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Abstract: Mobile agent applications are particularly vulnerable to malicious 
parties and thus require more stringent security measures—benefiting greatly 
from schemes where cryptographic protocols are utilized.  We review and 
analyze methods proposed for securing agent operations in the face of passive 
and active adversaries by means of secure multi-party computations.  We 
examine the strengths and weaknesses of such techniques and pose hybrid 
schemes which reduce communication overhead and maintain flexibility in the 
application of particular protocols. 

 
1 Introduction 
Mobile agents offer a unique method for 
implementing distributed applications. Itinerant 
agents have the ability to migrate among a 
preplanned or ad-hoc set of hosts where host inputs 
are gathered and agent code is executed. The agent 
carries both its static code and a dynamic data state 
which embodies all previous results of execution. 
Security concerns still occupy a large portion of the 
research effort associated with such mobile 
programs—both with protecting agents from 
malicious hosts and protecting hosts from malicious 
agents.   
     A multitude of schemes have been developed for 
mobile agent security and reviews of various 
mechanisms can be found in [MYT05, BC02, and 
JK00]. Much work has been done over the last few 
years to apply the field of theoretical cryptography to 
the mobile agent security problem [ST98, CC+00, 
NH+00, AC+01, YS02, TX03a, EM03, ZY03, TX04, 
and EW04].  By integrating cryptographic protocols 
based on secure multi-party computations (SMC), 
software-only protection mechanism can be designed 
to guarantee the execution integrity and data 
confidentiality of an agent while it is executed at a 
remote host.  
     The use of secure computation involves a trade-
off between security, trust, and overhead.  SMC 
protocols can have varying security attributes—
whether at the information theoretic or computational 
level—and varying levels of communicational and 
computational overhead—normally considered 
unreasonable for practical applications.  In this paper, 
we review specifically the use of these approaches 
for mobile agent security and pose hybrid approaches 
that offer greater efficiency and more flexibility in 
integrating SMC protocols.   

     We organize the paper as follows. Section 2 
reviews literature related to secure computations 
while section 3 analyzes various efforts to integrate 
SMC as an agent protection mechanism. Section 4 
poses several hybrid mobile agent approaches that 
minimize communication overhead and add more 
flexibility in the application of SMC protocols to 
security.  Section 5 summarizes our contributions. 

2 Secure Computations 
Cryptographers have for some time sought how to 
perform a group function when there are a number of 
mutually or partially distrusting participants to the 
operation. Yao’s blind millionaire problem [Yao86] 
is often cited as an early formulation for the two-
party case where a function z = f(x,y) is computed 
between Alice and Bob—without leaking any 
information about Alice’s input x or Bob’s input y 
other than what can be deduced from z itself.  
Goldreich and his colleagues in [GMW87] extend 
secure computation to n parties—defined in the 
general case as a publicly available function f that 
takes n private inputs and returns n private outputs: 
f(x1, x2, x3, …. , xn) = (y1, y2, …, yn). In some 
instances, all parties learn the same function output 
such that y1=y2=…=yn, making the output publicly 
known.  
     Secure computation is referred to synonymously 
as secure multi-party computation (SMC), secure 
function evaluation (SFE) or secure circuit 
evaluation.  Various contributions from active 
research in the field can be found in [BGW88, 
CCD88, Kil88, AFK89, AF90, BMR90, Bea91, 
MR92, CF+96, CD+99, NPS99, CC+00, Gol00, 
HM01, NN01, CL+02, DN03, FG+04].  In terms of 
practical use, [DA01] summarize privacy-preserving, 
real-world applications that can be represented as an 
SMC problem such as database query, scientific 
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computations, intrusion detection, statistical analysis, 
geometric computations, and data mining.  Malkhi et 
al. have developed a full programmatic 
implementation of a two-party secure function 
evaluator called Fairplay [MN+04] that uses 
oblivious transfer [Kil88, AFK89, AF90, BM90] and 
one-pass Boolean circuits [Yao86, GMW87, NPS99, 
and BMR90].  
     SMC protocols typically involve several rounds of 
interaction between parties and assume different 
types of communication channels including, for 
example, private channels between every two parties 
[BGW88, CCD88, RB90], a broadcast channel 
[RB89, BMR90], and broadcast subsets among 
player triples [FG+04]. In terms of security, the 
correctness and privacy of any protocol can be 
reduced to the evaluation of a secure function 
protocol [BMR90].  In the ideal setting, all parties to 
an SMC can send their inputs via a secure private 
channel to a trusted third party that computes the 
group function and return results fairly. 
     A primary security result concludes that any 
function computable with polynomial resources 
(communication and computation) can be 
transformed and computed in a secure manner using 
polynomial resources [NN01]. Corruption in multi-
party computations deal either with an honest-but-
curious (semi-honest) adversary that passively reads 
information from corrupted parties or an active 
(malicious) adversary that exerts full control over 
parties.  Privacy of inputs is at issue in passive 
attacks while correctness of the outputs is more in 
view in active attacks.  Goldreich concluded in 
[Gol00] that two parties acting maliciously can be 
forced to behave in a semi-honest manner or else be 
caught violating the security of the computation. 
     For any arbitrary function in the presence of an 
active adversary, the computation can still be 
securely accomplished as long as less than 1/2 of the 
players have not been corrupted [GMW87].  The 
unconditional security results found by [BGW88, 
CCD88] state that computations can occur as long as 
less than 1/3 of the players have been corrupted and 
secure channels exist in both directions between any 
two players.  When broadcast channels are 
introduced, unconditional security is possible for the 
computation as long as less than 1/2 of the players 
are corrupt.  Cachin and colleagues [CC+00] reiterate 
that computation between two unbounded parties 
with “full information” is not securely possible for 
arbitrary functions and only limited to trivial 
functions g where g(x,y) reveals y. These results are 
significant when the multi-party computations are 
applied in the realm of mobile agents. 
 

