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A Multispan Language Modeling Framework
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Abstract—A new framework is proposed to construct multi- of available text databases, an inherent trade-off arises between
span language models for large vocabulary speech recognition, weak predictive power (lown) and unreliable estimation
by exploiting both local and global constraints present in the (highern). This is because many events (i.e., occurrences of
language. While statisticaln-gram modeling can readily take local . . L .
constraints into account, global constraints have been more diffi- ”'Word_ §_tr|ngs) are seen lnfreque_ntly, ylel_dmg questionable
cult to handle within a data-driven formalism. In this work, they ~ Probabilities; hence the need for fairly sophisticated parameter
are captured via a paradigm first formulated in the context of estimation and smoothing, cf. [3]. One common solution is to
information retrieval, called latent semantic analysi¢LSA). This  group words into classes and accumulate statistics at the class
paradigm seeks to automatically uncover the salient semantic level rather than the word level. This makes the frequency

relationships between words and documents in a given corpus. nts more reliable and thereby improves the robustn f
Such discovery relies on a parsimonious vector representation counts more refiable a ereby improves the robusiness o

of each word and each document in a suitable, common vector the estimation (e.g., see [4]). Broadly speaking, the underlying
space. Since in this space familiar clustering techniques can strategy is to better estimate the conditional probability of a

be applied, it becomes possible to derive several families ofword given some context by taking advantage of observations

large-span language models, with various smoothing properties. of gther words that behave “like” this word in this particular
Because of their semantic nature, the new language mOdelscontext

are well suited to complement conventional, more syntactically . .
oriented n-grams, and the combination of the two paradigms A number of variants have been developed on this theme,

