performance can be monitored by a number of different validation dimensions
of the ML model output data. These have to be validated along with the usual criteria common to all production
software systems, such as requirements on the latency and availability of the system. SageMaker Model Monitor4

is a solution that enables monitoring of models deployed in production. For example, alarms are triggered when
data distributions shifts are detected.

Predictive performance metrics are usually the most important metrics optimized in production ML systems.
These metrics include accuracy, precision or F1-score of a classifier, the mean-squared error, mean absolute error
or r2-scores for regression models or various ranking losses, evaluated via cross-validation on a test set that was
not used for training the respective ML model. When the data processed by trained and deployed ML model
is drawn from the same distribution as the training and test data, then these cross-validated metrics reflect the
predictive performance reliably. But in production ML systems, this assumption is often violated. Examples
include shifts in the input data (covariate shifts) or shifts in the target data distribution (label shift).

Robustness The shifts induced by corruptions in the data that are a) not caught by upstream classical data
validation techniques and that have b) a negative impact on the predictive performance of a production ML system
can be difficult to detect, as there is no ground truth label information available for the data. In the absence of
ground truth data needed to compute predictive performance metrics, one can resort to classical data validation
techniques applied to the outputs of ML models. But this approach can fail to detect certain covariate shifts
induced by outliers, adversarial attacks or other corruptions.

Privacy metrics have become increasingly important since ML models are used to process personal data such
as health care data, financial transactions, movement patterns or really almost every aspect of our lives. Popular
concepts include differential privacy [17] and k-anonymity [61]. Note that k-anonymization [61] is not model
dependent, it is a property of a data base where user data is considered private if information about each user
cannot be distinguished from at least k-1 other users whose information is in the dataset. In the field of ML,
differential privacy is more useful than k-anonymity. Two main reasons for that are a) k-anonymity is defined for

3https://en.wikipedia.org/wiki/Leet
4https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
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a fixed data set, if new rows are added, one might need to convert the data again in order to achieve k-anonymity,
and b) if a k-anonymous data set is combined with other information, it is often possible to de-anonymize the
data. A large body of literature in the ML community builds upon the definition of ε-differential privacy [18]
which deals with the problem of learning little to nothing about individual data-points while learning a lot about
the population by ensuring the same conclusions can be drawn whether any single data-point is included in the
dataset or not. Most implementations of differentially private ML models add noise to the data, gradients or the
model coefficients [2, 59, 47, 42]. This can be an effective countermeasure to model inversion attacks [20] or
membership inference attacks [59]. The amount of noise added determines the amount of privacy preserved – but
it also bounds the predictive performance or utility of the ML model [30].

Robustness to adversarial data Recent developments have shown that ML models, placed at the centre of
security-critical systems such as self-driving cars, can be targeted by dedicated adversarial examples - inputs
that are very difficult to distinguish from regular data but are misclassified by the model [22]. Those inputs,
created by applying a small but very significant perturbation to regular examples can be used to manipulate the
model to predict outputs desired by an adversary [62, 9, 44]. The robustness to adversarial attacks of the model
can be measured by (1) generating a set of adversarial examples based on the test set [62, 37, 28, 43, 22] and
(2) computing what is the change in models accuracy given a fixed average distortion, or what is the minimum
average distortion needed to reach 0% accuracy on the test set.

Fairness Another dimension that is highly relevant when putting ML systems in production is that of fairness
or more generally ethical aspects of ML predictions [40]. There are a number of examples when ML technology
used as assistive technology for instance in border control5 or policing6 led to racist or otherwise biased decisions.
It has been widely recognized in the ML research community that when building ML applications validating
the ML predictions with respect to fairness is a fundamental prerequisite. Evaluating this dimension is however
amongst the most difficult of all validation challenges: there are different fairness definitions, and even if one
could agree on a small set of definitions, validating these requires insight into the respective grouping variables,
which are, for ethical and legal reasons, typically not available. The relevant grouping information is thus often
reflected in a data set through other features, which are considered not ethically problematic, such as zip code,
but which are often correlated with ethically sensitive features. Other implicit biases of data sets can emerge from
data preprocessing, for instance how missing values are dealt with when they are distributed not equally across
ethnical groups [65]. Detecting these biases requires not only domain expertise, but also often information that is
not contained in the data set itself.

