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Abstract

With the rapid development of social media, the data generated from interaction, which is an action
collaboratively done by several objects under a certain condition, have grown exponentially. It triggers
an urgent need to cluster interaction data for implicit patterns benefiting downstream tasks. Although
clustering methods have been extensively studied for a long time, they mainly focus on node/object cluster-
ing, which breaks the intrinsic collaborative associations among the involved objects and conditions, thus
limiting clustering performance of interaction data. To tackle this issue, we propose a novel Hypergraph
CLustering network for Interaction Data (HyCLID), which not only clusters whole interactions rather
than individual objects in interactions, but also exploits correlation among attributes of objects and
conditions. Specifically, we first construct an attributed hypergraph to model interactions. Then, we
propose a novel rethinking-based hypergraph neural network to learn the representation of interactions,
which employs a novel attentive routing-based rethinking mechanism to capture the correlations among
multiple object attributes and condition attributes. Furthermore, a novel adaptive mini-batch method is
designed for the large scale of interaction data. Experimental results demonstrate the effectiveness of our
methods for clustering the interactions and the practical value of the discovered interaction patterns.

1 Introduction

With the rapid development of social media, the volume of interaction data' has grown exponentially to an
overwhelming scale [13, 30]. Generally, an interaction is an action collaboratively done by several objects under
a certain condition [30]. For example, as illustrated in Figure 1, “a user ordered a cup of latte at Starbucks in the
afternoon” in food delivery systems, and “two researchers collaborated to publish a paper in WSDM in 2022 in
academic networks, etc. In detail, Interaction 1 involves a condition about period and three objects including
a user, a merchant and a product, each of which carries several attributes, which indicates the characteristic of
interaction data is that the interaction involves multiple objects and the rich correlations among the attributes
of objects and conditions. As interaction data play an increasingly important role in daily life, analyzing them
becomes a priority.
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!The term interaction data is similar to the term relational data, which focuses on the data that there are pair-wise relations between
objects, while we introduce the term interaction data in this paper for distinction to focus on the relations among multiple objects.
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Type: Merchant
Brand: Starbucks
Tag: Internet celebrity

Type: User
Age: 15
Occupation: Student

Type: Author Type: Conference
Occupation: Professor Field: Data Mining
Degree' Doctor
6 % N KbD condition
Perlod
Favor: Coffee Type: Author Type Paper
Size: M condition Degree: Doctor Keywords Rec.

Interaction 1: a user ordered a cup of Interaction 2: two researchers collaborated
latte at Starbucks in the afternoon to publish a paper in KDD in 2021

Figure 1: Examples of interactions from Meituan Waimai” and academic networks.

As a fundamental task in data mining, clustering on interaction data can discover the underlying patterns
beneficial to downstream tasks. For instance, in the above example, the user preference can be found by clustering
his interactions, enabling the platform to provide better recommendation services. Traditional clustering focuses
on object features, such as K-means [6, 32], etc. Besides, graph-based clustering, which treats objects as nodes in
a graph and leverages structural information of objects for clustering the objects, has also been widely explored,
e.g., spectral clustering [16]. Recently, some researchers pay attention to attributed graph clustering, which jointly
considers node attributes and graph structure [28]. A noticeable trend is the wide adoption of deep learning
in clustering [15]. For example, Graph Neural Network (GNN) based clustering methods [1, 21, 18, 29] can
effectively learn object representations for clustering via message passing mechanism. However, we argue that
existing methods could not fully cope with the interaction data in the real world. Specifically, in interaction data,
multiple objects as well as interaction conditions collaboratively form an indivisible semantic unit. Nonetheless,
these methods focus on clustering individual nodes/objects, which breaks the intrinsic collaborative associations
among the involved objects and conditions, thus limiting their ability to discover the underlying interaction
patterns. Take Interaction 1 in Figure 1 as an example, if we ignore the associations among user, merchant and
product, one may discover a one-sided pattern that “this user loves coffee”. This pattern will possibly lead to an
inappropriate recommendation of high-end coffee to this student far beyond his consumption level.