2.1 Evaluation Techniques and Primitives 
Yao first posed the idea that a function f can be 
modeled and securely executed as a Boolean circuit 
[Yao82, Yao86] in a protocol known as secure circuit 
evaluation. The circuit can be “scrambled” in a way 
to secure host inputs and compute the group output. 
Abadi and Feigenbaum posed a two-player scheme in 
[AF90] where one player runs a secret program for 
another player who has a secret input.  Other 
techniques for circuit construction including multi-
party cases have been posed in [GMW87, CCD88, 
BGW88, CDG88, NPS99, and BMR90]. Once the 
function f is represented as a circuit, parties must run 
a protocol to evaluate every gate in the circuit.   
     Secure primitives in the circuit evaluation process 
include tools such as oblivious transfer (OT) [NP01, 
NP00, NP99] and verifiable secret sharing (VSS).  
Work by [FG+04] has sought to find minimal 
complete primitives to accomplish SMC and 
characterize security and efficiency of such tools 
beyond the two-party case.  To accomplish secure 
circuit evaluation, the original wire signals for both 
inputs and outputs of the circuit are encrypted 
(garbled) and the actual wire signals used by the 
parties no longer have their same semantic meaning.  
In order to translate inputs and outputs to their true 
semantic meaning, data is exchanged between two 
parties in an oblivious manner—typically 1-of-2 OT 
[BM90].   
     While OT deals with privacy in circuit-based 
SMC, cheating can be addressed by verifiable secret 
sharing which allows a “dealer” to distribute shares 
of a piece of data among different parties [Sha79, 
ZY03].  Normally, parties in the computation must 
commit to their bits (which become garbled for 
purposes of evaluation) before they are used. 
However, no other party could tell whether the 
scrambled bits actually represent the real semantic 
meaning of a parties input.  By using sharing 
techniques, parties give shares of their inputs so that 
any attempt to alter a commitment can be detected. 
Re-sharing of data to prevent a super adversary with 
control over some set of parties from gathering 
enough shares to compromise a system is discussed 
in [OY91, EM03]. 
     Not all protocols are as secure as their authors 
envision.  For example, a vulnerability is described in 
[TX03b] in the constant round circuit evaluation of 
[BMR90] where private information is leaked when 
gates within a circuit share a common input wire. 
Efficiency is also a major issue and much work has 
been done to improve protocols over time [GRR98, 
BF+90, CDN01, HM01, DN03]. Other more efficient 
methods than Boolean circuits can be used, for 
instance, to represent f such as permutation branching 
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programs, algebraic circuits, low degree and 
randomizing polynomials, and matrices over large 
fields [NN01].  Hurt and Meier [HM01] present a 
protocol that is secure for computing an n-party 
function with m multiplication gates in the presence 
of less than 1/3 actively corrupted players with 
complexity O(mn2).   
     Typically, SMC protocols have been adapted for 
synchronous networks and suffer from computational 
or communicational complexity too high for use in 
the real world.   Mobile agents operate in 
asynchronous environments and therefore other 
factors must be taken into account before SMC 
techniques can be applied successfully.  Work such 
as [BCG93, BKR94] offer frameworks for realistic 
network environments and Canetti has characterized 
the composable nature of security properties for 
different protocols operating across asynchronous 
networks in [Can00, Can01]. As [EM03, EW04] 
suggest, timeouts have to be integrated with 
distributed computations for asynchronous networks 
(that model the Internet) and the environment for 
mobile agent applications.   

