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Abstract—Library developers can provide classes and methods
with underdetermined specifications that allow flexibility in
future implementations. Library users may write code that relies
on a specific implementation rather than on the specification, e.g.,
assuming mistakenly that the order of elements cannot change
in the future. Prior work proposed the NonDex approach that
detects such wrong assumptions.

We present a novel approach, called DexFix, to repair wrong
assumptions on underdetermined specifications in an automated
way. We run the NonDex tool on 200 open-source Java projects
and detect 275 tests that fail due to wrong assumptions. The
majority of failures are from iterating over HashMap/HashSet
collections and the getDeclaredFields method. We provide
several new repair strategies that can fix these violations in both
the test code and the main code. DexFix proposes fixes for 119
tests from the detected 275 tests. We have already reported fixes
for 102 tests as GitHub pull requests: 74 have been merged, with
only 5 rejected, and the remaining pending.

I. INTRODUCTION

Underdetermined specifications [51] admit multiple im-
plementations. These different implementations can return
different output for the same input, even if each imple-
mentation itself is deterministic. For example, consider the
method getDeclaredFields from the Java standard library
class java.lang.Class. The Javadoc specification [23] for this
method states that it “Returns an array of Field objects re-
flecting all fields declared by the class or interface represented
by this Class object” and also “The elements in the returned
array are not sorted and are not in any particular order.”

Library developers sometimes provide methods with such
underdetermined specifications to allow flexibility for future
implementations. The latest implementations (as of this writ-
ing) from both Oracle JDK and OpenJDK provide the fields in
the order in which they are declared in the class source code,
but this ordering could change in the future.

If library users write code that relies on a specific (deter-
ministic) implementation rather than on the (underdetermined)
specification of a method from the library, the code can
break when the library developers provide a new imple-
mentation of the same specification. For example, the Java
standard library (from Sun and then Oracle) has changed the
implementation over time of several widely used methods
such as Object#hashCode, HashMap and HashSet iterators,
and Class#getMethods, which on several occasions broke
substantial amounts of code [1], [2].

Shi et al. [59] developed NonDex, a technique to find the
tests that fail due to making wrong, deterministic assumptions
on underdetermined specifications. Lam et al. [48] recently
used NonDex in a larger study of flaky tests, which can
fail seemingly nondeterministically [53]. They reported that
190/684 of the flaky tests in their dataset are due to such wrong
assumptions. They call these flaky tests implementation-
dependent (ID) tests; we use the same name in this paper.
Gyori et al. [41] provided a NonDex plugin for the Maven
build system [28] to automate running tests with NonDex and
also provided some partial support for manual debugging by
locating one, or a few, random choice(s), which they call root
causes, that can make each test fail. They wrote “In the future,
we plan to explore [...] automated fixing” [41, p. 4]. However,
no automated fixing technique has been developed before.

We present a novel technique, called DexFix, that can auto-
matically propose fixes for ID code. Inspired by the growing
body of work on program repair [40], [44], [49], [52], [57],
[61]–[63] (including a survey paper [55]) and test repair [37],
[38], [50], [54], [60], [64], we provide a set of novel, domain-
specific, and simple (but effective!) repair strategies that can
fix implementation dependency in both the test code and the
main code1. To the best of our knowledge, no existing program
or test repair tools can handle these cases.

We first perform a formative study. We run the NonDex
tool on 200 open-source Java projects and detect 275 ID
tests where NonDex provides a specific root cause. Our
inspection of these root causes finds that the vast majority
are from the HashMap/HashSet class iterations (152) and the
getDeclaredFields method (93). We also identify a number
of tests that fail due to test assertions comparing JSON
strings: the serialization of Java objects into JSON strings can
produce JSON strings with different order of fields; the JSON
specification [22] does not specify the order of fields.

We derive new, automated repair strategies that can fix
the failing tests by changing the code to work properly with
underdetermined specifications. Intuitively, our strategies aim
to make each output deterministic or each test assertion
order-agnostic. For example, consider some code that calls
getDeclaredFields and then a test exercising this code fails

1Following Maven, we use the term “main code” for what may be called
“production code” or “code under test”.



because an assertion expects a particular order of elements in
the array returned by getDeclaredFields. One repair strategy
is to sort the fields in the array, e.g., by field name. The
order then does not depend on the particular implementation
of getDeclaredFields. However, the new order may differ
from the old order (for a specific implementation), so some
assertions may fail after sorting. We can then apply a test-
repair technique to automatically repair these assertions that
now fail when run on a more deterministic implementation.
Another repair can be to change the assertions so that they are
order-agnostic, e.g., treat fields as a set rather than an array.

We automate our strategies by building upon NonDex and
ReAssert. The latter is a tool that can automatically repair
failing test assertions [38]. We derive our strategies from
the most common cases that we encounter in the process of
inspecting tests detected by NonDex. The effort of adding a
new DexFix strategy is usually about a day if the support
already exists for the right technology; e.g., we did not have
initial support for the AssertJ [19] style of assertions, so it
took additional work to add that support.

This paper makes several contributions:
Dataset: We provide a novel dataset of 275 ID tests. This
dataset is the largest for ID tests, showing the prevalence of
this problem among open-source projects.
Debugging Support: We extend the existing NonDex tool to
provide more info for debugging ID tests.
Repair Strategies: We derive novel strategies that can help to
automatically repair the code exercised by ID tests. Our new
strategies are complemented by the old ReAssert strategies for
repairing tests [38]. We automate these strategies by building
on top of NonDex and ReAssert.
Evaluation: We apply the DexFix technique on 275 tests,
and we find that DexFix can propose fixes for 119 tests.
After DexFix proposes code changes, we check that the fix
indeed passes with NonDex. Inspired by the fixes proposed by
DexFix, we have opened GitHub pull requests for 102 tests,
and 74 have been already merged, with only 5 rejected, and
the remaining still pending.

Our dataset and links to pull requests submitted from
anonymous GitHub accounts are publicly available as a part
of a larger dataset of flaky tests [21].

II. BACKGROUND

A. Detecting ID Tests

Following Lam et al. [48], we call a flaky test that fails
due to wrong assumptions on underdetermined specifications
an implementation-dependent (ID) test. Such ID tests can be
detected proactively by exploring different possible imple-
mentations of underdetermined specifications, finding one that
makes the test fail. One specific technique and tool that detects
ID tests due to wrong assumptions on specifications in the Java
standard library is NonDex [29], [41], [59]. Another tool that
can detect not only ID tests but also more kinds of flaky tests
in C++ code is the Mozilla Chaos Mode [30]. In this paper,
we use NonDex to detect ID tests in Java code.

NonDex detects ID tests by randomizing the output of
several methods with underdetermined specifications [59].
NonDex is implemented as a Maven plugin [29], [41] that
can be integrated into any Maven-based project that runs using
Java 8. NonDex also provides a debugging feature (invoked
through the command mvn nondex:debug) [41]. Given a de-
tected test that fails for some random seed, NonDex attempts to
find if one random choice location can make the test fail, e.g.,
a dynamic invocation of getDeclaredFields. NonDex uses
binary search across all the random choices executed during
the round where the test fails, localizing to the one point where
a single random choice can make the test fail. NonDex then
reports the stack trace of this single point.