Therefore, we propose to cluster interactions instead of objects, where each interaction is regarded as a basic
unit to be clustered. Nevertheless, this is not a trivial task due to the following reasons: (1) How to effectively
model interaction data involving multiple objects? As mentioned before, an interaction is an indivisible semantic
unit. Nevertheless, a majority of existing solutions employ graph structure to model the relations between
objects, which will break the collaborative association among multiple objects into several pairwise sub-relations.
Hence they are insufficient to model interaction data in the real world. (2) How to capture the correlations
among the attributes of objects and conditions? The occurrence of an interaction is mainly owing to the
complex correlation among rich attributes of its involved objects and conditions. For instance, Interaction 1 in
Figure 1 is mainly derived by the correlation among “student, Internet celebrity, coffee, afternoon” (marked
in red). Since this correlation is among multiple attributes, capturing them is a combinatorial optimization
problem. To avoid combinatorial explosion, some recent methods [19, 24] adopt self-attentive layers to capture
the pairwise correlations between two features, called second-order features. Then, the higher-order features
can be approximated by stacking multiple self-attentive layers with residual connections. However, the errors in
the bottom layers will inevitably propagate to the following layers. Even worse, such error propagation will be
enlarged as the number of layers increases, thus possibly leading to the omissions of some potential high-order
features. (3) How to handle the large scale of interaction data during clustering? The scale of interaction data in
real applications is always large, thus requiring clustering in a batch fashion. Nonetheless, the data distributions

*Meituan Waimai is a food delivery platform. https://waimai.meituan.com
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of different batches are usually not the same, which probably causes data imbalance so that the clustering error
may largely fluctuate or even increase [26]. Unfortunately, existing methods [23, 21] cannot automatically make
adaptive adjustments for different batches, thereby leading to sub-optimal clustering performance.

To tackle the aforementioned issues, we propose a novel Hypergraph CLustering network for Interaction
Data (HyCLID). Specifically, to model interactions that involve multiple objects and conditions, we construct
an attributed hypergraph for interactions. As the hyperedges can connect an arbitrary number of objects, we
model each interaction as a hyperedge connecting several nodes that represent its involved objects. Then, we
propose a novel rethinking-based hypergraph neural network to capture the complex correlations (high-order
features) among object attributes and conditions for embedding the interactions (hyperedges). Besides, to avoid
omissions of potential high-order features, we design a novel attentive routing-based rethinking mechanism
to review the capturing process and correct the errors in the bottom layers. Finally, we propose an adaptive
mini-batch clustering method based on the learned interaction representations to perform deep clustering on
large-scale interaction data, which employs an adaptive batch standardization to remove the impact of different
data distributions of different batches. The main contributions are summarized as follows:

* We propose a hypergraph clustering network for interaction data, namely HyCLID. With interactions
modeled as an attributed hypergraph, HyCLID designs a novel rethinking-based hypergraph neural network
to learn the representation of interactions.

* Besides, we propose an adaptive mini-batch clustering method in the face of the large scale of the
interaction data, which performs deep clustering in a mini-batch fashion based on the learned interaction
representations.

» Experiments show that HyCLID significantly outperforms state-of-the-art methods across public and
industrial datasets for clustering interactions. Furthermore, experiments on recommendation demonstrate
the practical value of the cluster patterns discovered by our method in industrial applications.

2 Related Work

In this section, we first introduce the related clustering methods, and then discuss the hypergraph approaches for
interaction data.

Clustering, as one of the fundamental tasks of data mining, is widely used for interaction data analysis.
Traditional clustering studies are feature-based. They can target a certain type of interacting objects, and encode
them as vectors based on their features [7] followed by traditional clustering methods such as K-means [6].
Besides, graph-based clustering is also a representative kind of clustering method, which treats objects as nodes
in a graph and leverages structural information of objects for clustering the objects, e.g., spectral clustering [16].
Recently, attributed graph clustering has attracted a mass of attention, which further considers the attributes of
nodes [28]. A noticeable trend is the wide adoption of deep learning in clustering [15]. For example, Graph
Neural Network (GNN) [12, 11] based clustering methods can effectively learn representations based on the
graph structure and node attributes for clustering [1, 21, 2, 18, 29]. However, modeling the interaction data using
the graph structure, which can only model the pairwise relations, will inevitably lose some information since an
interaction usually involves more than two objects [27].

Hypergraphs, as generalizations of graphs, can model complex and extensive information and be more suitable
for interaction data [33, 25, 20, 8]. How to develop hypergraph structure based solutions for interaction data
attracts increasing attention. [34] puts forward the concept of learning with hypergraphs, which can be used in
clustering, classification, and embedding and achieves performance beyond the ordinary graphs. Hypergraph
neural networks (HGNN) proposed in [3], which are similar to the GCNs in graphs [12], extend the convolution
operation to the process of hypergraph learning. [35] proposes an unsupervised method to conduct both subspace
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Figure 2: Illustration of HyCLID (object attributes and interaction conditions are omitted for easy to understand).

learning and feature selection, but its complex optimization details do not make it perform better than the above
graph methods for clustering tasks. A recent study thereby proposes an end-to-end clustering method based on
hypergraph neural network [8]. However, these methods only target the individual node/object, which breaks the
intrinsic collaborative associations among the involved objects and conditions. The related works for clustering
the interactions still are little exploration.