2.2 Single Round Computations 
Mobile agents exhibit three unique properties that 
make using SMC protocols difficult: autonomy, 
mobility, and disconnected operations. All of the 
protocols mentioned thus far have relied on the 
exchange of information between parties in multiple 
rounds, including the originator of a function.  
Agents require non-interactive protocols because the 
originator of a function may be offline during the 
actual computation.  Autonomy stipulates that the 
agent does not return home after the first host and can 
visit some set of known or unknown hosts. Mobility 
without the help of a trusted third party and minimal 
communication among parties is a primary goal of 
agent security schemes. As [RAD78, AF90] discuss, 
there are two ways to view single round 
computations between two parties in contrast to 
traditional secure function evaluation: computing 
with encrypted data and computing with encrypted 
functions. 
 

Computing w/ 
Encrypted  

Data  
(CED) 

Alice has input x while Bob holds function 
f(·).  Alice sends an encrypted version of x to 
Bob who computes and sends the result back 
to Alice in a single round of interaction. 
Alice decrypts the result to get f(x) while 
Bob does not learn x. 
 

Computing w/ 
Encrypted 
Functions 

(CEF) 

Alice holds the function f(·) while Bob holds 
input y.  In one-round, Alice sends to Bob an 
encrypted version of f(·) who provides his 
input y.  Alice receives back and decrypts 
Bob’s result to learn f(y) but does not learn y 
while Bob does not learn f(·) 
 

Secure 
Function 

Evaluation 
(SFE) 

Alice and Bob have private inputs to the 
function f(x,y).  Alice and Bob jointly 
compute the function f(x,y) in one round of 
computation. Alice learns only the result (and 
nothing more) while Bob learns neither the 
result nor Alice’s private input.  

 
CEF represents the mobile agent transaction scheme 
best and can be extended easily to a multiple host 
approach. Sander and Tschudin posed one of the first 
non-interactive CEF approaches for mobile code 
execution based on homomorphic encryption in 
[ST98]. Their results were extended to include any 
function implemented by logarithmic-size circuits in 
[SYY99]. Cachin et al. in [CC+00] developed a non-
interactive protocol (which we will refer to as the 
CCKM scheme) that could be used to evaluate all 
polynomial time functions via the use of a scrambled 
circuits and oblivious transfer.  
     Several important results were derived from 
[CC+00]: 1) for unbounded passive adversary, any 
function computable by a polynomial-size circuit can 
be computed securely; 2) for a bounded active 
adversary, any function computable by a polynomial-
size circuit can be computed securely, given a public-
key framework; and 3) any function computable by a 
polynomial-sized circuit has a one-round secure 
computation in the model.  Non-interactive SMC 
approaches and results are summarized by [CC+00] 
as follows: 
 

[BGW88] Trivial functions where A and B are unbounded 

[ST98] Functions representable as polynomials, B is 
bounded 

[SYY99] Functions computable by logarithmic-depth 
circuits,  B is bounded 

[CC+00] Functions computable by polynomial-depth 
circuits, only A is bounded or both A and B are 
bounded 

 
The CCKM methodology is foundational to several 
approaches for mobile agent security based on secure 
multi-party computation, discussed in the next 
section. 

3 Integrating SMC with Agents 
Mobile agent applications have brought a practical 
relevance to development of secure, efficient 
cryptographic protocol schemes.  The goal of SMC 
has been stated as guaranteeing the correctness of a 
function and the privacy of results among the parties.  
In mobile code systems, similar notions exist:  
malicious hosts can spy on the code, state, or results 
of mobile agents that they execute.  Hosts can gain 
unfair advantages by altering the normal sequence of 
execution, replaying agent computations using 
different inputs, or altering the state information 
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present in the agent.  Software-only approaches to 
mobile agent security that are secure, efficient, and 
removing need for trusted relationships have been the 
holy grail in the research field for quite some time.  
     There are two primary approaches to integrating 
SMC protocols with mobile agents: use single agents 
that implement single-round non-interactive 
protocols or use multiple agents that execute multi-
round SMC protocols in coalition schemes.  We 
discuss approaches and issues with the former next. 