naturally yields the benefit of a multispan context. An integrative using grammatical constraints such as part-of-speech, or mor-
formulation is proposed for this purpose, in which the latent phological units such as lemma, or both [5]. More recently,
semantic information is used to adjust the standardn-gram 4 4qrithms have evolved to automatically determine word
probability. The performance of the resulting multispan language . L . . .
models, as measured by perplexity, compares favorably with the classes without explicit syntactic or semantic knowledge: cf.,
Corresponding n-gram performance. e.g., [6] and [7] In [6], fOI’ example, a” WOI’dS are gathered
into a single class at the beginning of the procedure, and are
successively split to maximize the average mutual information
of adjacent classes. In [7], a similar divisive clustering is
proposed, based on binomial posteriori distributions on word
. INTRODUCTION co-occurrences. A number of other papers have described re-
TOCHASTIC language modeling plays a central role itated approaches, with different variations in the optimization
arge vocabulary speech recognition, where it is usualffiterion or distance metric used for clustering [8]-[10].
imp|emented using the-gram paradigm_ In a typica| app“- Such techniques make it possible to estimate the necessary
cation, the purpose of an-gram language model may beprobabilities from relatively sparse text data bases. Still, it
to constrain the acoustic analysis, guide the search througimains extremely challenging to go beyond, sag 4, with
various (partial) text hypotheses, and/or contribute to ti&irrently available data bases and processing power [9]. This
determination of the final transcription [1]. Success in the$@poses an artificially local horizon to the language model
endeavors depends on the ab|||ty of the |anguage mode|q@d thereby limits its pFEdiCtiVG power. Consider, for instance,
suitably discriminate between different strings @fwords. predicting the word “fell” from the word “stocks” in the two
This ability is in turn critically influenced by the two familiar €quivalent phrases:
issues of coverage and estimation.
The coverage issue reflects the fact that current system3tocks fell sharply as a result of the announcement (1)
cannot recognize any “unknown” word. The vocabulary musind
therefore be chosen so that the expected text (€.g., t0 bgtocks, as a result of the announcement, sharply felf2)
dictated) has as few unknown words as possible [2]. In this
paper, we primarily address the other issue, which centgfs(1), the prediction can be done with the help of a bigram
around the choice of. Due to practical constraints on the sizeanguage modely( = 2), which is rather straightforward [11].
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grammars, such as are routinely and successfully employeds likely that “stocks” and “bonds” would belong to the
in small vocabulary recognition applications. This solutiorsame class of the classgram. Furthermore, it is intuitively
unfortunately, is not (yet) practical for large vocabulary recogppealing to postulate that the prediction of “increased” from
nition [2], which is precisely the reason why thegram “bonds” in this phrase is related to the prediction of “fell”
framework was so widely adopted in the first place. Whéttom “stocks” in (2). Yet, as mentioned before, the only way
seems to be needed is an intermediate approach, wheretthexpress this relationship in the-gram paradigm would
effective context is expanded from three or four words to lze to derive a class 9-gram, a challenging proposition. On
larger span, say an entire sentence or even a whole documtd,other hand, accounting for this kind of relationship might
without resorting to a formal parsing mechanism. This ibe substantially easier in a semantically derived approach to
turn would allow for the extraction of suitable long distanc&anguage modeling.
information. The operating principle is to relate to one another those
One approach recently proposed in that direction is basedrds which are found to be semantically linked from the
on the concept of word triggers [12]. In the above exampleyidence presented in the training text database, without regard
suppose that the training data reveals a significant correlattanthe particular syntax used to express that semantic link. In
between “stocks” and “fell,” so that the pair (“stocks, fell”)the above case, for instance, let us assume that the training
forms a trigger pair. Then the presence of “stocks” in théatabase is a collection of financial news articles. Then it
document could automatically trigger “fell,” causing its probwill comprise many articles with the words “stocks,” “bonds,”
ability estimate to change. Because this behavior would occill,” “decreased,” “rose,” “increased,” etc. As a result, these
indifferently in (1) and in (2), the two phrases would lead to theords will either co-occur frequently (although not necessarily
same result. Unfortunately, trigger pair selection is a complewthin the same syntactic relationship), or appear in articles
issue: different pairs display markedly different behaviowithin similar semantic contexts, or both. The crux of the
which limits the potential of low frequency word triggersproblem is to harness this evidence to derive the probability
[13]. Still, self-triggers have been shown to be particularlgf seeing the word “fell” (respectively, “increased”) given an
powerful and robust [12], which underscores the desirability otcurrence of the word “stocks” (respectively, “bonds”), even
exploiting correlations between the current word and featuraéien the two words do not appear near each other in the text.
of the document history. Clearly, the trigger approach mentioned earlier does provide
This paper proposes a different approach along the samsolution to this problem for those trigger pairs that have been
lines, based on a paradigm originally formulated in the contegélected by the algorithm [13]. However, trigger pair selection
of information retrieval, calledatent semantic analysid SA) entails a number of practical constraints. First, only word
[14]-[18]. In some respect, this approach can in fact Rgairs that co-occur in a sufficient number of documents are
viewed as an extension of the word trigger concept, whetensidered. This means that even though “stocks” may often
a more systematic framework is used to handle the trigges-occur with “decreased,” and “decreased” may often co-
pair selection. The paper is organized as follows. In the nex¢cur with “fell,” the pair (“stocks, fell”) will not be included
section we discuss our general strategy to expand the effeclivgess it has itself been frequently seen in the training data.
context without resorting to a formal parsing mechanisnm addition, a mutual information criterion is typically used
In Section Ill, we present the vector representation derivegl further confine the list of candidate pairs to a manageable
from LSA. Section IV develops the general modeling framesize. This may result in too much “filtering” of the data. What
work, and reports on a preliminary, qualitative evaluation. Iseems to be needed is a somewhat more flexible framework
Section V, we use this framework to derive several familigg exploit the long distance information present in the history.
of large-span semantic language models and discuss theiThis is where the latent semantic paradigm comes into
relative prediction power. Section VI addresses the integratipfay. In latent semantic indexing [14]-[18], co-occurrence
of the new framework with conventional-gram language analysis takes place across much larger spans than with a
models. Finally, in Section VII, a series of experimental resultgaditional n-gram approach (i.e., spans of two words as in
illustrates some of the benefits associated with the integrafafl or three words as in [7]), and on a much larger scale
language models, using both= 2 andn = 3 as examples. than with the trigger approach (i.e., about 1.4 million trigger
pairs as in [13]). The span of choice isdacumentthat can
Il. GENERAL STRATEGY be defined as a semantically homogeneous set of sentences