3 Methodology

First of all, we present an overview of the proposed HyCLID. The basic idea is that, as illustrated in Figure 2,
with modeling interactions via attributed hypergraph, we propose a novel rethinking-based hypergraph neural
network to learn the representations of interactions for clustering. Specifically, to model the interactions that
involve multiple objects and conditions, we construct an attributed hypergraph, where each interaction is modeled
as a hyperedge connecting several nodes that represent its involved objects. Besides, the attributes of objects and
conditions are introduced as node features and hyperedge features, respectively. Then, a novel rethinking-based
hypergraph neural network is proposed to aggregate node and hyperedge features to obtain interaction and object
representations. During feature aggregation, we design a novel attentive routing-based rethinking mechanism,
which can capture high-order features and then rethink to check for omissions and errors. Finally, in the face
of the large scale of the interaction data, we develop an adaptive mini-batched clustering method to cluster in
a mini-batch fashion based on the learned interaction representations. Moreover, it employs an adaptive batch
standardization to remove the impact of different data distributions of different batches.

3.1 Interaction Modeling via Hypergraph

As mentioned above, an interaction usually involves multiple attributed objects and the corresponding interaction
conditions such as temporal-spatial contexts, etc. We formalize the interactions as follows.

Definition 1: Interaction. An interaction is an action collaboratively done by several objects under a certain
condition. Formally, given the set of objects ), object attributes A, and interaction conditions A, an interaction
is defined as e =< V., AY, AS >, including all involved objects V. = {v1, - -- , v, |v; € V} with their attributes
AY ={a1, -+ ,an.|a; C AV}, and interaction conditions A C A¢.

Take Interaction 1 in Figure 1 as an example, “a fifteen-year-old student ordered a middle-size latte at the

Internet celebrity store Starbucks in the afternoon”. In this example, the interaction order involves the objects
including a user (with occupation attribute sfudent and age attribute fiffeen), a merchant (with attribute Starbucks
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and Internet celebrity) and an item coffee (with attribute latte and middle-size). Besides, this interaction has a
condition afternoon. In order to avoid the association breaking in traditional graph modeling, which splits the
collaborative association among multiple objects into several pairwise sub-relations, we model the interactions as
an attributed hypergraph.

In detail, each of the interactions is modeled as a hyperedge connecting several nodes that represent its
involved objects. Moreover, object attributes are the features of corresponding nodes, and condition attributes
are the features of the hyperedges. For example, as illustrated in left of Figure 2, for an interaction e; involving
5 objects vy, v2, v3, Vg, Vg, We build a hyperedge to connect them. Besides, we attach their object attributes
a;(1 = 1,2,3,8,9) to the node features. Then the condition attributes fl‘;, such as temporal-spatial contexts,
are attached to the hyperedge features, since they should be seen as the attributes of interactions rather than
any object. Therefore, such a hyperedge and its connecting nodes together with their features can represent an

instance of interactions. The constructed attributed hypergraph is formalized as follows.

Definition 2: Attributed Hypergraph for Interactions. The hypergraph for interactions is an attributed
hypergraph G = (V, €, Xy, X i), where the node set ) represents the set of all involved objects, the hyperedge
set &£ represents all the interactions, X and X g represent the feature matrices of nodes and hyperedges,
respectively.

The i-th row of X € RIVI*FV represents the feature indicators to the attributes a; C AY of object v; € V.
Similarly, the j-th row of X € RI€I*FE represents the feature indicators to the condition attributes Afj c A¢
of interaction e; € £. Fy and Ff are the max value across the attribute number of each object and condition,
respectively.

Based on the above modeling, the clustering task of interactions in this paper can be formalized as the
clustering on hyperedges £ in the constructed attributed hypergraph, which is different from other clustering
methods that mainly concern about clustering of objects V in interactions [8].

3.2 Rethinking-based Hypergraph Neural Network

To learn the representation of interactions, we propose a novel rethinking-based hypergraph neural network,
where an attentive routing-based rethinking mechanism is designed to capture high-order features and avoid
omissions. It can automatically identify the correlations of features and form some meaningful combinations of
high-order features. Then, it rethinks the identification process several times to prevent omissions and correct
errors. Consequently, the network can learn effective representation of interactions.