3.1 Non-Interactive Approaches 
To formulate a single-round secure multi-party 
computation, the following formal notation from 
[CC+00, AC+01] is used: an agent originator O 
embodies a private function to be executed by a set of 
hosts H1,…,Hl. Two functions—gj(·) and hj(·)—
describe the computation of an agent in terms of a 
state x ∈ X and a host input z ∈ Z.  Figure 1 
illustrates the interaction of an agent which is 
captured by a multi-party computation. The state 
update function gj takes a current state (brought by an 
agent from the previous host) and the local host input 
and produces a next state xj. The host output function 
hj takes the current state (brought by the agent from 
the previous host) and its own local input to produce 
its own local output.  

 
 

 
Figure 1: Formalizing the Agent Computation 

In the CCKM protocol, once the agent computation is 
represented as a Boolean circuit and encrypted, 
translation tables are required to map actual signals to 
scrambled signals.  The circuit encoding is based on 
Yao’s two-party SFE protocol in [Yao86]. In order to 
know what signals to use for their local input, a host 

performs oblivious transfer with the originator to get 
a set of scrambled signals, and the originator does not 
know which signals are chosen.  The following 
security properties are thus established: 1) the 
originator has privacy of the function; 2) each host 
has privacy in respect to their local input.    The 
CCKM approach allows for autonomy in the agent 
path by creating an encrypted circuit that is a cascade 
of sub-circuits.  Each host in the route of an agent’s 
path would receive an encrypted circuit on which 
their input is applied. However, the CCKM protocol 
did not address the ability for each host to use the 
“unencrypted” local output of the agent because it 
was still encrypted and could only be evaluated by 
the originator. 
     Extending the CCKM approach further, 
Algesheimer et al. [AC+01] produced a non-
interactive protocol (which we refer to as the ACCK 
protocol) similar to the trusted hardware of [LM99] 
that would allow for secure decryption of host output 
when CEF is used. The ACCK scheme, illustrated in 
figure 2, makes use of a trusted generic computation 
service which is roughly equivalent to the trust we 
place in a public key infrastructure.  To decrypt the 
output of the agent at the local host, the mappings for 
the semantics of the signals are encrypted with the 
public key of generic service. Each host 
accomplishes oblivious transfer with the generic 
service (instead of the originator who may be offline) 
to decrypt the signals for the output. 

 
Figure 2: ACCK Protocol w/ Generic 

Computation Service [AC+01] 

By using a secure middleman, the ACCK protocol 
allows inputs, outputs, and computations of all hosts 
to be hidden from the originator as well as any other 
host visited by the agent.  The main assumption is 
that this trusted third party (TTP) does not collude 
with the originator or with any host, but as proposed 
would offer a generically secure service for any 
application. 
     There have been two extensions proposed to the 
ACCK protocol that target replacement of the TTP in 
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some form. Zhong and Yang in [ZY03] introduce a 
cryptographic primitive called verifiable distributed 
oblivious-transfer (which we refer to as the VDOT 
protocol) and Tate and Xu in [TX03a] introduce a 
multi-agent approach utilizing their oblivious 
threshold decryption (which we refer to as OTD).  
Figure 3 shows a notional arrangement of parties in 
the VDOT scheme while figure 4 shows a notional 
arrangement of parties in the OTD approach. 

 
Figure 3: VDOT Protocol [ZY03] 

In the VDOT protocol, mobile agent computations 
are divided into security-sensitive and non-security-
sensitive portions. Code that requires integrity or 
confidentiality is transformed into a garbled Boolean 
circuit.  Instead of interactions with one trusted third 
party, which has weaknesses involving the corruption 
of a single server to the detriment of the entire 
system, several trusted third party servers are used to 
replicate the functionality of TTP in the VDOT 
approach.  VDOT guarantees with high probability 
the correctness of receiver’s output, enforcement of 
the code and state privacy, protection from coalitions 
of malicious hosts and malicious TTPs, and the 
verification that servers give correct decryption of 
host signals.  