In a nutshell, we would like to expand the effective conte@MPodying a given storyline. Thus, each article mentioned
while avoiding syntactic analysis. This goal constrains trfP0ve would be considered a document. As for scale, every
approach sought to be semantically derived, which entailsc@mbination of words from the vocabulary is viewed as a
departure from the largely structuratgram paradigm. Even potential trigger comb!natlon. Thls amounts to addressmg the
class n-grams, which often exhibit “semantic-like” classesProblem of trigger pair se!ec'uon as part of the qnalys!s, as
inherently rely on the position information in the sentenc@PPosed to a postprocessing step. These extensions (in span
(cf., e.g., [6]). To further develop the example in (1) and (zﬁnd scale) lead to the systematic integration of long-term

consider the slightly modified phrase: dependencies into the analysis.
To take advantage of the concept dbcument we of

bonds, as a result of the announcement, sharply increaseghyrse have to assume that the available training data is
(3) tagged at the document level, i.e., there is a way to identify
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article boundaries. This is the case, for example, with thecal value, which may reflect a possible normalization within
ARPA North American Business NewSIAB Newy corpus d;.

[19]. This assumption enables the construction of a matrix The global weighting; translates the fact that two words
of co-occurrences between words and documents. This matppearing with the same countdn do not necessarily convey

is accumulated from the available training data by simplhe same amount of information about the document; this is
keeping track of which word is found in what document. Saisubordinated to the distribution of the words in the collection
another way, the context for each word becomes the docum@ntLet us denote by;; the number of timesy; occurs in

in which it appears. Note that, in marked contrast witgram documentd;, and byt, the total number of times; occurs
modeling, word order is ignored, which is of course in linén the entire collectior?. Then the relative frequency af;
with the semantic nature of the approach [20]. This meairs d; is obtained as

that the LSA paradigm not only does not exploit syntactic Cij

information, but effectively throws it away. Thus, it should fij = . ()

not be expected to replace conventionafjrams, but rather . ) ]

to complement them. and the associated normalized entropyugfis seen to be
After the word-document matrix of co-occurrences is con- 1 /

structed, the LSA approach proceeds by computing the singu- E;, = —m Z fij log fij. (6)

lar value decomposition (SVD) of the word-document matrix. g j=1

The left singular vectors in this SVD represent the words |§ definition, 0 < E; < 1, with equality if and only if
the given vocabulary, and the right singular vectors repres? ' P
)

t = .
. ) ; = 1 and f;; = 1/N, respectively. A value of&; close

Fhe_ d‘?"“me*_“s in the given corpus. The role of the SV_ 0 one underscores a word distributed across many documents

intrinsically, is therefore to establish a one-to-one mapping,

between words/documents and some vectors in a space 9
appropriate dimension. Specifically, this space is spanned @r%sent only in a few specific documents, i.e., of suitable
the singular vectors resulting from the SVD. ; : ’ '
. ; ) indexing value. Hence

An important property of this space is that two words whose
representations are “close” (in some suitable metric) tend to G, =1-F; (7
appear in the same kind of documents, whether or not they ac- .
tually occur within identical word contexts in those document!S @ reasonable global weight for the woud.

Conversely, two documents whose representations are “close” N€ local valueL;; is a transformed version of;; which

tend to convey the same semantic meaning, whether or not tifagy reflect any adjustment to the raw coupt For example,
contain the same word constructs. Thus, we can expect tfjdt common to use;; = log(1+c;;), where the log dampens
the respective representations of words and documents that!dfeeffects of large differences in counts [21]. Itis also possible
semantically linked would also be “close” in that space. ThiQ normalize for document length. If we denote by the
property is what makes the framework useful for languag@imPer of words in documeni;, then

modeling purposes.