3.2.1 Input Layer.

In order to facilitate capturing high-order features, following [19], we initial the representations of each feature
from hyperedges or nodes as vectors, thus the representations of hyperedges and nodes are formed as feature
matrices. Formally, the initial d-dimensional representations of hyperedge e; € £ and node n; € N are
(0)

e; € RFexdangd U§0) € RFv>d where each row of the feature matrix denotes a specific attribute of the

node/hyperedge.

3.2.2 Layer-wise Aggregation.

For the hypergraph G, the incidence matrix is defined as H € RIVIXIEl with entries h(v,e) = 1if v € e and
0 otherwise. Denote the diagonal matrices of the edge degrees, the node degrees and the pre-defined weights
of hyperedges (default is 1) as D., D, and W, respectively. The spectral hypergraph convolution for node
embedding [3, 8] is formulated as

Y = D;'?HWD;'H"D;'?X 0, (32)
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where O is the trainable filter parameters and X'y is the input node embeddings. It can be seen that in this
hypergraph convolution formula, neither can the features of the hyperedge be exploited, nor can the representation
of the hyperedges (interactions) be obtained.

To solve these problems, we analyze this formula intuitively and find that this form can be also understood
as the following information flow: The node embeddings are first aggregated into hyperedge embeddings by
multiplying matrix H " . Then the hyperedge information is passed back to the nodes, achieved by multiplying
H . We can formalize these two information aggregation processes as a two-stage aggregation rule from layer [ to
layer [ + 1 as follows.

e l(l—&—l)
I+1
o+

= aggr(e” (v |v; € &:}), (33)
= aggr(vgl), {e§l+1) |vj € e;}). 34)

For the aggregation function aggr(-), we first concatenate all its inputs into an whole feature matrix X =
concat(egl), {’ugl)\vj €e})or X = concat('ug-l), {eng)\

vj € e;}), then we propose the following module to capture the high-order features based on X before obtaining
the node/hyperedge embeddings. Please note that the size of X is not fixed. The number of its rows depends
on the number and size of the concatenated feature matrices of hyperedges and nodes. For example, the size of
the whole feature matrix for Eq. 33 is (Fg + |e;| - Fyy) X d. Denoting the calculation of this module as function
ARR(-) for short, the aggregation function can be formalized as aggr(-) = ARR(concat(-)).

3.2.3 Attentive Routing-based Rethinking Mechanism

As introduced before, the interactions often arise from the intrinsic correlations among several related attributes.

Motivated by previous studies [19, 24], the correlations among p attributes are formalized as a p-order features.

As shown in Figure 3, we adopt the framework of multiple self-attentive layers to capture high-order features.

Furthermore, in order to prevent omissions of potential high-order features, we need to review the capturing

process to check for omissions and errors. Consequently, we introduce a routing mechanism and modify the

self-attentive layers to rethink and readjust the captured high-order features. The details are introduced as follows.
Following [19, 24], we adopt the framework of self-

attention to learn high-order features due to its superiority 2
for savi.ng computational and stora.ge.. Howeve-r, it needs # riteration rethinking
further improvement to support rethinking. Specifically, we : vector
. o 2 . [ Rethinking-based Fusion ]F (71
introduce a rethinking vector Z, the attention score between =22 P NSNS S AU
feature x,, and xy, i.e., the m-th and k-th rows of the input
feature matrix X, is calculated as, 7
______ bR —————
\
5. — z | 5(r—-1)
(2 2m, 2x) = sum (2 © Wozm © Wiar) , (35) (p-1)x | ‘ Rethinking-based Self-attention }47 N
__I_I_I_I_J_J_J_J_J__\__\.A.___/I

where © represents element-wise product, i.e., Hadamard
product. Wq and W denote the transformations for Query
vector and Key vector in attention. Then the group of second-
order features related to feature x,, can be combined to- Figure 3: Illustration of the attentive routing-based
gether through the framework of self-attention as follows.  rethinking mechanism.

X

e = exp (0(2; Ty 1)) / ijl exp (p(2; Tm, ), (36)
335?1) =Tm + Zk:l o k(Wvex), Gn
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where Wy denotes the transformation for Value vector in attention. Next, a higher-order feature :cgﬁ) related to

T, can be captured by stacking p — 1 layers of such self-attention with residue connections. Eventually, the final

combination 2(1) of feature of order p can be obtained by attentive fusion of :m(ﬁ) ,m=12 .-
3 = Z SoftMax ((2 ® .’chfﬁ))—r . a) 'ac,(ﬁ) , (38)
m

where a is the vector of attention parameters.