B. Automatic Repair of Test Assertions

Test assertions can fail after developers make changes to the
main code. Assuming the main code is correct, test assertion
repair aims to update an assertion to pass when run on that
main code, e.g., changing the assertion’s expected value with
the new actual value produced by running the test on the
new main code, or even changing the failing assertion to
a different kind that more properly captures the proper test
behavior. Challenges in test assertion repair involve handling
the numerous kinds of test assertions that developers use.

ReAssert [36]–[38] is a technique and tool for repairing test
assertions in JUnit. Given a (failing) test, ReAssert instruments
the code, executes the test, and records the failure message,
including the expected and actual values for comparisons.
ReAssert then applies several repair strategies to repair the
assertion so that the test no longer fails. For example, the strat-
egy ReplaceLiteralInAssertion works on assertions where
the expected value is a literal (e.g., an integer or a string), and
replaces that literal with the actual value it observes during
the test execution [38].

III. EXAMPLES

We next discuss several example ID tests that NonDex
detects and for which DexFix proposes a fix. The examples
show a variety of root causes and repair strategies used to
change the code. We introduce these examples in order of
perceived “simplicity”.

A. Simple Fix in Main Code

Apache Hadoop [3] is a widely used open-source
project. NonDex detected several ID tests in Hadoop, which
shows that even well-tested projects can have problems
with underdetermined specifications. One such ID test was
TestMetricsSystemImpl#testInitFirstVerifyCallBacks.
This test passes when run normally but fails with NonDex,
reporting an error message that appears challenging to debug:

java.lang.AssertionError:
Element 0 for metrics expected:<MetricCounterLong
{info=MetricsInfoImpl {name=C1, description=C1 desc},

value=1}>
but was:<MetricGaugeLong
{info=MetricsInfoImpl {name=G1, description=G1 desc},

value=2}>}



Fortunately, NonDex can provide debugging info for each
failing test, and the prior NonDex debugging output [41]
provides useful info for this case, specifically the “root cause”:

java.lang.Class.getDeclaredFields(Class.java:1916)
org.apache.hadoop.util.ReflectionUtils.

getDeclaredFieldsIncludingInherited(ReflectionUtils.java:353)
[...]

DexFix has a general, automatic strategy that sorts arrays of
fields returned by getDeclaredFields, which makes the order
of the elements in the array deterministic. Based on the Non-
Dex output reporting the “root cause” in the ReflectionUtils

class, DexFix proposes the following fix:

import java.util.ArrayList;
+ import java.util.Arrays;
+ import java.util.Comparator;

import java.util.List;
...

while (clazz != null) {
- for (Field field : clazz.getDeclaredFields()) {
+ Field[] sortedFields = clazz.getDeclaredFields();
+ Arrays.sort(sortedFields, new Comparator<Field>() {
+ public int compare(Field a, Field b) {
+ return a.getName().compareTo(b.getName());
+ }
+ });
+ for (Field field : sortedFields) {

fields.add(field);
...

Rather than introducing its own sorting, DexFix uses the
Java standard library classes Arrays and Comparator. Because
Arrays#sort sorts the input array in place (and does not
return the sorted array), DexFix introduces a fresh variable
sortedFields, sorts the array (comparing fields by name),
and uses sortedFields in the for loop. After DexFix makes
a change, we (compile and) rerun the test with NonDex; in
this case, the test passed after the above fix. We submitted
this fix as a GitHub pull request, and the developer promptly
accepted our fix with the message “+1, committing. we all
hate flaky tests. thanks for this” [4].

B. Multiple Changes with the Same Strategy

In this example, DexFix proposes a fix with multiple
changes in both main and test code, but all changes follow the
same strategy. In the Quarkus project [5], NonDex detected
several ID tests, including CompilerFlagsTest#defaulting.
When the test failed with NonDex, it produced an error
message that included the following:

org.opentest4j.AssertionFailedError: expected: <CompilerFlags
@{−b, −a}> but was: <CompilerFlags@{−a, −b}>

%org.opentest4j.AssertionFailedError: expected: <
CompilerFlags@{−b, −a, −c, −d}> but was: <
CompilerFlags@{−a, −b, −c, −d}>

While the prior debugging output from NonDex [41] pro-
vides some partial info for this failing test, unfortunately it
does not provide enough info:

java.util.HashMap$HashIterator$HashIteratorShuffler.<init>(
Unknown Source)

java.util.HashMap$HashIterator.<init>(HashMap.java:1435)
[...]

We can see that the failure stems from an iteration over a
HashMap, but the NonDex output did not provide (1) the code
location that allocated this object and (2) whether it indeed
allocated a HashMap or HashSet (that internally uses HashMap).
We extended NonDex to include the allocation location (Sec-
tion IV-C), reporting that the object was a HashSet allocated
on line 30 of the class CompilerFlags.

DexFix has another general automated strategy for re-
placing allocations of HashMap/HashSet, with LinkedHashMap/
LinkedHashSet. The LinkedHash* classes have a precisely
defined iteration order [27]: “Hash table and linked list imple-
mentation of the Map interface, with predictable iteration or-
der.” and also “This implementation spares its clients from the
unspecified, generally chaotic ordering provided by HashMap.”
Based on the debugging output from our NonDex extension,
DexFix proposed the following change:

- this.defaultFlags = defaultFlags == null ? new HashSet<>() :
new HashSet<>(defaultFlags);

+ this.defaultFlags = defaultFlags == null ? new
LinkedHashSet<>() : new LinkedHashSet<>(defaultFlags);

Each LinkedHash* class is a subclass of its respective Hash*

class, so the changed code can compile after importing the
class, with no other changes.

After applying this change and rerunning the test with
NonDex, unlike in the first example where the test passed
after the first change, this test again failed after the change.
The new failure was again due to iteration over a HashMap,
and our extension reported that the object was allocated on
line 41 of the same class CompilerFlags. DexFix proposed a
similar fix (changing HashSet to LinkedHashSet on that line),
but rerunning NonDex yet again resulted in a different failure
due to iteration over another HashMap, this time allocated on
line 88 of the class CompilerFlagsTest. Once again, DexFix
proposed a similar change on that line.

After DexFix changed all these three lines (along with
adding import statements), the test finally passed with Non-
Dex. We submitted this fix, and the developer accepted it:
“Merged, thanks!” [6].

C. Multiple Changes with Different Strategies

This example illustrates a case where DexFix proposes a fix
that changes both main and test code, but uses different strate-
gies. In the Alibaba Fastjson project [7], NonDex detected sev-
eral ID tests, including WriteDuplicateType#test_dupType2.
As in the previous example, the problem was with a HashMap

iteration, specifically line 38 of WriteDuplicateType, and
DexFix proposed the following change:

- HashMap<String, Object> obj = new HashMap<>();
+ HashMap<String, Object> obj = new LinkedHashMap<>();



After this change, the test fails even without NonDex, indi-
cating that the cause is not an underdetermined specification
any more. In particular, this test fails on line 44 of the class
WriteDuplicateType, which compares two strings.