3 Current Solutions

Validating data at each of the stages in a ML workflow as sketched in Figure 1 requires a wide range of
competencies from data engineering over ML algorithms to user interface design. These competencies are often
distributed across different roles in a team, and especially in small (5 to 10 members) teams, it is not unlikely
that only one person has the competency to dive deep into a root cause analysis of the various data validation
dimensions sketched in section 2. Solving problems in an on-call situation or when scaling up an ML system
requires reliable automation for the data validation. As many of these validations have to be data dependent, such
automation often amounts to using ML to validate data in ML workflows which has, for instance, been done for
outlier removal [68], data cleaning [34] or missing value imputation [8].

5https://www.bbc.com/news/technology-53650758
6https://www.nytimes.com/2019/07/10/opinion/facial-recognition-race.html
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There are, however, simpler approaches that do not leverage ML models to validate data in ML systems, such
as Tensorflow Extended (TFX) [6] or DEEQU [54]. In the following we will highlight some of the state of the art
solutions to automated data validation in the context of ML systems.

3.1 Schema Validation

Validating syntactic correctness, also referred to as schema validation, is – at first glance – relatively simple and
often integral part of data ingestion. Usually data violating data type constraints will immediately raise errors and
break a data pipeline. Yet, these validations are often counteracted by humans. In practice it is not uncommon to
use generic data types such as strings for data that is actually numeric, ordinal or categorical. While this will
ensure that schema violations are minimized, as any data type can be cast to string, it imposes additional work on
any downstream validation for data correctness and consistency. This problem is worsened by the fact that some
software libraries popular in the ML community often cast string data that contains numeric data automatically to
numeric data types. This can have effects on entire scientific communities. A recent study reports that casting
errors induced by excel in biomedical data occur in approximately one fifth of the papers in leading genomics
journals [70].

While simple validation such the data type can be trivially automated, it is unlikely that this will prevent
engineers from having to deal with data type errors. There will always be on-call engineers who need to fix
problems as fast as possible and the cost of having stale or broken data pipelines in a production system is often
far bigger then the difficulty to quantify cost of accumulating hidden technical debt by specifying generic data
types like strings and thereby circumventing data type checks. This is why this simple task of data type detection
is actually an interesting research challenge. Often simple heuristics will do the job and the popular libraries
use these heuristics to determine the data type of columns. The simplest heuristic is probably to try and cast a
value to a certain data type and try other data types in case an error is raised7. Such heuristics often work well in
practice but can be insufficient, especially when dealing with heterogeneous data, such as mixed data types in
one column. Also, for the seemingly simple task of automating data type inference, there is interesting recent
work on using ML models to infer a probabilistic notion of the most likely data type given the symbols used in a
data base [12]. Approaches combining scalable heuristics with more sophisticated ML based data type inference
techniques are a promising alternative to the current situation in which restrictive data type checks and broken
data pipelines often lead data engineers to opt for too generic data types.

3.2 Data Correctness and Data Consistency

Validation of data consistency and correctness are one of the areas where classical DBMS research has made
significant contributions, for instance in the data profiling literature [3]. Popular approaches to validate correctness
and consistency are rule based systems such as NADEEF [13]. There are commercial versions of simple rule
based systems, a popular example is trifacta8. And there are open source systems for semi-automated validation
of consistency, such as Open-Refine9. Other approaches primarily investigated in an academic context include
attempts to learn (approximate/relaxed) functional dependencies between columns of a table [46]. These
functional dependencies between columns include for example a dependency between a column containing
zip codes and another column containing city names. These dependencies can be used to automatically learn
validation checks related to consistency and correctness [50]. Such approaches are well established and there
exist efficient methods for large scale functional dependency discovery [35]. Yet, in the context of data pipelines
for ML systems none of these approaches have reached broad adoption. We discuss some potential reasons in
section 4.

7https://github.com/pandas-dev/pandas/blob/v1.1.4/pandas/core/dtypes/common.py#L138
8https://www.trifacta.com/
9https://openrefine.org/

56



In addition to the solutions of the DBMS community there are a number of approaches developed at the
intersection of DBMS and ML communities, tailored to ML specific workflows [11, 54]. The research is
accompanied by open source libraries1011 that implement schema validation by checking for correct data types,
but they also offer validation options for or other basic data properties, for instance whether the values are
contained in a predefined set. Prominent examples for a data validation solution for ML systems are the ones
integrated in SageMaker Data Wrangler12 and TFX [11]. Their schema validation conveniently allows users to
define integrity checks on the serving data in an ML system, e.g. for data type or value ranges. Schema validation
parameters can also be derived from the training data, which allows to automate many of these checks.