Furthermore, to prevent omissions of potential high-order features, we introduce a routing mechanism to
rethink and readjust the above capturing process. Specifically, we update the rethinking vector by the new
obtained 2(1), and repeat the above procedure several times until routing-by-agreement, which is called attentive
routing-based rethinking mechanism. Therefore, each repetition of the above process, i.e., each iteration of the
routing mechanism, refines the captured high-level features. Initially, let 2 = mean,, (Wvyz,,).

The output high-order feature after repeating r times is denoted as 2("), which is the output vector of this
module. Formally, given an input feature matrix X, we have ARR(X) = 2(") Then, the Eq. (33) can be rewritten

by el(-lﬂ) = ARR(X), where X is obtained by concatenating the embedding matrices of a target hyperedge and
its connecting nodes.

3.2.4 Interaction & Object Embedding.

Since each layer of propagation represents a specific order® of relations, we sum the embeddings from each layer
as the final representation both for hyperedges (interactions) and nodes (objects). Formally, we have e; = ZIL egl)

and vj; = ZZL vgl), where L denotes the number of aggregation layers.

3.3 Adaptive Mini-batch Clustering

For clustering in a mini-batch fashion, the different data distributions of batches may lead to clustering errors [26],
thus making clustering difficult to discover the implicit patterns of interaction data. Therefore, enlightened by
existing deep clustering methods [23], we propose an adaptive mini-batch clustering method, which first removes
the impact of different data distributions via an adaptive batch standardization and then performs deep clustering
on interactions.

Specifically, after the above modules, we have obtained the representations of interactions. Enlightened by
Clustering Assignment Hardening [23], we take Student’s ¢-distribution as a kernel to measure the similarity
between points and centroids. Then the soft assignment matrix () is formulated as follows:

_ v+l

(1+ ||z — g |2/v) "2 39
v+1
S (L |z — pyr|2/v) =%

where z; is the embedding of the i*” interaction, fj is the j th cluster centroid, and v is the degrees of freedom of
the Student’s t-distribution, e.g. v = 1.

Due to the randomness of batch generating process, the assignment distribution () can be very unstable. It
severely limits the robustness of clustering, which in turn brings difficulties to discovering patterns in interaction
data. To tackle this issue, we first square the () distribution to speed up training and then batch standardize it to
obtain ), which removes the influence of batch quality on the clustering performance. Formally,

Giu = (62, — 1u) | (Vo2 +¢), (40)

1 1
whete p =37 b and ol =37 (ahm)” @0

qij; =

ZPlease note that the order of relations is the path length between neighbors and the target node, while the order of features is the
number of features combined into high-order feature.
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Table 16: Statistics of datasets.

Dataset # Nodes # Hyperedges # Attributes # Categories Graph Density
ACM Paper 4,025 Author 7,167  Field 60 4,025 1,902 3 ~ 1071
IMDB Movie 4,661 Director 5,841 Actor 2,270 4,661 1,256 3 ~ 1074
MT-S User 19,623 POI 6,489 Item 17,564 20,000 901 5 ~107°
MT-L User 991,914 POI 17,120 Item 389,292 2,000,000 901 5 ~ 1076

Note that this standardization operation makes Q appear negative numbers. It means that we can just erase the
low-probability cluster assignment via ReL.U function, which contributes to to reduce the difficulty of clustering
training and improve performance. Furthermore, we introduce two batch adaptive trainable parameters ~, 3 to
enhance its adaptive ability as follows.

pio = LUt 0u) 5y “2)
Zs RCLU(’YSQZ'S + ﬁs) u

where 7y represents the relative stability between different clusters (small value means that the samples of one
cluster are prone to be modified to another cluster during training), and  defines the aforementioned low-
probability cluster assignment. Consequently, the adaptive target distribution P = [p;,,| forces assignments to
have stricter probabilities (closer to O or 1). Meanwhile, we not only preserve the stability of the () distribution
by Q, but also increase its adaptive capacity. Finally, KI.-divergence is applied to let the raw assignments ()
approach the target distribution P. which can be minimized for the aforementioned () and P via neural network
training. It emphasizes data points assigned with batch-adaptive high confidence.

3.4 Model Training

We apply an auto-encoder structure for self-supervised training of our HyCLID. Specifically, we reconstruct the
incidence matrix H of the constructed hypergraph for interactions with a contrastive loss:

1
Loe = 3 Zyijd?j + (1 — yi;)max(0,m — dij)z, where d;; = |le; — vj|. (43)
i,

1i; denotes the existence of a relationship between hyperedge ¢ and node j, and m is the margin hyper-parameter,
eg.,.m=1.