At this point we run ReAssert [38] to repair the failing
assertion. For these cases of assertEquals with a string literal,
ReAssert replaces the expected string with the actual string
that the test produces. Specifically, ReAssert generates the
following change for the assertion:

- Assert.assertEquals(”[pre]\”@type\”:[...],\”id\”:1001[post]”,
text1);

+ Assert.assertEquals(”[pre]\”id\”:1001,\”@type\”:[...][post]”,
text1);

These two changes now make the test pass both with and
without NonDex. The developers merged our submitted fix [8].

D. A Novel Strategy for Comparing Collections

When a test has an assertion that compares some actual
collection value against an expected collection whose iteration
order is known to be underdetermined, we can change the
assertion to a more suitable one that is order-agnostic. In
the project Graylog2 Server [9], NonDex detected an ID test
V20161215163900_MoveIndexSetDefaultConfigTest#upgrade.
According to the NonDex debugging output, this test has a root
cause in a third-party library, where the HashSet is initialized.
The assertion that fails in this test is containsExactly,
an assertion from the AssertJ library [19] that checks if a
collection contains given elements, in the given order.

DexFix in this case changes the assertion to another AssertJ
assertion, containsExactlyInAnyOrder, that allows any order
of elements and is thus order-agnostic:

- assertThat(...).containsExactly(”...0001”, ”...0003”);
+ assertThat(...).containsExactlyInAnyOrder(”...0001”, ”...0003”);

We submitted this fix, and the developers merged it: “Yeah,
that makes sense. Thank you very much” [10].

E. A Novel Strategy for JSON Strings

Our final example is a case where DexFix proposes a fix just
for comparing JSON strings. In the project Nutz [11], Non-
Dex detected several ID tests, including JsonTest#test_enum.
According to the NonDex debugging output, this test also has
a root cause in getDeclaredFields, but in a location that is in
a third-party library, not in the Nutz project itself. However,
the failed assertion (on line 1031 of JsonTest) just compares
a JSON string to an expected value.

As such, DexFix has a general, automatic repair strategy
to change such comparisons to use another assertion method,
JSONAssert#assertEquals, from a specific library:

import static org.junit.Assert.assertEquals;
+ import static org.junit.Assert.fail;
+ import org.json.JSONException;
+ import org.skyscreamer.jsonassert.JSONAssert;

...
String expected = ”{\n” + ” \”name\”:\”t\”,\n” + ” \”index
\”:1\n” + ”}”;

- assertEquals(expected, Json.toJson(TT.T)); // former line 1031
+ try {
+ JSONAssert.assertEquals(expected, Json.toJson(TT.T), false);
+ } catch (JSONException jse) {
+ fail(”Not comparing JSON strings.”);
+ }

The parameter false instructs the assertion to ignore the
ordering of fields in the JSON object, making this assertion
order-agnostic. The change also requires wrapping the call
in a try-catch block to fail when the assertion does not
compare JSON strings. Another required change is to modify
pom.xml to add the org.skyscreamer.jsonassert-1.5.0.jar

dependency. Because this same JsonTest class had four sim-
ilar failures (all detected automatically using NonDex), we
(manually) extracted all try-catch blocks in a helper method,
called assertJsonEqualsNonStrict, and replaced calls to
assertEquals with calls to assertJsonEqualsNonStrict.
These changes make all the tests pass both without and with
NonDex. The developers merged our submitted fix: “thank you
very much ˆ ˆ” [12].

IV. TECHNIQUE

The input to our technique DexFix conceptually consists of
(1) the project source code including the main and test code,
and (2) an ID test to be repaired. The output of our technique
is a fix, consisting of one or more code changes, that makes the
test pass when run with NonDex. Inspired by ReAssert [38],
DexFix proceeds by applying various repair strategies on the
code and checking if the test passes with NonDex.

A. Overview

Figure 1 presents the pseudo-code of the DexFix top-level
repair function that changes a project’s codebase. (We did
not use this exact pseudo-code in our early experiments but
over time developed this current pseudo-code based on our
experience.) Specifically, repair takes as input the ID test to
repair. It first runs NonDex to get the initial test result (which
should be FAIL), the failing assertion a reported by JUnit,
the root cause c reported by NonDex (e.g., that the failure is
caused by use of HashSet, as obtained from the NonDex debug
feature), and the code location l reported by our extension
of NonDex. DexFix also keeps track of the locations already
attempted for fixing (lines 5 and 11 in Figure 1).

DexFix first tries to apply the ChangeContainsExactly strat-
egy (Section IV-B), which only changes test code assertions
to make them order-agnostic. While the strategy does not
introduce any new dependencies to the project, it only applies
when the project already uses a specific assertion from the
AssertJ library of so-called “fluent assertions” [19], commonly
used to supplement standard assertions provided by JUnit. We
first attempt this strategy that fixes only test code because
developers are more likely to consider fixes to test code than
fixes to the main code. Furthermore, nondeterminism used in
the main code is not necessarily incorrect, so we believe it is
preferable to reduce flakiness in tests by making the test code
agnostic to the nondeterminism.



If the ChangeContainsExactly strategy does not apply, i.e.,
the test does not use the relevant assertion, DexFix then
calls repair_location to attempt to repair the code location
itself. If the location is in a library dependency and not in
the source code of the project being analyzed, then DexFix
cannot change the source code at that location (but could still
change the test code later). If DexFix can change the source
code, it checks whether the root cause is HashMap/HashSet
or getDeclaredFields for which it can apply an appropriate
strategy (Section IV-B). If DexFix changes the code, it also
checks whether the test fails: while the change makes the
order deterministic, the resulting deterministic order may not
match the assumed order encoded in the current test assertions.
DexFix then needs to update the failing test assertion by
applying the traditional ReAssert strategies [38], e.g., as shown
in Section III-C. If ReAssert cannot repair the assertion, then
DexFix stops and reports unrepaired (line 33 in Figure 1).

If repair_location does not repair the test, DexFix tries
to apply its JSONAssertion strategy (Section IV-B). Al-
though this strategy (like the ChangeContainsExactly strategy)
changes only test code, we use this strategy last because it
can add new third-party dependencies to the project, and de-
velopers tend to be cautious about adding more dependencies.
After all these changes,, we need to run the test again with
NonDex (for a configurable number of rounds). If the test
fails with NonDex, DexFix uses the potentially new failing
assertion a, root cause c, and debug location l to continue
the repair process again, e.g., as illustrated in Section III-B. If
the new debug location has been attempted before (line 9 in
Figure 1), then DexFix stops, reporting unrepaired, to avoid
an infinite loop. (In our experiments, we never encountered a
previous location showing up again.) By keeping track of all
attempted repair locations and not allowing repeats, the overall
loop eventually stops.

If the test passes with NonDex, DexFix considers the test
repaired and exits the loop. We then manually inspect the fix
to prepare a pull request. While Figure 1 shows how DexFix
proposes one fix, we can easily adapt it to propose multiple
possible fixes, so the user can choose the best fix.

B. Repair Strategies

We develop four strategies for DexFix.
1) ChangeContainsExactly Strategy: This strategy changes

an AssertJ assertion that uses containsExactly, which can
check if a Map or a Set collection contains exactly the expected
elements in the given order. For example, the assertion can
be assertThat(actual).containsExactly(expected). The
strategy changes containsExactly to containsOnly if check-
ing a Map or to containsExactlyInAnyOrder if checking a Set.
These other assertions from AssertJ check if the collection
contains the expected elements in any order. This strategy
changes only test code, as illustrated in Section III-D.