ﬁughout the corpus, and therefore of little indexing value.
versely, a value of); close to zero indicates a word

Lij = log, <1 + @) (8)
T
IIl. L ATENT SEMANTIC ANALYSIS is such thato < I;; < 1. This functional avoids implicitly
Let V, |V| = M, be some vocabulary of interest aida favoring long documents in text corpora containing documents
training text corpus, i.e., a collection &f articles (documents) of greatly variable length.
from a variety of sources. (Typically}d and N are on the
order of 10000 and 100000, respectively;might comprise B. Singular Value Decomposition

100 million words or so.) The task at hand is to define a 1o (M x N) word-document matri®#¥” with entries;;
mapping between the sé5 7', and a vector spac®, whereby iy by (4) fully describes, for the training corps which
each word inV and each document i@l is represented by a o145 appeared in what contexts. Clearly, this matrix defines
vector in S. two vector representations for the words and the documents.

Each wordw; can be uniquely associated with a row vector
A. Feature Representation of dimension N, and each documeni; can be uniquely

We first construct a word-document mati#X associated associated with a column vector of dimensidf. For the
with V and7. This is done by computing, for each wosg ¢ ~ Sake of simplicity, we will also refer to these row and column
V, the weighted count¥;; of w; in each of the documents VECtors asu; andd;, respectively. Unfortunately, these vector
d; € T. Following results from information retrieval (cf., e.g.representations are impractical for three related reasons. First,

[21]), this weighted count is expressed as the dimensiongl/ and N can be extremely large; second, the
vectorsw; andd; are typically very sparse; and third, the two
Wi; = G;L;; (4) spaces are distinct from one other.

To address these issues, it is useful to employ singular value
whered; is a global weight, indicating the overall importancelecomposition (SVD), a technique closely related to eigen-
of w; as an indexing term for the collectidh, andL,; is a vector decomposition and factor analysis [22]. We proceed to
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perform the SVD ofi¥ as follows: assuming, of course, th&t is chosen so thaf is invertible.
R Similarly, the jth column of the matriXV" is given by
WaW=USVT
d; = USv] (12)

where U is the (M x R) matrix of left singular vectors
u; (1 <4 < M), S is the @ x R) diagonal matrix of
singular valuesyV is the (V x R) matrix of right singular vy =d; US™H (13)
vectorsv; (1 < j < N), R « M(«N) is the order of o )

the decomposition, and denotes matrix transposition. ByThe latter relatlon_ is partlcularly useful to extend the vector
definition, the matrixS is positive definite, and the matricesSPace representation just constructed to new documents, which
U andV are unitary; henc&U = VTV = I, the identity have not been seen in the training corpus. _

matrix of dimensionR. As is well known, the matrix¥ is Let us assume that the new documept(with p > N)

the best rank’ approximation to the word-document matrixXV@S not used to derive the spaSethrough the SVD process
W, for any unitarily invariant norm [22]. outlined above. Can we still find a representation for this

This decomposition has a dual benefit. First, it eliminates tf@cument in the spacg? The answer is yes. It is easy to

sparseness issue, by isolating the meaningful componentL@fstruct a feature vector containing, for each word in the

nderlying vocabulary, the weighted counts (4) wjth= p.

W. Second, it defines a single vector space with a relatively. _ - ; :
small dimensionR, namely the space spanned by both le ith the convention specified earlier, this feature vector can
' be simply denoted by/,, a column vector of dimensiof.

and right singular vectors. Thih left singular vector:; can y )
be viewed as the representation «f in this vector space. 1hen the representation of the new document in the space
is the associated vectar, given by

Similarly, the jth right singular vector; can be viewed as
the representation af; in the samespace. Thus, this space of oy = JgUgfl (14)
dimensionR is the spaceS which we sought. The dimension ) o

R is bounded from above by the rank of the matix, through straightforward application of (13). .
and from below by the amount of distortion tolerable in the To convey the fact that it was not part of the SVD extraction,
decomposition. Values R in the rangeR = 200 to R = 300 the new document/, is referred to as gseudodocument
are typically used for information retrieval [23]. In the preserfelearly, if this document contains language patterns which are

context, we have found00 < R < 200 to work reasonably inconsistent with those extracted froii, the representation
well. - o, will not be adequate. Similarly, if the addition af,