Finally, we jointly optimize the auto-encoder structure and deep clustering so that the total objective function
is defined as £ = L. + L., where v > 0 is a coefficient that controls the balance in between.

4 Experiments

4.1 Experimental Setup
4.1.1 Datasets

Our proposed HyCLID is evaluated on the following four datasets, and the statistics of these datasets are shown
in Table 16.

» ACM. The ACM dataset? contains three types of nodes: paper, author and field. We treat a publishing as an
interaction, and hence build a hypergraph where each hyperedge connects a paper and all its corresponding
authors and fields. Considering there are no labels on the hyperedges, we treat the category of the published
paper as the clustering ground truth since each paper has a one-to-one correspondence to a hyperedge.

3https://data.dgl.ai/dataset/ ACM.mat
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* IMDB. The IMDB dataset [31] contains three types of nodes: movie, actors and directors. Similarly, we
treat each movie as an interaction and construct a hypergraph where each hyperedge connects a movie, its
actors and directors. The category of the movie is regarded as the clustering ground truth.

* MT-L and MT-S. We also build two real-world datasets from the food delivery industry, i.e., Meituan
Waimai platform. One contains millions of orders of user purchases of foods in Beijing District within
30 days, denoting as MT-L. Each purchase order is treated as an interaction and is tagged with one of
5 purchase scenes. We construct an attributed hypergraph where each hyperedge represents an order,
connecting a user node, a restaurant node and several item nodes. The features of nodes are their attributes
(e.g., user profiles for user node), while the features of hyperedges (orders) are the interaction conditions,
i.e., temporal-spatial contexts, since these attributes do not belong to a single node. Most baseline methods
cannot support data of such scale, so we extracted a smaller dataset from it, denoted as M'T-S.

4.1.2 Evaluation Metrics

Following [8], we adopt three popular metrics to assess the quality of the clustering results: clustering accuracy
(ACC), normalized mutual information (NMI) and adjusted Rand index (ARI). For all the experiments, we repeat
them 10 times and report the averaged results and standard deviations.

4.1.3 Baselines

We compare our proposed method HyCLID with the following three groups of methods. Traditional Methods:
K-means [6], node2vec [4] and HERec [17]. Attributed Graph-based Methods: SDCN [1], HAN [22], HGT [9]
and AdaGAE [14]. Hypergraph-based Methods: HGNN [3] and AHGAE [8]. Note that for the methods
considering graph structure, for ACM and IMDB datasets, we directly use the widely applied graph structure [9].
For the MT-S dataset, we transfer the hypergraph into a graph, i.e., we introduce a summary node to replace
each of hyperedges and link the summary nodes with the corresponding nodes that are originally connected by
hyperedges. For metapath-based methods, i.e., HERec and HAN, we select all the possible symmetric length-2
meta-paths.

4.1.4 Implementation Detail

We implement the proposed method based on Tensorflow*. For our method, we set the dimension of attribute
embeddings as d = 64 for the public datasets ACM and IMDB for fair comparison and d = 16 for MT-S/L for
saving memory. For simplicity, we set the number of aggregation layers L = 1, the layer number of rethinking-
based self-attention p = 1 and the rethinking iterations » = 2. For all baselines, we set their hidden dimensions
as 64 and set the number of layers as their suggested value (usually equal to 2). For model training, we simply
set v = 1, and apply Adam [10] to optimize with the learning rate as 0.005 for ACM and IMDB and 0.001 for
MT-S/L. The batch size is set 2048. All the experiments are performed in NVIDIA Tesla P40 Cluster. To facilitate
related research, we will release our implementation to the public once the paper gets accepted.

4.2 Analysis of Clustering Results

Table 17 shows the clustering results on the three small-scale datasets. We have the following observations:

As shown, for each metric, our proposed HyCLID achieves the best results significantly. In particular,
compared with the best results of the baselines, our approach achieves a significant improvement of 6.3% on
ACC, 17.9% on NMI, 15.9% on ARI averagely. The reason is that HyCLID successfully makes full use of all the
information in interactions, including node attributes, hyperedge attributes and hyper-relations. In detail, attributed

*https://www.tensorflow.org/
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Table 17: Clustering results on datasets ACM, IMDB and MT-S (mean+std in percent). The best and second best
results are bold and underlined, respectively. Symbol “-” represents unavailable results due to out-of-memory.