2) HashToLinkedHash Strategy: This strategy replaces new

HashMap, resp. new HashSet, with new LinkedHashMap, resp.
new LinkedHashSet. The strategy applies when the root cause
is iteration over some HashMap/HashSet object. While NonDex

1 # Input/Output: project source code that gets changed
2 # Input: failing test t
3 # Output: status REPAIRED/UNREPAIRED
4 def repair(t):
5 rl = [] # repaired locations
6 # failing assertion a, root cause c, debug location l
7 result, a, c, l = run NonDex(t, NUM ROUNDS)
8 while result == FAIL:
9 if l in rl: # stop if the location has been tried

10 return UNREPAIRED
11 rl.add(l)
12 applies = apply strategy(ChangeContainsExactly, t, a)
13 if not applies:
14 status = repair location(t, a, c, l)
15 if status == UNREPAIRED:
16 applies = apply strategy(JSONAssertion, t, a)
17 if not applies:
18 return UNREPAIRED
19 # run NonDex again to see if there is more to handle
20 result, a, c, l = run NonDex(t, NUM ROUNDS)
21 return REPAIRED
22 def repair location(t, a, c, l):
23 if l in library:
24 return UNREPAIRED
25 if c is Hash*:
26 apply strategy(HashToLinkedHash, l)
27 elif c is getDeclaredFields:
28 apply strategy(SortFields, l)
29 else:
30 return UNREPAIRED
31 if compile and run(t) == FAIL:
32 apply strategy(ReAssertStrategies, t, a)
33 if compile and run(t) == FAIL:
34 return UNREPAIRED
35 return REPAIRED

Fig. 1. Pseudo-code of DexFix repair process

provided the stack trace at the iteration point, it did not provide
the stack trace of the allocation until we extend NonDex. This
strategy may need to add an appropriate import statement for
some class. This strategy may change both main and test code,
depending on the location of the allocation.

3) SortFields Strategy: This strategy adds sorting of field
arrays returned by the method getDeclaredFields. The strat-
egy applies when the root cause is the underdetermined order
of the elements in such an array. NonDex already provided the
stack trace at the point where the method is invoked. If the
method invocation is the only expression in a statement, e.g.,
fields = clazz.getDeclaredFields(), then adding sorting
is easier. A more challenging case is handling method in-
vocations that appear in more complex expressions, e.g., as
illustrated in Section III-A. Our solution is to use a fresh
variable to store the array, sort it, and finally replace the
original invocation with this variable. This strategy may need
to add two appropriate import statements for comparing and
sorting. This strategy may change both main and test code,
depending on the location of the invocation.

4) JSONAssertion Strategy: This strategy repairs failing
assertions that compare JSON strings.



If the assertion is JUnit’s Assert.assertEquals, the strat-
egy replaces the call with JSONAssert.assertEquals from
the Skyscreamer JSONassert library [25] (specifically version
1.5.0), as illustrated in Section III-E; we call this substrategy
JSONAssertionJ. Replacing the method call is conceptually
easy, but there are some additional details. First, it needs
to handle the potential JSONException. Second, it needs to
provide a value for an additional boolean argument for the new
assertion’s strict parameter. Setting strict to true ignores
the order of field-value pairs in the JSON string representation
but does not ignore the order of elements in a JSON array.
The JSON string representation for a HashSet is a JSON
array, making it necessary to set strict to false to ignore
the order of elements. However, setting strict to false is
not ideal, because it also allows JSON strings that contain
more elements than expected, as long as they contain all the
expected elements. As such, JSONAssertionJ first sets strict

to true, and if the test still fails, then it sets the value to false.
If the failing assertion is from the AssertJ library, this

strategy instead changes the AssertJ assertThat invocation to
assertThatJson from the JsonUnit library [26] (specifically
version 2.17.0); we call this substrategy JSONAssertionA.
Unlike JSONAssertionJ that replaces the failing assertion
method, JSONAssertionA changes the assertThat invocation
that creates an Assert object from AssertJ. For example,
consider assertThat(actual).isEqualTo(expected); while
it is the call to isEqualTo that fails, JSONAssertionA does
not replace that call but instead changes the entire expression
to assertThatJson(actual).isEqualTo(expected).

JSONAssertion is similar to ChangeContainsExactly in the
sense that both affect only test assertions, but JSONAsser-
tion requires adding a new third-party dependency (either
JSONassert or JsonUnit) to the project, if not already included.
Adding a dependency is sometimes undesirable to developers.

C. Implementation

For evaluation, we implement DexFix through several mod-
ifications to the existing NonDex [41] and ReAssert [36] tools,
along with automated and manual steps to connect everything
together as per the overall DexFix process shown in Figure 1.
NonDex. Our key modification to NonDex is the collection
of additional debugging info. Specifically, for every allocation
of a HashMap/HashSet object, our extension records the stack
trace. When NonDex reports the stack trace at the iteration
point where it performs its random choice, our extension also
reports the stack trace at the allocation point of the object being
iterated. Our extension then finds the code location from this
stack trace by looking for the first stack frame whose source
code is in the project being analyzed (and not in a library,
either the standard or third-party).
ReAssert. Our key modifications to ReAssert are to implement
the ChangeContainsExactly and JSONAssertion strategies. For
the JSONAssertionJ substrategy, we reuse the prior ReAssert
code for its existing strategy that fixes assertEquals calls
(Section III-C). The prior code already instruments tests to
capture the expected and actual values for a string comparison,

and the (test) code location that invokes the comparison. Our
extension checks whether the strings are likely JSON strings,
by the presence of the ‘{’ characters, and whether the expected
and actual strings when sorted (purely character ordering, not
considering any of the JSON format) end up equal. Unlike
the existing ReAssert strategy that just replaces the expected
string literal in assertEquals, our extension has to perform
somewhat elaborate changes to replace the invoked method,
add a new parameter, and add a try-catch block to handle
the case when the actual value is not a JSON object.

For both ChangeContainsExactly and JSONAssertionA,
we also need to extend ReAssert to handle the so-called
“fluent-assertion style” from AssertJ, which uses assertThat.
Daniel et al. [36] supported related assertions in ReAssert
but for the old, JUnit-style of assertThat, not for AssertJ.
We modify ReAssert to specially capture failures stemming
from AssertJ assertions. An example AssertJ assertion is
of the form assertThat(actual).method(expected), where
the assertThat method wraps the actual value into an
Assert object, which is the receiver for the method (e.g.,
containsExactly or isEqualTo); the method checks the value
in Assert against expected. ReAssert captures the failure
that comes from the method call. If the captured failure
is from containsExactly, ChangeContainsExactly applies,
and it replaces that containsExactly with containsOnly

or containsExactlyInAnyOrder. For JSONAssertionA, while
the isEqualTo call fails, the strategy changes the receiver
expression, namely change assertThat to assertThatJson.