The basic idea behind (9) is that’ captures the major Causes the major structural associationstirto shift in some

structural associations i’ and ignores higher order effects Substantial manner, then (14) will not properly apply. If, on
As a result, the “closeness” of vectors dhis determined by the other hand, the new document generally conforms to the
the overall pattern of the language usedZinas opposed to rest of the corpusl, thenw, in (14) will be a reasonable
specific constructs. In particular, this means that two wordgpresentation ford,. Such pseudodocuments can then be
which do not co-occur irZ” will still be “close” if that is folded into7’, leading to an extended corpus denoted7by.
otherwise consistent with the major patterns of the language

(e.g., if they tend to co-occur with a common set of wordsl. Computational Effort

This has the important benefit of alleviating the effects of | et us first note that classical methods for determining the
polyzemy. For example, a financial news corpus will be moyD of dense matrices (see, e.g., [24]) are not optimal for
likely to contain the word “bank” in patterns comprising, €.giarge sparse matrices suchi&s Because these methods apply
“loan” and “interest” than “river” and “lake,” thus forcing the orthogonal transformations (Householder or Givens) directly
vector representing “bank” to get closer to the appropriatg the input matrix, they incur excessive fill-in and thereby

which, sincel is unitary, implies

region in the space. require tremendous amounts of memory. In addition, they
compute all the singular values Bf; but hereR <« M (< N),
C. Pseudodocument Representation so determining all\/ singular values is computationally waste-

While the matrices/ and V' in (9) are usually obtained ful. o ) ]
simultaneously using a numerical SVD solver, note that (9) Instead, it is more appropriate to solve a sparse symmetric
provides a way to derive the left or right singular vector§'denvalue problem, which can then be used to indirectly
separately if the others are known. For example,itherow compute the sparse singular value decomposition. Several

of the matrix W can be written as suitable iterative algorithms have been proposed by Berry,
based on either the subspace iteration or the Lanczos recursion
w; = u; SVT (10) method [25]. The primary cost of these algorithms lies in the

total number of sparse matrix—vector multiplications required.
whereu; is as above, and, without loss of generality, we havest ys denote by:,. and . the average number of nonzero
dropped the approximation symbol. Thus, taking into accougtries per row and column &%, respectively. Then the total
tﬂe fact thatl” is unitary, simple algebraic manipulations shovkost in floating point operations (flops) per iteration is given
that by [25]

w; = w; V.S (11) Niva = R[2(1 + )M +2(1 + pi.)N]. (15)
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In a typical case, the density a¥ (defined as the ratio of Sinces is diagonal, this means that the ;) cell of WW? can

the number of nonzero entries ov&fN) is about 0.25% (cf. be obtained by taking the dot product betweenitheand jth

[23]), and the value oR is roughly 100. This expression carrows of the matrix/.5, namelyu;S and«;S. In other words,
therefore be approximated by how “close”; is tou; in the spaces can be characterized by
the dot product between; S and«;S. As a result, a natural

Niva = MN. (16) metric to consider for the “closeness” betwegnand u; is

For the values of/ and N mentioned earlier, this correspondghe cosine of the angle betweenS andw;S. Thus:
to a few billion flops per iteration. On any midrange desktop w:S2uT
machine, such as the Apple Power Macintosh G3/266 (rated K (u;, u;) = cos(u; S, u;S) = ———2—
at approximately 50 Mflops), this translates into (up to) a few [ S} e 5
minutes of CPU time. As convergence is typically achievefdr any 1 < i, j < M. A value of K (u;, u;) = 1 means the
after 100 or so iterations, the entire decomposition is usuatlyjo words always occur in the same semantic context, while
completed within a matter of hours. a value of K(u;, u;) < 1 means the two words are used in
This takes care of the off-line cost of the approach. As faficreasingly different semantic contexts. While (20) does not
the on-line cost, it centers around (14), i.e., the constructigiafine abona fidedistance measure in the spagt easy leads
of the pseudodocument. For the proposed paradigm to feone. For example, over the interiéil 2x], the measure
useful, this ultimately must be done in real time. Assuming
that the quantity7S—! is precomputed, the cost in flops per D(us, uj) = cos™ K (uq, uy) (21)
pseudodocument is seen to be