3.3 Validation of Statistical Properties

All data sets are subject to noise, be it because humans enter wrong values into a form or because human software
developers write code that leads to faulty data ingestion. Dealing with this noise is difficult for exact validation
rules such as functional dependencies. Statistical learning techniques can help to deal with noisy data.

Error-Detection Solutions Taking a probabilistic stance on DBMSs is not a new idea [48]. Recently, the idea
of using statistical techniques for data validation tasks has become a major focus of research. One example
are statistical learning approaches to error detection in data bases [50, 25, 29, 39]. These approaches have the
potential to automatically validate data correctness and to automatically clean data sets. Some of these systems
can be automated to a large extent [32, 34], others rely on a semi-supervised approach [33].

ML Frameworks for Statistical Data Validation Also data validation solutions like TFX data validation [11]
or DEEQU [54] address data validation including statistical rules, such as deviation of values around the mean of
a numeric column. These validation solutions can be very helpful, if one knows what to test for. But data sources
can easily have billions of rows and hundreds of columns. For these cases it can infeasible to manually create,
validate and maintain data quality checks. To alleviate the burden of manually creating constraints, the authors of
DEEQU [54] propose to utilize historic data to generate column profiles and generate data quality constraints
from these. These quality constraints can also make use of the temporal structure of data quality metrics collected
over time using time series models or other anomaly detection methods.

Anomaly Detection Methods Instead of applying them to metrics computed on a data set, anomaly detection
methods are also often used to detect anomalies in the data tuples directly. There are many methods available in
easy to use software libraries, see for instance [68], and there are commercial products that allow to automate
anomaly detection in large scale industrial settings13. While the goal of these anomaly detection approaches is
similar to the above error detection approaches originating in the DBMS community, many anomaly detection
solutions emerged from the ML community. One of the most important differences is that anomaly detection
approaches, as most ML methods, usually expect the data to come in matrix form, with all columns being numeric.
Most methods from the DBMS community expect the data to be high cardinality categorical data, some also are
applicable to numeric values, but that is not very common in research on functional dependencies for instance
[46]. So applying anomaly detection methods to heterogeneous data sets with non-numeric (categorical, ordinal
or even free text data) requires to apply feature extraction techniques to bring the data into a numeric format. This
is a standard preprocessing step in ML pipelines, but popular software libraries for anomaly detection, such as
[68], do not include this important preprocessing step. This makes these libraries difficult to apply for automated

10https://www.tensorflow.org/tfx/guide/tfdv
11https://github.com/awslabs/deequ
12https://aws.amazon.com/sagemaker/data-wrangler/
13https://aws.amazon.com/de/blogs/big-data/real-time-clickstream-anomaly-detection-with-

amazon-kinesis-analytics/
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data validation. It is possible to integrate standard anomaly detection methods as statistical data validation steps
in ML systems, but this imposes two additional challenges onto the engineering team. For one, this integration
requires to write ’glue code’ for the feature extraction – which is often one of the major sources for accumulating
technical debt in a software system. And secondly this requires to have a good evaluation metric for the anomaly
detection. Which is, in contrast to standard supervised learning scenarios, often difficult to define and get ground
truth data for.

Model Robustness and Generalization Performance Another central problem with all of the above ap-
proaches to statistical data validation in a ML context is that most of these methods are blind to the impact of data
errors on downstream ML components. This is however one of the most important aspects for ML systems. Often
it does not matter for the ML model, whether a feature is affected by a data shift, for instance when regularization
of an ML model forces the ML model to ignore a feature. And in other cases tiny changes in the input, which
human observers would not be able to detect, can have devastating consequences on the ML model output [4].
Recent work in the ML community has shown that especially novel deep learning methods can suffer from severe
stability problems [14]. Some aspects of this can be mitigated by employing standard ML concepts such as
k-fold cross-validation (CV). This approach has unfortunately lost popularity due to the sheer compute demand
of modern deep learning methods. Most deep learning papers usually use just a single train/validation/test split.
Standard nested k-fold CV can have decisive advantages when it comes to measuring robustness of a ML model.
However, these techniques only work when there is ground truth data available. In a production setting, this is
often not the case. There exist however also other methods to measure the robustness of ML models when there is
no ground truth data available. For instance in [55] the authors leverage a set of declaratively defined data errors
applied to data for which ground truth is available and measure the predictive performance of a ML model under
these perturbations. This allows to train a meta model that can be used to predict the predictive performance on
new unseen data with high precision. Such an approach can be useful in production ML systems to automatically
validate data errors with respect to their impact on downstream ML model performance.