 
Figure 4: OTD Protocol [TX03a] 

Distribution of trust among a group of servers 
strengthens the original ACCK protocol and forces 
the table lookup for circuit signals to be performed by 

a group of servers that hold shares of the decryption.  
The VDOT protocol is general purpose in the sense 
that each host need only provide an interpreter for 
garbled circuits.  By using distributed oblivious 
transfer, trusted third parties act as a proxy for agent 
owners and provide translation tables for host inputs 
without being able to discover host inputs 
themselves.  Obvious disadvantages to the approach 
are increased communication complexity (which the 
authors contend is negligible in practice) and the 
complexity of breaking a program into security 
sensitive portions represented by a Boolean circuit.  
     The OTD protocol of [TX03a] is similar in some 
regards to VDOT but actually eliminates the trusted 
third-party requirement altogether. As a primary 
distinction, their approach relies on multiple agents 
that are dispatched to disjoint sets of the possible host 
pool.  Each of these agents act in a threshold manner 
(similar to VDOT) to decrypt the encrypted signals 
for a given host input without relying on the TTP. 
While the ACCK secure computation service 
overcame the interaction requirement of Yao’s 
encrypted circuit evaluation—a limiting factor in the 
mobile code paradigm—OTD replaces this by means 
of cryptographic operations and multiple agents that 
cooperate together.   
     Multiple agents must agree before decryption of 
the host’s input signals can occur and this in turn 
prevents cheating by keeping a list of hosts that have 
already decrypted a signal.  Agents eventually return 
back to the originating host where all circuit results 
are decrypted and combined to produce a final result.  
The security in this method rests on the security of 
Yao’s secure circuit evaluation, the security of the 1-
out-of-2 oblivious transfer, and the strength of 
threshold cryptography.   However, this protocol does 
not support free-roaming agents and requires 
knowledge of the set of hosts an agent will visit. 
     Algesheimer et al. in [AC+01] state the ACCK 
protocol does not require foreknowledge of the 
agent’s path or the hosts that the agent will visit.  
Their approach upholds the disconnected and 
autonomous nature of a mobile agent.  However, it is 
not clear whether the number of host, ℓ, must be 
specified or known beforehand.  The OTD and 
VDOT extensions both assume a known number of 
hosts or subsets of hosts in order to design the circuit 
representation of the group function—thus limiting a 
true free-roaming dynamic itinerary.   
    Though single-round non-interactive protocols 
reduce the communication overhead for SMC, 
message sizes increase proportionally, regardless of 
input or output size.  Tate and Xu, for example, state 
that it roughly takes 9k bytes to encrypt 32 bits of 
secret data [TX03a] under this scheme.  Zhong and 
Yang mitigate overhead by keeping security sensitive 
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portions separate from normal programmatic 
requirements.  Using multiple round SMC (reviewed 
in section 2) offers another approach to 
accomplishing secure transactions with mobile 
agents, which we analyze now. 

3.2 Multiple Round Approaches 
Secure multiparty computations have a tradeoff 
between trust and efficiency.  Neven et al. [NH+00] 
were one of the first to envision the use of agents to 
implement SMC and reduce the overhead of the 
communication itself.  Figure 5 summarizes four 
different approaches to integrating agents with hosts 
to accomplish SMC.  Figure 5-a illustrates the ideal 
world where agents carry host inputs to a trusted third 
party and a protocol is evaluated without the expense 
of network broadcasts or bidirectional secure 
channels.  In the context of the TTP, all parties can 
evaluate the protocol and the TTP is assumed to 
behave honestly with respect to host inputs.    
     The most secure but least efficient method is seen 
if figure 5-b: here hosts simply become the execution 
environment and setup a multi-party protocol 
evaluation.  In this case, both the computational and 
communicational complexity inherent in the chosen 
protocol must be faced and only high speed links 
(represented by the dotted lines) make such protocols 
practical.  Single-round approaches discussed in the 
previous section are seen in figure 5-c where an agent 
embodies the circuit to be securely evaluated and 
each host provides private input as the agent 
migrates.  In [NH+00], a hybrid solution was posed 
as depicted in figure 5-d where high speed 
communication links are present between one or 
more hosts.  Participants in the n-party protocol send 
agents carrying their private inputs to one of these 
intermediate TTPs who can then efficiently and 
securely evaluate the function according to the rules 
of the protocol. 