Method | ACM | IMDB | MT-S
| Acc NMI ARl | ACC NMI ARl | ACC NMI ARI

K-means | 63.59+0.27 36.89 £0.37 28914042 | 37.01 £0.10 0.88+0.06 143 £0.05 | 54.95+8.08 56.36 £6.69 50.08 4 7.83
node2vec | 65.25+£0.33 3849 +0.12 31.234+0.88 | 47.87£0.33 555+£0.53 5.89 +0.64 | 45.09 £6.70 23.19+5.60 18.65+7.78
HERec 5141 £1.82 20.05+1.37 20.82+£1.50 | 4645+0.62 5324+0.79 5.68+0.69 | 39.76 £9.72 20.57 £2.04 1832 £3.11

SDCN 67.79 £0.87 41.77+0.80 37.69£0.60 | 43.87+0.35 3.37£0.19 2774021 | 73.56 £9.27 66.34 +8.02 62.80 £ 7.83
HAN 69.33 £0.38 44.174+0.58 3894 +£0.36 | 4243+0.32 290+£0.37 2894029 | 5571 £596 54.09+6.41 48.34+£8.25
HGT 7531+ 1.17 4698 £2.28 43.06+ 1.63 | 48.07£0.02 5.624+0.06 523+£0.05|5522+8.13 5738+£7.62 51.11+9.27
AdaGAE | 7832 +3.76 5094 +3.12 54.03+4.09 | 47.124+3.17 5.07+£1.86 4.58+1.73 - - -

HGNN 66.35+229 31.17+4.05 27.72+£532|44.11+0.11 2.05+0.01 1314+0.04 | 80.75+4.32 76.70£5.83 68.46 £ 391
AHGAE | 75.76 £1.83 4653 £298 4128 +3.64 | 40.05+1.54 1.73+135 1.58+1.07 | 84.66 £8.01 79.16 £898 71.53 £9.23

HyCLID | 83.63 +£1.23 57.29+0.76 58.45+1.91 | 50.28 +-0.39 7.43 £0.63 7.13+1.02 | 91.05 £ 8.61 86.30 = 6.24 84.70 +9.44
Impr. (%) 6.78 12.46 8.18 4.60 32.20 21.05 7.55 9.02 18.41

graph-based methods can generally achieve better performance than traditional methods, especially heterogeneous
GNN-based end-to-end methods (HGT), which confirms the important role of object attributes and structures
among objects in the interaction data. Unexpectedly, hypergraph-based methods (HGNN, AHGAE) have not
achieved competitive performance on these two datasets, while our method HyCLID successfully performs the
best. We hold that this is because these hypergraph-based methods cannot capture high-order correlations (as our
rethinking-based self-attention) nor be adaptive during clustering, which makes their hypergraph neural networks
fail to fully utilize the information in the interaction data. Conversely, the hypergraph-based baselines achieve
outstanding performance on the MT-S dataset. It suggests the necessity of attributed hypergraph modeling for
real-world interaction data, which involves multiple attributed objects and a certain interaction condition. Besides,
the fact that our HyCLID further performs better confirms again the effectiveness of our proposed attentive
routing-based rethinking mechanism to capture high-order features and the adaptive mini-batch clustering for

training.

Moreover, we also conduct a compari-
son on the MT-L dataset. Since most base- Table 18: Clustering results on dataset MT-L.
lines cannot support running on such a
large-scale dataset, we only employ mini- Method \ ACC NMI ARI
batch K-Means for comparison. As shown  wfini-batch K-means | 45.82 £3.75 24.48 £2.32 18.30 £ 3.8
in Table 18, our proposed HyCLID con- HyCLID 48.60 + 3.98 28.68 +4.92 24.50 +5.95

sistently performs better than the baseline,
which demonstrates the effectiveness of our
proposed HyCLID for large-scale data.

4.3 Ablation Study

In this subsection, for simplicity, we compare our HyCLID with 3 variants on the datasets ACM, IMDB and MT-S
to validate the design of each module. Specifically, -HF is a variant that removes the part to capture high-order
features (i.e., set p = 0) based on the complete model. The variant -RT represents that the module attentive
routing mechanism for rethinking is removed, i.e., the vanilla self-attention is adopted for replacement. -AD
denotes that the adaptive mini-batch clustering is further removed and replaced by traditional deep clustering, i.e.,
clustering assignment hardening [23].

As reported in Figure 4, the clustering performance always decreases with the removal of each module.
This phenomenon demonstrates the effectiveness of each of the proposed modules. In detail, compare the best
performance achieved by our whole model, -HF performs worse, which verifies the existence of the correlations
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Figure 4: Clustering results of different variants.

among multiple attributes from the involved objects and conditions and confirms the effectiveness of our rethinking
based self-attention to capture these correlations. Next, the fact that -RT performs more poorly shows the necessity
of our rethinking module for avoiding the omissions of some potential high-orders. Furthermore, when the
adaptive mini-batch clustering is further substituted by the traditional clustering assignment hardening [23],
-AD performs the worst. On the one hand, it shows that problems such as data imbalance make the clustering
significantly worse, and on the other hand, it demonstrates that our proposed adaptive module can alleviate this
problem very well.