The prior ReAssert code [36] parses Java files using an old
version of the Spoon library [58], which does not support most
modern Java 8 features. We update the Spoon dependency and
appropriately modify the ReAssert code. However, the Spoon
version that we use still does not support all Java 8 features
(e.g., lambda expressions). Spoon does have newer versions,
but they break backwards compatibility, and using them would
require a substantial rewrite of the existing ReAssert code.
DexFix. Our key new additions, besides NonDex and ReAssert
modifications, are to implement the HashToLinkedHash and
SortFields repair strategies. We use the javaparser library [24]
to parse the input Java files (main and test code), change
the code, and output it. The javaparser library supports all
latest features of Java 8 (we analyze Java 8 projects when
running NonDex). Our implementation directly follows the
descriptions in Section IV-B and the examples in Section III.

To support the overall DexFix process presented in Figure 1,
we had to manually apply some of the steps in our experi-
ments. While we automated the key repair_location function
that fixes a location, we had to manually apply the steps in the
top-level repair function that loops calling repair_location

as long as NonDex detects the ID test. We also manu-
ally invoke the ChangeContainsExactly and JSONAssertion
strategies (which themselves automatically change assertions),
because these two strategies rely on ReAssert, which needs a
failing test; integrating ReAssert’s instrumentation for captur-
ing failing test assertions and NonDex’s instrumentation to run
a test to trigger a failure is not straightforward.



V. EXPERIMENTAL SETUP

We first describe how we select projects for our evaluation
and how we use NonDex to detect ID tests within these
projects. We then describe how we use DexFix to propose
fixes for these detected tests and how we send pull requests
based on these proposed fixes.

A. Selecting Projects and Detecting Tests with NonDex

For our evaluation, we select open-source Java projects
that use the Maven build system [28] because NonDex was
originally developed to support running tests for Maven-based
projects [29], [41]. We queried GitHub to find the top 1,000
Java projects by the number of stars, then randomly chose 200
projects of the 242 that have a top-level pom.xml file used to
configure Maven.

For each project, we use the latest commit as of September
2019 and create a separate Docker image that has the cloned
project (including the main and test code), installed using mvn

install -DskipTests, and our modified version of NonDex.
We build all Java code using Java 8.

For each Docker image, we start a Docker container where
we run NonDex on all tests using mvn nondex:nondex. We con-
figure NonDex to run 10 rounds (with varying random seeds),
using the “ONE” mode [59], where NonDex randomizes the
order for each method with an underdetermined specification
only once for the first call and then reuses that randomized
order for subsequent calls (with the same receiver). We choose
the “ONE” mode because tests that fail in this mode most
likely indicate real problems due to wrong assumptions that
developers are motivated to fix. This mode puts a lower
bound on the number of ID tests that NonDex detects; in the
“FULL” mode, NonDex could detect even more test failures
by randomizing all calls for methods with underdetermined
specifications. We collect all the tests that pass when run
without NonDex but fail with NonDex randomization.

For each detected ID test, we run mvn nondex:debug to
obtain debugging info. The prior NonDex debugging reports
a single method-call location where NonDex random choice
leads the test to fail [41]. When the call iterates over a
HashMap/HashSet, our NonDex extension also reports the
location where that object is allocated (Section IV-C). NonDex
debugs by rerunning the test while randomizing only a subset
of method calls with underdetermined specifications. During
this process NonDex can find that some tests pass or fail even
when rerun for the same random seed, so we remove such flaky
tests. Also, the prior NonDex debugging occasionally crashes
altogether and produces no output, so we remove such tests as
well. Because these tests have no info about any method-call
location, our extension cannot report where the receiver object
for that method is allocated. These crashes are infrequent and
hard to reproduce, so we have not debugged them in NonDex.

B. Fixing Tests using DexFix and Opening Pull Requests

For each ID test, we start a new Docker container based
on the Docker image for the test’s project. We copy into
this container the corresponding NonDex debug file and then

run DexFix for the test. This procedure ensures that DexFix
proposes a fix for each test when run on the same code version
where NonDex detected the test. An alternative to fix multiple
tests in the same container would have run a later test on a
different code version that contains the fix for a prior test.

When DexFix needs to rerun NonDex, we configure it to run
10 rounds to check if the test, after the applied change, can still
fail. If the test fails in any of these rounds, DexFix has to use
the info collected from the NonDex run to propose additional
changes to the code (Section IV-A). This process loops until
either DexFix generates a fix or reports that it cannot fully
repair the test after potentially making some changes.

We inspect all proposed fixes, potentially modifying them to
prepare GitHub pull requests to the developers of each project.
The fixes for different tests can contain the same or similar
code changes, because we use DexFix to fix each test individ-
ually on the same code version where NonDex detected the
test. If fixes for multiple tests share some changes to the main
code or the test code (even if they still have separate changes
to their test assertions), these fixes can be safely combined,
because they address the same root cause. Moreover, all the
changes to test assertions need to be combined together along
with the changes to the main code; otherwise, the tests will
fail when run without NonDex. Some pull requests we send
fix multiple tests at once and combine fixes for these related
tests, with all the fixes sharing the same changes to the main
and test code, modulo changes to the test assertions. Most pull
requests simply fix only one test.

As we prepare a pull request, we manually make stylistic
changes so that our code patch matches the coding style that
the project uses. For each new project for which we have not
yet sent pull requests, we send one pull request to that project
for review. While the pull request remains pending, we do not
send more to not “spam” developers with pull requests that
they may not have time to review. We send additional pull
requests only after developers accept the initial one. Also, if
a pull request is rejected, we do not submit other similar pull
requests to that same project. We describe more of our cases
when we do not send pull requests in Section VI-C.

VI. RESULTS

Our evaluation addresses the following research questions:
RQ1: What is the breakdown of the root causes and debug
locations for ID tests detected by NonDex?
RQ2: How many tests can DexFix fix, and which repair
strategies propose the fixes?
RQ3: How effective is DexFix at proposing fixes that devel-
opers actually accept?

Our dataset and pull requests are publicly available [21].
Note that we sent some pull requests before finalizing the
pseudo-code presented in Figure 1. Our results accumulate our
experience from sending pull requests while refining DexFix
to create fixes that developers are more likely to accept.

A. RQ1: Detected Tests
After we run NonDex on 200 projects, it detects 275 ID

tests in 37 projects. Table I lists these 37 projects. The “PID”



column shows the short id we use for later reference. The
“Commit” column is the Git commit SHA on which we
run NonDex. The remaining columns show the breakdown
of the root causes and debug locations for test failures. The
“Hash∗” column is the number of tests due to iteration over a
HashMap/HashSet collection. The “gDF” column is the number
of tests due to getDeclaredFields. The “Rest” column shows
the remaining tests, of which 15 are due to getMethods, and
the others due to six various causes. These columns show
the one cause from the debugging file that mvn nondex:debug

outputs on the first run, but a test may have multiple root
causes (Section III-B). The columns under “Source?” show
whether the debug location reported by our NonDex extension
is in the project’s source code or in a library. The final column
shows the total number of ID tests detected per project.

While NonDex implements random exploration for over 40
methods with underdetermined specifications, only a few of
them cause most test failures. The majority of the detected
tests fail due to some HashMap/HashSet (152 out of 275 tests).
The second most common root cause is getDeclaredFields

(93 out of 275 tests). Together, these two causes lead to 89%
of all detected tests. Prior reports from running NonDex also
found these two causes to be the most common [41], [59], but
interestingly, the ranking between these two is reversed in our
findings compared to prior work. The difference in ranking is
due to the differences in projects and versions, but the fact that
these two causes remain the most common among detected
tests increases confidence that our repair strategies for DexFix
can apply broadly for fixing tests detected by NonDex.