 
Figure 5: Agent Approaches to SMC 

In the realm of mobile agents, as with many real 
world applications, it is preferable not to rely on a 
trusted third party and just perform an SMC among 
the parties of a function. Endsuleit and Mie utilize a 

group of multiple agents to support such an approach 
in [EM03]. In their model, multiple agents carrying 
the same realized circuit are deployed to remote hosts 
where rounds of the secure protocols are evaluated 
among parties. Figure 6 illustrates that agents are 
located on some set of hosts and implement multi-
agent computations based on some underlying SMC 
protocol.  In [EM03] the authors assume the 
extensive use of a broadcast channel and suggest the 
protocol of [BGW88] with an implementation of 
secret sharing from [Sha97]. In [EW04], follow-on 
work suggests the use of more efficient protocols 
such as those of [HM01].   

 
Figure 6: Multi-Agent Secure Computation 

A nice feature of such multiple agent schemes is that 
any SMC protocol can be used as long as it meets the 
composable security properties defined by Canetti 
[Ca01].  In order to adapt the Canetti model, which 
assume stationary parties, “slices” are defined in 
[EM03, EW04] as periods where a community of n 
agents is executed by a set of n different hosts with 
no migrations during that period. Resharing of data 
shares via the Ostravsky and Yung method [OY91] is 
used to also overcome the adverse affects of 
migration where malicious hosts can use acquired 
shares over time to compromise security.   
     The system supports self-repairing code and 
threshold agreement of computations, as long as up to 
1/3 of the community (agents or hosts) has not been 
compromised.  The security results mentioned in 
section 2 follow because Canetti establishes proof of 
a secure protocol for n parties computing a joint 
function in the presence of an active adversary 
corrupting up to some k limited servers.  By using 
such agents to implement a redundantly shared global 
state of computation and coordinate activity, a wide 
variety of SMC protocols can be implemented.  
However, as with any multi-round solution, the 
communication complexity is extremely high and the 
originator must know a priori which hosts will be part 
of the computation. 
     In [Dad04], another software-only scheme is 
presented that implements multiple agents acting in a 
threshold manner similar to [TX03a, EM03, EW04]. 

(a) (b) 

(c) (d) 
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However, there approach does not suppose the 
presence of collusions among hosts or rely 
necessarily on multiparty protocols.  Their approach, 
which is termed Remote Distribution Scheme or 
RDS, depends on a set of agents that replicate and 
share a transaction set.  RDS also assumes a publicly 
known algorithm which does not necessarily 
correspond to the mobile agent setting where code 
privacy is required or CEF is being implemented. 

4 Hybrid Approaches 
SMC offers many advantages for securely 
accomplishing a group transaction. There are several 
approaches, some already mentioned, to define how 
an agent implements a circuit that is part of a multi-
party computation. The originator can send a single 
agent with a cascading circuit whose last migration 
signals the last computation of the circuit [CC+00, 
AC+01, ZY03].  Alternatively, the originator can 
send multiple agents with the same circuit that 
executes protocols in stepwise multi-round fashion 
[EM03, EW04].  A single or set of trusted execution 
sites can also be used to accomplish the SMC 
interaction [NH+00].  By combining these techniques 
where full protocols, multiple agents, and semi-
trusted hosts are utilized, several advantages can be 
gained. 
     Malkhi et al. [MN+04] note a recent trend in SMC 
research where protocols are focused on specific 
application contexts—thereby allowing more 
efficient representations for specific tasks.  This will 
be true in the mobile agent paradigm as well—
whereby mobile agents will be used for specific tasks 
like auctions, trading, or secure voting.  Fiegenbaum 
et al. [FP+04] implement a secure computation 
mechanism utilizing SMC for collecting survey 
results with sensitive information. Their scheme uses 
data-splitting techniques and traditional Boolean 
circuit evaluation Yao-style [Yao86]. Notably, it also 
uses a secure computation server, which acts in the 
role of a trusted entity within the system, and is the 
initiator of the 2-party function evaluation.  We use 
this as an example to point out that in practical 
applications where true data privacy or true function 
privacy is needed, the presence of a trusted server is 
not beyond the realm of possibility.  In fact, many 
agent applications which will be executed “in-house” 
will indeed benefit from the availability of such 
trusted entities.   
   Implementations of SMC in mobile agent systems 
must seek to reduce message size, number of 
broadcast or pair-wise channels required, and the size 
of the circuit.  To accommodate agent goals such as 
disconnected operations, the originator typically 
remains offline during the protocol evaluation. Agent 