(20)

can be readily verified to satisfy the properties of a distance

Npa = peM (17) onS.
) N Once (21) is specified, it is straightforward to proceed with
which, under the above conditions, reduces to: the clustering of the vectors;, using any of a variety of
Nopa ~ 0.0025M2. (18) algorithms [26]. Since the number of such vectors is relatively

large, it is advisable to perform this clustering in stages, using,
Thus, for usual values of the vocabulary size, a pseudoddar example, K-means and bottom-up clustering sequentially.
ument can be constructed in a fraction of a second of CRb that case, K-means clustering is used to obtain a coarse
time. In addition, caching can be used to take advantage of grytition of the vocabulary in to a small set of superclusters.
redundancy across similar (or overlapping) pseudodocumeriach supercluster is then itself partitioned using bottom-up
These observations bode well for the real-time implementatictustering. The result of this process is a set of clusters
of the LSA framework. 1 < k £ K, which partitions the spac§.

IV. CLUSTERING B. Document Clustering

In the vector spacé obtained above, each woid € V is Similarly, expanding’? W using the SVD expression (9)
represented by the associated left singular vector of dimensigelds
R, u;, and each documenf; € 7 is represented by the
associated right singular vector of dimensiénv;. Clearly,

this opens up the opportunity to apply familiar clusterings pefore, this means that tHe, 5) cell of WZW can be
techniques i, as long as a distance measure consistent Wightained by taking the dot product between fttie and jth
the SVD formalism is defined on the vector space. The niggjumns of the matri¥’S, namelyv; S andv;S. As a result,
thing about this form of clustering is that it takes the globg| natural metric to consider for the “closeness” betweeand

context into account, as opposed to conventiengtam-based ,; is the cosine of the angle betweers andv;S. Thus
clustering methods which only consider collocational effects.

Since the matriXx¥ embodies, by construction, all structural
associations between words and documents, it follows that,

for a given training corpusWW? characterizes all co- - .
9 N P forany 1 < ¢, j < N. This is the same functional as (20),

occurrences between words, add” W characterizes all co- d therefore the dist 21) i 1 id for both q
occurrences between documents. Thus, the extent to whitlf theretore the distance (21) is equally valid for both wor
nd document clusterings.

words «; andw; have a similar pattern of occurrence acros® . . L. .
Earlier comments regarding clustering implementation ap-

the entire set of documents can be inferred from the) )
cell of W7, and the extent to which documentsand v, Pr;ly<h§ri r;l:s well. The end result is a set of clustéig

contain a similar pattern of words from the entire vocabula
can be inferred from thé:, j) cell of WTW.

wiw =vs?vT, (22)

UZ‘SQU]T

K(Ui, Uj) = COS(Uisv UJS) = W
T J

(23)

C. Qualitative Evaluation

A. Word Clustering At this point it might be useful, for concept validation
Jpurposes, to illustrate the above clustering framework through
a simple experiment. For the sake of brevity, we will only treat
wwt =us?ut. (19) the case of word clustering, on a small subset of the corpus

Expanding W7 using the SVD expression (9), we obtai
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we originally used in [27]. (For an illustration of documentlasses: for example, the singular noun “drawing” from Class
clustering, we refer the reader to some recent work by Gotétand the present tense verb “rule” from Class 2. This is one of
and Renals [28]. This work was conducted on a different datze effects of polyzemy: “drawing” and “rule” are more likely

base, the British National Corpus, which contains a greaterappear in the training text with their alternative meanings (as

variety of topics.) in “drawing a conclusion” and “breaking a rule,” respectively),
We considered a subs@t of the NAB Newscorpus [19], thus resulting in different class assignments. Finally, some
composed of aboutN = 21000 documents, comprising words seem to contribute only marginally to the classes: for

approximately ten million words. These articles were selecteédample, “hysteria” from Class 1 and “here” from Class 2.
randomly from theWall Street Journal (WSXortion of the These are the unavoidable outliers at the periphery of the
corpus. The vocabularny was constructed by taking the 20 00Clusters.