Compared to prior work, the number of tests that Non-
Dex detects in our experiment—275 tests in 37 out of 200
projects—is greater than the previously reported proportion,
e.g., Shi et al. [59] detected 60 tests in 21 out of 195 projects.
While we run on some much larger Maven projects, it could
be also that the problem of ID tests continues to increase.

In terms of debug locations, the majority (207/275) are in
the main and test code rather than in a library. This ratio also
increases confidence that our repair strategies for DexFix could
be effective, because they mostly work on main and test code.
Two strategies (ChangeContainsExactly and JSONAssertion)
can work even if the location is in library code, but they apply
only in some cases (for certain assertions or for JSON strings).

B. RQ2: Fixed Tests

Table II shows statistics about the fixes that DexFix pro-
poses, overall for 119 out of 275 tests. The table shows
the breakdown of fixed tests per root cause and the strategy
DexFix uses: “CC” for ChangeContainsExactly; “L1”, “LM”, and
“LA” are for HashToLinkedHash, corresponding to only one
allocation site, multiple allocation sites, and one allocation site
but also updating test assertion(s); “JA” for JSONAssertion;
“SF” for SortFields at only one site (we never observe the
need to change more than one site); and “SA” for SortFields
with some updates of test assertion(s). Note that ChangeCon-
tainsExactly and JSONAssertion apply to both top root causes.

TABLE I
PROJECTS USED IN THE STUDY AND BREAKDOWN OF ROOT CAUSES AND

THEIR LOCATIONS FOR 275 ID TESTS DETECTED BY NONDEX

Root Causes Source?
PID Project Slug on GitHub Commit Hash∗ gDF Rest Y N Σ

P1 apache/flink 23c9b5a 31 1 9 39 2 41
P2 alibaba/fastjson d4a6271 27 - - 21 6 27
P3 apache/hive 90fa906 15 10 - 11 14 25
P4 Graylog2/graylog2-server 87d63f6 12 11 - 11 12 23
P5 apache/commons-lang 7c32e52 - 21 - 21 - 21
P6 flowable/flowable-engine 399ab58 3 - 14 17 - 17
P7 apache/incubator-shard... [13] 038232e 15 - - 15 - 15
P8 dropwizard/dropwizard 616ed86 6 3 - 7 2 9
P9 square/retrofit 8c93b59 - 9 - - 9 9
P10 rest-assured/rest-assured d3602d9 3 5 - 3 5 8
P11 alibaba/jetcache d280196 6 - - 6 - 6
P12 apache/hadoop 14cd969 2 4 - 4 2 6
P13 graphhopper/graphhopper 91f1a89 6 - - 6 - 6
P14 abel533/Mapper 1764748 - 5 - 5 - 5
P15 apache/pulsar 505e08a - 5 - - 5 5
P16 nutzam/nutz 97745dd - 5 - 5 - 5
P17 stanfordnlp/CoreNLP 08f6dca 5 - - 5 - 5
P18 apache/avro bfbd2d1 - 2 2 4 - 4
P19 ctripcorp/apollo 24062ad 1 - 3 3 1 4
P20 liquibase/liquibase 31a2256 4 - - 4 - 4
P21 apache/kylin 31ab936 3 - - 3 - 3
P22 kiegroup/optaplanner dff7457 - 3 - 2 1 3
P23 vipshop/vjtools 60c743d - 3 - - 3 3
P24 Alluxio/alluxio e6d7680 - 2 - - 2 2
P25 eclipse/jetty.project 9cede68 2 - - - 2 2
P26 elasticjob/elastic-job-lite b022898 - - 2 2 - 2
P27 intuit/karate 2ca51ac 2 - - 2 - 2
P28 quarkusio/quarkus 84128ce 2 - - 2 - 2
P29 querydsl/querydsl 2bf234c 2 - - 2 - 2
P30 seata/seata d334f85 1 1 - 1 1 2
P31 OpenFeign/feign 744fd72 1 - - 1 - 1
P32 classgraph/classgraph d3b5aeb - 1 - 1 - 1
P33 hs-web/hsweb-framework 9eb96c4 - 1 - 1 - 1
P34 mybatis/mybatis-3 0ca4860 1 - - 1 - 1
P35 pedrovgs/Algorithms ed6f8a4 1 - - 1 - 1
P36 spring-cloud/spring-... [14] 922590e 1 - - 1 - 1
P37 zhangxd1989/spring-... [15] e3966d7 - 1 - - 1 1

Σ - - 152 93 30 207 68 275

For the Hash∗ cause, nearly half the fixes that DexFix
proposes use HashToLinkedHash only once (41 out of 83
tests), without changing any test assertion. The tests can still
assert on the same expected values as before, but now the
values are deterministic and cannot be affected by evolution
of the implementation of the library methods in the future.

JSONAssertion helps in a number of cases, with a total of 31
tests fixed for both causes, highlighting that tests often make
incorrect assumptions on JSON serialization. Most of the tests
fixed this way are caused by getDeclaredFields (19); in fact,
JSONAssertion fixes the highest number of tests for this cause.
DexFix cannot fix most of these tests with SortFields, because
the call to getDeclaredFields is in library code.

ChangeContainsExactly, the first strategy that just changes
the test code without introducing new dependencies to the
project, applies to few places, fixing only 7 tests, all in
one project, P4. We note that one test in P8 that we fix
using HashToLinkedHash also could have been fixed us-
ing ChangeContainsExactly (marked with “†” under column
L1). We initially developed HashToLinkedHash first before
ChangeContainsExactly, and the developers accepted our fix
using HashToLinkedHash. As such, we count the test under
HashToLinkedHash. Regardless, the number of tests Change-



TABLE II
STATISTICS FOR TESTS REPAIRED, STRATEGIES USED PER ROOT CAUSE, ASSERTION CHANGES, REPAIR LOCATIONS, AND PULL REQUESTS

Hash∗ (total 83) gDF (total 36) Assert.Changes Repair Locations Pull Requests Σ
PID CC L1 LM LA JA CC SF SA JA Yes No Test Main Both A P R U