autonomy requires the task to be accomplished by an 
agent that decides where and when to migrate.  The 
requirement for full autonomy in the agent path and 
itinerary lends itself best to a combination of SMC 
that balances trust with efficiency.  While there is a 
desire to eliminate the need or requirement for any 
trusted third party or trusted computation service 
(like PKI), some environments for SMC may be 
conducive to such assistance. 
     Non-interactive approaches are limited to a very 
small number of protocols that derive from [ST98] or 
[CC+00].  Single-round approaches do not require 
trusted third parties but come with large message 
sizes and their own set of limitations which include 
reliance on a trusted entity similar to a PKI.  
Extensions to the non-interactive approach such 
[ZY03, TX03a] require foreknowledge of at least the 
number of hosts to be visited by the agent or the set 
of hosts themselves.  As SMC protocols find better 
and more efficient means of expression over time 
(other than Boolean circuits), agent security 
approaches should be adaptable to integrate them as 
they improve.  However, accomplishing multi-agent 
fully interactive protocols comes with stiff 
communicational costs.   
     We pose several hybrid approaches to SMC 
integration with mobile agents that can accommodate 
free-roaming itineraries as well as reduce overall 
communication cost.  These approaches can be used 
to take advantage of the security properties of 
multiparty protocols while remaining flexible for 
integration of other protocols with higher efficiency 
in the future. 

4.1 Invitation and Response 
In our first approach, which we term “Invitation and 
Response”, a multi-agent architecture is used with a 
form of semi-trusted execution sites. We define the 
protocol informally first and define two classes of 
agents: the invitation agent and the protocol agent.  
The originator, O, begins the task by sending an 
invitation agent which has some initial set of hosts to 
be visited or at a minimum the first host to be visited.  
Invitation agents are free-roaming and can make 
changes in their itinerary based on environmental 
conditions or information obtained from hosts or 
other information services.   
     To guard the invitation agent against data integrity 
and denial of service attacks, two different schemes 
can be used.  First, a traditional data encapsulation 
technique can be used with the stipulation that the 
agent code itself is bound to the dynamic state of 
each agent instance. Many data encapsulation 
protocols are reviewed in [MYT05, JK00] and figure 
7 depicts only one invitation agent being used. A 
second approach is to use multiple invitation agents 
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with overlapping and redundant itineraries that 
reduce the possibility of malicious corruption.  Each 
invitation agent has a uniquely identifiable code/state 
(to avoid replay attacks), but the collection of agents 
represents only a single uniquely identifiable task 
(such as a specific auction). If a host receives an 
agent requesting participation in the same unique 
event, it ignores subsequent requests much like 
network devices that only forward packets once.    

 
Figure 7: Invitation and Response Protocol 

Invitation agents carry with them the specifications 
for input corresponding to an originator’s task.  The 
specification represents the normal query for a host 
input which is part of a multiparty computation. 
Hosts will (or will not) respond to this invitation by 
dispatching a response agent. The response agent is 
based upon an underlying secure multi-party 
computation protocol and can be created in different 
ways.   
     First,   the invitation agent can carry the code for 
the response agent which each host will use.  The 
host will execute the response agent first on its local 
input and then send the response agent to a semi-
trusted execution location to actually evaluate the 
circuit.  The second approach involve the dynamic 
generation of the code and circuit by the invitation 
agent when a host responds positively. A third 
method would involve each host responding to the 
invitation by sending its input encrypted to the semi-
trusted execution site.  This method resembles the 
traditional notion of the ideal SMC environment 
where parties send their input to a TTP for execution 
of the protocol. 
     Regardless of the method chosen, response agents 
migrate and move to a set of semi-trusted host 
environments in order to evaluate the protocol.  The 
semi-trusted hosts can be specifically designed to 
serve multi-party computations (predefined based on 
some underlying protocol) or can simply provide 
basic agent execution environments with 
communication facilities.  The key characteristic of 
these hosts are that they are connected by a high 
bandwidth network so communication costs are 