3.4 Fairness Validation

Fairness is one of the most prominent examples of how ML systems can fail and severely influence the public
opinion about a company or an entire scientific community. It is thus of utmost importance to ensure that this
dimension of data validation in the context of ML systems is not neglected. Yet validating this dimension is
especially difficult, for a number of reasons. First and foremost it is difficult to define fairness. An excellent
overview over the last decades of fairness research with a focus on ML systems can be found in [40]. The
main insight here is that fairness validation it is not only a technical challenge. Instead, it is imperative to
include multiple scientific disciplines in this research, in particular also researchers from sociology, psychology
and law. Setting the stage for such transdisciplinary research is a challenge in itself, for instance finding a
common terminology is not trivial. But we have seen that the research community has made progress by fostering
transdisciplinary discussions at newly emerging conferences14. The joint efforts of different communities have
helped to identify many ways in which biases leading to unfair ML systems can enter a workflow. Many of these
biases arise in the data generating process. Enabling scientists and engineers to identify such biases should be
part of the research agenda of the data management and ML community [60]. One example in this direction is
FairBench [65], an open source library that helps to trace changes in data distributions and visualize distortions
with respect to protected group memberships throughout the pipeline. Another example is SageMaker Clarify15,
an explainability feature for Amazon SageMaker that provides insights into data and ML models by identifying
biases and explaining predictions. It is deeply integrated into Amazon SageMaker, a fully managed service

14See for instance https://dl.acm.org/conference/fat
15https://aws.amazon.com/sagemaker/clarify/
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that enables data scientists and developers to build, train, and deploy ML models at any scale. Clarify supports
bias detection and feature importance computation across the ML lifecycle, during data preparation, model
evaluation, and post-deployment monitoring. Libraries like these are a prerequisite to better automation of
fairness validation. However, another more fundamental problem of fairness validation remains even if technical
solutions for visualizing and detecting biases are available: Group membership variables are required for most
technical solutions to fairness. Storing these variables can be more challenging, from an operational stance, than
storing other non-confidential data.

3.5 Privacy Validation

Similar to fairness, also privacy is a difficult to define validation dimension. However in contrast to fairness,
the research community has converged to a few concepts that are relatively straightforward in terms of their
definitions. Popular concepts include differential privacy [17] and k-anonymity [61], see also section 2. Most ML
related work on privacy focuses on differential privacy, where noise is added the data, gradients or the model
coefficients. Validating and trading off privacy against predictive performance or utility of the ML model can be
challenging [30]. Empirically, evaluating privacy is often done using membership inference attacks [59], which
has also been adopted for unsupervised ML models [24]. One limitation of these approaches is that privacy
validation is always dependent on a specific model and data set. General statements about privacy and utility
independent of models and data is hence difficult.

3.6 Validation of Robustness against adversarial attacks

Privacy validation is aiming at defending the ML system against a certain type of adversarial attack, where for
instance the identity of data points used for training the ML system is revealed. There are however other types of
adversarial attacks, for instance when artificial examples are generated to result in ML predictions with a certain
outcome. Validation of robustness against such types of attacks can be achieved by perturbations around the
data manifold [45, 38]. This can be achieved by extracting latent representations of the input data [26] or of
the predictions [7, 19]. Alternative methods rely on training an additional classifier used to decide whether an
example is adversarial or not [21, 23, 41]. Complementary to the work on validating adversarial robustness, a lot
of work has been devoted to making ML models more robust to adversarial attacks by augmenting the training
datasets with adversarial examples [22, 38, 66, 69].

3.7 Human in the loop evaluation

Most of the above data quality dimensions are easy for humans to assess. This is why human audits are still
one of the most direct and most robust options for data validation in ML systems. Expert auditors, such as
researchers developing a new service, often can quickly identify errors and their root causes by simply inspecting
input and outputs of a ML system. Among the most important disadvantages with this approach is that these
validations are expensive and do not scale well. Sometimes human-in-the-loop validations can be scaled up
using crowd-sourcing platforms such as Yandex’ Toloka or Amazon Mechanical Turk. Increasing the quality
of crowd-sourced validations is an active topic of ML research [64]. For instance there are attempts to render
audits more efficient by including transparency of ML model predictions [56] or by providing more inciting
incentives [27, 63]. Still, this approach can be difficult to automate and is generally used as an andon cord in
a modelling pipeline rather than an integrated quality test. This is not only due to the fact that it is difficult to
integrate human audits in build processes. Focussing on human judgements only can lead to biased validations,
especially when using transparent ML methods [57].
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4 Conclusion