P1 - 11 6 - - - - - - - 17 6 10 1 5 8 - 4 17
P2 - 8 - 9 6 - - - - 15 8 17 2 4 7 ∗7 - 9 23
P3 - 1 - - - - 1 - 1 1 2 2 1 - 1 2 - - 3
P4 5 2 - - - 2 - - 7 14 2 14 2 - 15 1 - - 16
P5 - - - - - - 1 5 - 5 1 - 1 5 6 - - - 6
P6 - 1 - - - - - - - - 1 - 1 - 1 - - - 1
P7 - 1 4 - - - - - - - 5 1 4 - 5 - - - 5
P8 - †3 - - 2 - - - 1 3 3 3 3 - 3 - §3 - 6
P10 - - - - 3 - - - 2 5 - 5 - - 5 - - - 5
P11 - 2 - - - - - - - - 2 - 2 - 2 - - - 2
P12 - - - - - - 2 - - - 2 - 2 - 2 - - - 2
P13 - 2 - 3 1 - - - - 4 2 1 2 3 - - 2 4 6
P14 - - - - - - 4 1 - 1 4 - 4 1 - 5 - - 5
P16 - - - - - - - - 5 5 - 5 - - 5 - - - 5
P18 - - - - - - - 1 - 1 - - - 1 1 - - - 1
P20 - 1 - - - - - - - - 1 - 1 - 1 - - - 1
P21 - 3 - - - - - - - - 3 2 1 - 3 - - - 3
P23 - - - - - - - - 3 3 - 3 - - 3 - - - 3
P28 - - 2 - - - - - - - 2 - - 2 2 - - - 2
P29 - 2 - - - - - - - - 2 - 2 - 2 - - - 2
P30 - 1 - - - - - - - - 1 1 - - 1 - - - 1
P31 - - - 1 - - - - - 1 - - - 1 1 - - - 1
P34 - 1 - - - - - - - - 1 1 - - 1 - - - 1
P35 - 1 - - - - - - - - 1 - 1 - 1 - - - 1
P36 - 1 - - - - - - - - 1 - 1 - 1 - - - 1

Σ 5 41 12 13 12 2 8 7 19 58 61 61 40 18 74 23 5 17 119

ContainsExactly fixes is relatively small, suggesting that de-
velopers tend not to directly assert upon these collections.

Table II also shows whether DexFix changes assertions for
proposed fixes: “Yes” means it does; “No” means it does not.
Almost half of the fixes (58 out of 119) involve assertions,
showing the importance of using ReAssert. Table II also shows
where the repair locations are: only in the test code, only in
the main code, or in both. We see a variety, demonstrating the
importance of considering both main and test code.

For repair cost, DexFix strategies take relatively little time
to change the code, because the strategies apply only targeted
changes and run each test at most 5–6 times (unlike automated
program repair that may explore thousands of changes and
run many tests hundreds or thousands of times [55]). Running
DexFix on all 275 tests takes under 7 hours, an average of
∼90sec per test, ranging from 32sec to 388sec.

C. RQ3: Pull Requests

We have sent pull requests for 102 out of 119 tests for which
DexFix proposes a fix. Table II also shows the pull request
status for the tests: Accepted (“A”), Pending (“P”), Rejected
(“R”), or Unsubmitted (“U”).

Overall, developers have accepted pull requests that we
submitted for a majority of the fixed tests (74 tests). This
high ratio of accepted pull requests shows the effectiveness
of the fixes that DexFix proposes, and developers welcome
the changes, e.g., recall the messages in Section III. We have
23 tests whose pull requests are still open on GitHub, pending
review or final judgment from developers. Overall, of the tests

in the accepted pull requests across the two root causes, 47 of
83 are for Hash∗, and 27 of 36 are for gDF.

We next discuss 22 tests whose pull requests were rejected
or for which we did not send pull requests.
Rejected. We have 5 tests whose pull requests have been
Rejected, across two projects, P8 and P13. For the 3 tests
in P8, the developer did not accept our pull request because
the fix involves JSONAssertion and adds a new dependency
on the JsonUnit library to the project. However, the developer
acknowledged the potential problem with the tests and fixed
all these tests in another way through a combination of project-
specific annotations for specifying order and using some sorted
maps. The developer closed this pull request with the message
“I’ve changed the tests accordingly. Thanks for the hint!” [16].
We mark “§” on the cell for P8 under “R” in Table II to
indicate that the developer found our report useful.

In the other project, P13, the developer rejected the pull
request for one test for a similar reason, because it adds a
new dependency (on the JSONassert library). The developer
commented “We never had a problem with this test and so
I would not want to change it. Especially when we need a
big dependency for something small.” Based on the feedback
from these two projects, we see that while JSONAssertion
effectively changes just the test code when comparing JSON
strings, the cost of including a new library dependency is too
high for some developers. For the final rejected pull request in
P13, the fix was from HashToLinkedHash, but the developers
did not provide any feedback before rejecting, so we do not
know their reason for rejection.



Unsubmitted. We did not submit fixes for 17 tests, spread
across three projects. For P1, we have not sent pull requests
for 4 tests yet because they are quite similar to some initial
ones we sent that are still pending review, so we do not want
to bother developers with additional similar fixes until we get
proper feedback from the initial ones.

For P2, we have 9 tests with unsubmitted pull requests. For
4 of these tests, the fixes are similar to an initial pull request
we sent. That initial pull request received positive feedback
from developers but has yet to be officially merged into the
codebase; we plan to send the followup pull requests for these
other 4 tests after the merge. For the remaining 5 tests, we
ourselves “rejected” the fixes after our manual inspection.
We believe the developers truly want to use a HashMap (no
deterministic ordering) at the location where DexFix proposes
to use a LinkedHashMap. In our inspection, we find the code
has a flag to determine if a LinkedHashMap should be used.
This flag does not help to fix the 5 unsubmitted tests. However,
we manually change the test code in P2 to set the flag, which
fixes 7 other tests, marked “∗” under “P” in Table II.

Finally, for P13, of the 4 tests with unsubmitted pull
requests, 2 tests that DexFix automatically fixes on an older
code version (on which we started our experiments) are no
longer ID tests in the latest code version. The remaining 2
tests have fixes very similar to previously rejected ones we
sent, so we do not send these additional ones.

VII. DISCUSSION

A. Limitations

DexFix currently cannot propose a fix for 156 of 275 tests
detected by NonDex. We inspected most of these tests, at
least one unfixed test from each project with some unfixed
test(s). Some of the cases are limitations of our general
repair strategies, and some are so rare that they do not merit
developing general strategies. We next show a breakdown of
the reasons why DexFix could not fix the tests.
Tool Engineering (42+27+6). ReAssert crashes altogether
when run on 42 tests. Also, ReAssert cannot run on 27 tests
that use JUnit 5 or TestNG [31], as ReAssert currently supports
only JUnit 4 and JUnit 3. Our attempt to upgrade ReAssert
to support JUnit 5 revealed that it would require a major
re-implementation effort. Finally, our toolset cannot handle
source languages beyond Java; 6 tests are written in Scala (but
NonDex can still detect their failures as its instrumentation
works at the level of bytecode).
Unsupported Root Cause (30). The current DexFix strate-
gies focus on addressing the two top root causes—iterating
over HashMap/HashSet and the order of fields returned by
getDeclaredFields—as reported by prior work [59] and
confirmed in our experiments (Section VI-A). 30 tests fail
for 7 other root causes. The largest number of tests, 15, is
for getMethods, but they come from only two projects. We
inspect 14 such tests in P6, and they all fail because a class
has two methods named equals (one declared in the class itself
and another inherited). We could easily build a new strategy
to sort these methods by name, but it would not be widely

applicable. In fact, the project has a comment “By convention,
the implementing class should have one method with the same
name” [17]. The remaining test for getMethods is interesting
in that its root cause is not just one random choice but two
random choices. The fix would again be overly specialized
to this one case. In the future, we believe it worthwhile to
develop more strategies only for more general cases.
Library Location (29). Only two DexFix strategies—
ChangeContainsExactly and JSONAssertion—can apply if the
root cause is in a library, i.e., the source code is not accessible
for DexFix to change. 29 tests have such root causes, and the
two strategies do not apply because the tests are not using
containsExactly or comparing JSON strings.
Others (22). Finally, DexFix cannot handle 22 tests due to
one-off instances, such as creating HashMap through reflection
or using Java language features in repair locations not handled
by our prototype implementation of DexFix strategies.