negligible.  This corresponds to the SMC approach 
seen in figure 5-d where a tradeoff is made with 
overhead by bringing agents closer together through 
the availability of a high speed communication link 
among the servers.  Environments are semi-trusted 
because group and threshold operations can be 
accomplished to eliminate the full trust in any one 
     In terms of security, “invitation and response” has 
the following properties.  Hosts can only send one 
agent to the computation which removes the 
possibility the circuit can be evaluated on multiple 
host inputs. As long as multiple host submissions 
(and therefore cheating) are detectable, the 
originator’s privacy is preserved.  The local host 
input is kept private under two scenarios:  1) when 
the execution sites are fully trusted, as depicted in 
figure 8, no extra security is required and each 
execution site is expected to maintain privacy of host 
inputs; 2) when the execution sites are semi-trusted, 
as depicted in figure 9, a threshold mechanism can be 
used to distribute the trust among the set of hosts for 
decryption operations of circuit operations.   
     The advantages of this hybrid approach include 
the ability to accommodate true free-roaming agent 
scenarios and to use any type of secure multi-party 
protocol for the evaluation of the secure function.  
Protocols which have high communication and low 
computational complexity can thus be favored 
because agents are sent to a semi-trusted environment 
that has an assumed high-speed link among execution 
sites.  Depending on the trust level of the application 
environment, fully trusted hosts may be a possibility 
and simpler protocols can be utilized that do not 
involve threshold decryption of signals. 
 

 
Figure 8: Fully Trusted Evaluation 

The selection of execution environments becomes 
one of the issues with the invitation and response 
protocol.   The two primary factors are the presence 
of a high speed communications link between servers 
and a common trust level among all parties of the 
protocol with the trusted servers. Migration of agents 

Invitation  
Agent 

Response Agents 
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also becomes more structured as the only free-
roaming portion of the task is to find interested 
parties to the computation itself.  Response agents 
only make two subsequent migrations: to the trusted 
server environment and then back to the originator, 
who can decrypt the final agent state and obtain the 
result. 
 

 
Figure 9: Semi-Trusted Evaluation 

One of the issues well discussed in [AC+00] with 
SMC and agents is how can an individual host get its 
local output (function h(x,y) seen in figure 1) as the 
mobile agent migrates.  In invitation and response, 
local host output can be handled in one of two ways. 
First, since the host output is not private in terms of 
the originator, O can be responsible for providing the 
output to each host after the evaluation of the secure 
function on the execution environment and after 
response agents migrate back to the originator.  
Second, the set of TTPs can each send their share of 
the output or the single TTP can send the output 
corresponding to a host back to it, through message 
passing or another class of agent. 

4.2 Multi-Agent Trusted Execution 
When the itinerary of an agent is known beforehand, 
simpler agent architecture can be used to facilitate 
trusted execution. Several configurations are possible 
for host environment in terms of a secure 
computation.  First the host can be the computation 
environment for a cascaded circuit that requires only 
one round of execution.  Next, the host can 
communicate with a semi-trusted party to evaluate an 
encrypted circuit or can communicate with a 
threshold of semi-trusted parties that provide signal 
decryption services in an oblivious manner.  The host 
can also be the computation environment for a multi-
round circuit and can be visited by more than one 
agent.    
     As figure 10 and 11 illustrate, multiple agents can 
be used to initiate a multi-party protocol among a 
predefined set of hosts.  Similar to the multi-agent 

approaches of [EM03, EW04], multi-agent trusted 
execution would allow agents to migrate to hosts 
where input is first gathered.  When one trusted 
execution environment is fully trusted by all parties, 
agents can then migrate there to accomplish a multi-
round protocol, as suggested in [NH+00].  
 

 
Figure 10:  Fully Trusted Middle-man 

If a less trusted set of execution environments are in 
view, figure 11 represents that trusted parties need to 
be linked by a high bandwidth communications 
network.  In either case, agents are dispatched to 
hosts in the manner of a traditional multi-party 
function as the first step of the task.  Once agents 
obtain host input they then migrate to a centralized 
trusted execution site where the multi-round protocol 
is evaluated.  In performing such an operation, the 
goal again is to minimized the communication 
overhead of the network while maximizing the 
benefit of any given SMC protocol that is chosen. 
 

 
Figure 11: Semi-Trusted Middle-men 

5 Conclusions 
There is a distinct trade-off when using secure 
multiparty computations with mobile agent 
applications.  The overhead of both computation and 
communication are barriers which must be overcome 
before protocols can be used in a practical manner.  
We have reviewed the state of the art in such 
integration approaches and posed variations of hybrid 
approaches that utilize fully trusted or semi-trusted 
execution environments for secure multi-agent 
computations.  These schemes offer an alternative to 
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other architectures posed which combine the best of 
non-interactive approaches and multi-round SMC 
approaches.  Future work will involve the formal 
description of such protocols and an analysis of their 
overhead when specific SMC protocols are in view. 
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