4.4 Case Study for Rethinking Mechanism

In this subsection, we dissect how our attentive routing-

based rethinking m“ha{mm{ works. As sl}own m Fig- 14 015020008 013 012 0.09 0.08 [N RN
ure 5, the heat maps visualize the attention weights

of rethinking-based fusion (top) and rethinking-based ~ 013 0.12 0.12 021 0.12 0.09 0.10 0.10 0.10 0.07 0.07 0.0
self-attention (bottom) under two iterations of rethink- ~ 0.12 0.10 0.08 0.07 0.09 0.07 0.10 0.06 0.07 0.05 0.13 0.06

ing (three pairs of heat maps from left to right represent
r =0, 1,2, respectively).

A phenomenon can be observed that, the self-
attention assigns relatively high weights to the second-
order feature between coffee and afternoon, while the

0.12 0.08 0.12 0.14 0.10 0.10 0.14 0.17 0.07 0.13 0.15 0.18

0.21 0.07 0.14 025 0.10 0.06 0.17 0.05 0.06 0.18 FeEl0)

0.08 0.16 024 0.32 0.40 0.48

fusion attention also assigns high weights to coffee and
afternoon. Then, the weights are further growing with
the iterations of rethinking. On the contrary, the high
weight, assigned to the second-order feature between
lower consumption level and afternoon, is gradually
reduced. It validates the effectiveness of our attentive

Figure 5: Heat map visualization for attentive routing-
based rethinking mechanism. The rows/columns rep-
resent four selected attributes from an interaction case
belonging to category “afternoon tea” of dataset M'T-S,
i.e., lower consumption level, student, coffee, afternoon,
respectively.

routing-based rethinking mechanism. In detail, it not
only encourages the important features or higher-order features through iterative rethinking, but also corrects the
overestimated ones.

4.5 Offline Experiment on Recommendation

In this subsection, we conduct an offline experiment on recommendation to show the applied usage and practical
value of our method for food delivery industrial applications, i.e., Meituan Waimai platform. Specifically, we
divide the MT-L dataset into training/test subsets, i.e., the orders of the first 27 days are for training while
those of the last 3 days are for testing. Then we train our model on the training subset of MT-L and then infer
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the clustering assignments on the test subset. Finally, these learned and inferred clustering assignments are

introduced into context-aware recommendation models, e.g., DeepFM [5] and Autolnt [19], as contexts for CTR

prediction, where the dataset partition is the same as above. For comparisons, “-vanilla” represents that no

clustering assignments are introduced, and “+HyCLID” represents that our HyCLID is adopted for assignments.
We report the results on several met-

rics (including HR, Recall, Precision and Table 19: Top-3 recommendation performance.
NDCG) in Table 19. As we can see, for
both DeepFM and Autolnt, “+HyCLID”  Method HR  Recall Precision NDCG

outperforms “-vanilla”, indicating that the =~ DeepFM-vanilla 0.5268 0.4950 0.1849  0.4135
clustering results of interactions are con-  DeepFM+HyCLID | 0.5386 0.5056  0.1868  0.4186
ducive for downstream applications and  Autolnt-vanilla 0.5120 0.4811 0.1786  0.4021
demonstrates the necessity of our attributed ~ Autolnt+HyCLID | 0.5465 0.5142  0.1906  0.4236
hypergraph modeling of interactions and

the effectiveness of our proposed hypergraph clustering network for clustering interactions.

5 Conclusion

In this paper, we propose a novel clustering task on interaction data to discover more comprehensive cluster
patterns, where the interactions are regarded as basic units to be clustered instead of objects. To this end, we
propose a novel Hypergraph CLustering network for Interaction Data, namely HyCLID. Specifically, we propose
to model the interactions via attributed hypergraph, and then propose a novel rethinking-based hypergraph neural
network to learn the representation of interactions. It designs a novel attentive routing-based rethinking mechanism
to capture the correlations among multiple attributes of objects and conditions involved in interactions. Besides,
we develop an adaptive mini-batch clustering method to deal with the large scale of interaction data, which can
further make adaptive adjustments for different data distributions of batches. Extensive experiments verify the
effectiveness of our HyCLID on both public datasets and real industrial datasets. Moreover, offline experiments
on recommendation show the practical value of our discovered cluster patterns for industrial applications.
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