B. Making All Code Deterministic

It is interesting to consider whether the four new strate-
gies that DexFix provides (Section IV-B) should be applied
in all cases, i.e., should all sets/maps be compared using
containsExactly, should all Hash* objects be LinkedHash*,
should all arrays from getDeclaredFields be sorted, and
should all JSON strings be compared with something like
JSONAssert? In the limit, should the Java standard library have
any underdetermined specification? Developers of the Java
standard library could have specified that HashMap behaves
like LinkedHashMap, even when deterministic iteration is not
required. For example, in Python, all dictionaries since version
3.7 are specified [32] to behave similar to LinkedHashMap.

Considering that the Java standard library has not made
the underdetermined specifications deterministic like Python
did, we believe that underdetermined specifications remain
valuable. We approach fixing of ID tests with the goal to first
prioritize changing the test code. Our assumption is that the
developers are fine with an underdetermined specification and
do not require determinism in their main code. The problem is
that the tests are overly specific to the current implementation
and would fail if the implementation changes. Thus, our
strategies first help fix the test code before changing the main
code. We do have strategies that change main code, but DexFix
attempts them only if it cannot repair only test code without
adding dependencies. Ultimately, we send fixes to developers
so they can decide how to best address the problem.

C. Overhead

While DexFix aims to make tests no longer implementation-
dependent, the changes could introduce other side-effects to
the main and test code, such as extra execution overhead.

Compared to Hash*, LinkedHash* objects provide a small
overhead in both space (LinkedHash* objects need to main-
tain a list in addition to a hashtable maintained by Hash*)
and runtime (to manipulate the list) for most operations.
However, that overhead is negligible for all applications but
microbenchmarks, and some operations on LinkedHash* can



be even faster [20], [27], including resizing, containsValue,
and ironically, iteration, which becomes not only predictable
but also faster in certain situations. Some Java developers
still raise concerns about the overhead, e.g., one of our pull
requests had a discussion about it [18], but later the developer
still accepted the fix.

Sorting getDeclaredFields provides an even smaller over-
head as a library usually sorts only once and caches for later
calls. In contrast to Java, Python’s interface for reflection in-
cludes the inspect module’s getmembers function that returns
a list of members and since Python 3.7, is precisely specified:
“Return all the members of an object in a list of (name,

value) pairs sorted by name.”
Finally, changing containsExactly or using JSONAssert

affects only the test code, not the main code, so the overhead
is less important but still almost negligible.

VIII. THREATS TO VALIDITY

Our overall results may not generalize to all projects. Our
evaluation uses a diverse set of popular projects from GitHub,
and due to our use of existing tooling, our evaluation uses Java
projects that build with Maven. However, the 200 projects we
use are among the most popular Java projects on GitHub, so
we believe they are fairly representative of all Java projects.

Our fix strategies may be overfitted [40] towards the ID tests
we use in our evaluation. We developed our strategies based
on the most common root causes for ID tests we found; these
common root causes match findings in prior work [59]. We
believe the common root causes should still be relevant for ID
tests in projects beyond those in our dataset, so our strategies
could still be effective in repairing those ID tests.

Our implementation of DexFix strategies may have bugs that
affect our results. To reduce this threat, we build on top of ex-
isting tools, NonDex [41], ReAssert [36], and javaparser [24],
which have been used in past research. Furthermore, multiple
authors reviewed some of our new code and discussed the
proposed fixes. The ID tests that NonDex detected are true
positives, and we can reproduce the failures from all 275 ID
tests. The number of tests detected in our evaluation is a lower
bound on the true number of ID tests in these projects. Finally,
the key threat is the quality of the fixes DexFix proposed. We
confirm that these fixes are useful by sending pull requests to
developers, so they make the final judgment call.

IX. RELATED WORK

Mora et al. [56] proposed the concept of client-specific
equivalence, when two library versions are equivalent with
respect to a specific client, to study how changes in upstream
library code affect downstream clients. Shi et al. [59] studied
when tests fail due to wrong assumptions on underdetermined
specifications, developing NonDex to detect such tests. Our
work focuses on automated fixing for such tests by modifying
both the main and test code as needed.

The ID tests NonDex detects can be considered a type
of flaky tests, which nondeterministically pass or fail on the
main code [45], [46], [53]. Luo et al. [53] reported unordered

collections as one reason for flaky tests. Lam et al. [48] used
NonDex in a longitudinal study of flaky tests, finding 190/684
of the flaky tests in their study to be the ID tests that NonDex
detects. Other prior work focused on detecting different types
of flaky tests [34], [35], [39], [42], [43], [47], [65].

Automatic program repair (APR) aims to automatically
generate patches to fix bugs in main code [40], [44], [49],
[52], [55], [57], [61]–[63]. APR techniques often generate
patches by searching and mutating existing code, e.g., applying
pattern-based transformations learned from prior fixed bugs,
or through symbolic execution. These techniques rely on test
failures to indicate that the bug still exists, and the aim is
to make all tests pass. DexFix is most similar to pattern-
based repair [44], [61], which uses transformations inspired by
existing bugs. However, these techniques rely on test outcomes
to guide them and do not aim to fix the test code. Also, their
general transformations do not apply to fixing the ID tests.

In contrast, there is prior work on fixing test code [37],
[38], [50], [54], [64], repairing tests that become outdated
when main code evolves. For flaky tests, Shi et al. proposed
iFixFlakies [60] to fix specifically order-dependent flaky tests.
Our technique DexFix aims to fix ID flaky tests. Our approach
of fixing ID tests is not restricted to changes to the test code
but sometimes also involves making changes to the main code.
We utilize ReAssert [38] to automatically repair assertions that
have to be updated after changes are made to the main code.

X. CONCLUSIONS AND FUTURE WORK

We present the DexFix approach for automatically fixing ID
tests that fail due to wrong assumptions on underdetermined
specifications. DexFix extends the work on program and test
repair with novel, domain-specific and simple, yet effective,
automated repair strategies that can propose fixes for ID code.
Unlike most prior work that focuses on fixing exclusively
either the main code or test code, DexFix can fix either or
both as necessary. The empirical results are encouraging: of
275 ID tests, DexFix proposed fixes for 119 tests; we have
opened pull requests for 102 tests, and 74 have already been
merged, with only 5 rejected, and the rest pending.

In the future, as more root causes for ID tests are found, we
envision the set of domain-specific strategies for these causes
growing into a general solution that handles a large fraction of
ID tests. We believe domain-specific program repair is highly
effective at fixing ID tests. We hope DexFix inspires more
research into domain-specific repair not just for ID tests but
also for other types of flaky tests and bugs in main code.

XI. DATA AVAILABILITY

Our input data and links to pull requests are archived and
available [33]. Per email from the Open Science Chair, we do
not include the Git histories of projects used in this paper.
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