Validation of input and output data in ML production systems has many facets that require competencies often
distributed across a heterogeneous team of engineers and scientists, as illustrated in Figure 1. While some of the
data validation challenges, such as schema validation or data consistency, can be tackled with traditional data
profiling methods established the DBMS community, other validation dimensions are specific to ML systems.
These ML model dependent validation challenges include aspects like accuracy and robustness under data shifts,
fairness of ML model predictions and privacy concerns.

In section 3 we highlight a number of solutions to validate single aspects. Many of these approaches are
typically tailored to specific use cases and often require considerable integration efforts in production ML systems.
A good example are the various solutions from both the ML community as well as the DMBS community for
checking simple data properties, such as the data types, and also more complex dimensions like data consistency.
Many of these approached allow for automating the generation of validation checks. Yet in practice it is not trivial
to automate the generation of validations for a new ML system that ingests and produces millions of rows and
columns. For instance, there are many cases when simple validation checks on input data will lead to false alarms
when shifts or errors in a single feature do not impact the output of a downstream ML model – maybe because
that feature was neglected by the ML model, when strong regularization during the ML model training phase
taught the model to ignore that feature.

Despite the rapid progress in recent years to automate and monitor ML systems: to the best of our knowledge
there exists no data validation system that has reached broad adoption and which takes into account all of the data
validation dimensions sketched in section 2. One reason for this is the difficulty of combining the multitude of
validation strategies listed in section 3 into one unified framework. Considering the rapid pace of research at the
intersection of ML and DBMS, see for instance [15], it is fair to assume that it is merely a matter of a few years
until one framework or some open standard for data validation in the context of ML systems will have reached
broad adoption.

There are many data validation challenges in ML systems that go beyond technical aspects. Many of them
are due to the complex nature of the data transformations induced by ML models. For instance identifying
unfair biases often requires domain knowledge or access to grouping variables, which are often not available.
And even if those are available, it is not always clear how fairness in the context of ML systems can be defined
[67]. A conceptual challenge related to privacy is for instance the trade-off between utility and differential
privacy of a ML system [30]: how much predictive accuracy should be sacrificed to ensure privacy? Sacrificing
accuracy against privacy in domains like health care or jurisdiction is a difficult question for which ethical and
legal dimensions are more important than technical aspects. Next to these ethical and legal aspects, there is
one key factor hindering adoption of comprehensive data validation in ML systems and that more related to
cultural aspects. Many scientists like to build new models and tools, but writing tests, integrating monitoring
and validation stages in an ML system are not exactly the most popular tasks amongst researchers. But often the
competencies of the scientists who built a model is required to build well functioning monitoring and validation
solutions in ML systems.

Based on these observations we derive some suggestions for how to drive innovation and adoption of data
validation in the context of ML systems. First, we hope that the current trend for research at the intersection of
ML and DBMS communities will continue to grow and identify more synergies leveraging and complementing
each others expertise. We have seen some great examples of constructive but vivid discussion between the two
communities, for instance that sparked by Kraska and colleagues around their work on learning index structures
[31]. This work is unrelated to data validation and mentioned merely as an example of transdisciplinary research
debates. Second, when building ML systems there is a broad spectrum of operational challenges and seamless
integration with cloud infrastructure is key to reaching broad adoption.
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We conclude that establishing data validation in ML systems will require a stronger focus on usability and
simple APIs. Third we believe that data validation in ML systems will reach broad adoption once the research
community will have found better ways of automating the validation workflow, most importantly the generation
of checks for each of the data validation dimensions listed in section 2.

In the past years we have seen great examples of automated tooling for tracking ML experiments [53],
experimentation in ML production systems [10], input data validation [54, 11] and validation strategies for
predictions of ML systems [49, 55, 14]. One example of how some of these data validation techniques could
be integrated into an automated workflow would be that presented in [51], where the authors propose to iterate
through a sequence of data validation [54], data cleaning[8] and quantification of downstream impact on ML
predictive performance [55] to achieve an automated ML workflow. We believe that increasing the level of
usability through automation in data validation will enable researchers to focus on more important questions
like the conceptual, ethical and legal questions and ultimately lead to more responsible usage of ML systems in
production systems.
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