most frequent words of theAB Newscorpus, augmented by

some words from an earlier release of #&Jcorpus, for V. LANGUAGE MODELING

a total of M = 23000 words. Note that, in contrast with

271, he“re no. att,(,ampt“ was“made to remove the noncontgg; in the spaceS for the purpose of language modeling.
words (“function,” or “stop,” words). Although such WordSLet w, denote the word about to be predictedl, . the

are uninformative in applications Iikg query analysis, removmigdmissible history (context) for this particular word, and
them fromV may affect the probability of the unknown WordPr(wq|Hq_1) the associated language model probabilty.

in stgtistical language modeling. ) In the case of anmn-gram language model, for example,
This led to a (23000x 21 000) word-document matrix of . _ Do .
) ) Pr(wg|Hy—1) = Pr{wg|wg_1 wg—s -+ wg_nt1), SiNCe the
co-occurrences, §tore_d in sparse fashion. We performed Fgﬁevant history comprises the last— 1 words.
SVD of this matrix using 'Fhe single vep_tor Lanczos method To take the LSA framework into account, we have to
[2_5]. Qver the course of thl_s decomposition, we experlm(_ant%gnsider the slightly modified expression
with different numbers of singular values retained (i.e., differ-
ent dimensions of the associated vector space). Of the values Pr(wy|Hy—1) = Pr(wy|H,—1,S) (24)
R = 500, R = 250, R = 125, and R = 75, we found that
reconstruction error (as measured by the difference in tREPPOSed derivation the probability depends on the particular
Frobenius norms of# and W) and noise suppression (aglector space arising from the SVD representation. As usual,
measured by the ratio of the tracesisf and V). the quality of this modeling can be measured by the perplexity
We clustered the (word) vectors in this space into 109 (24) on some test text. I2 denotes the total number of
superclasses of approximately 200 vectors each using simpfds in the test text, this measure is given by
K-means clustering. We then refined each of the superclasses 1 @
into 20 classes each using bottom-up clus_te_ring [26]. This pro- PP = exp <__ Z log Pr(w,|H, 1, 5)). (25)
duced a set of 2000 classes, each comprising about ten words Q

on average. Finally, we merged related classes from different

superclasses back together to avoid excessive fragmentatiUH:’S’ to construct a semantic language model, there are two
This resulted in a cluster set of size 500. issues that need to be addressed: i) specify what the history is

To show what these word classes look like, we selected t\}vrbthe case of LSA, andii) find a suitab_le way to compute (24).
examples of the clusters so obtained. Since the SVD operates on a matrl_x of co-occurrences be-
. . .. tween words and documents, the nominal history is, as pointed
’ qud' Clags 1: Andy, antique, antiques, .ar_t,, artist, ot before, the document in which, appears. However, to
artists, artls_ts, artworks, auctioneers, Chrlstle_s, COI'be admissible, the context must be causal, and therefore be
Iectqr, drawings, gallery, Gogh., f(.atched,. h.ystena,. MaY7uncated at wordv,_1:. Thus, in practice, we have to define
terpiece, museums, painter, painting, paintings, Picassg; _, to be the current document up to word,_,. Note,
Pollock, reproduction, Sotheby’s, van, Vincent, Warhol. j\yeyer, that the method described in the previous sections
* Word Class 2: Appeal, appeals, attorney, attorney'syiq pe trivially modified to accommodate other admissible
counts, court, court's, courts, condemned, convictiongisiories. For examplei,_; could be anything from the last
criminal, decision, defend, defendant, dismisses, dig-_ 1 words, to the current sentence, to the current document,
missed, hearing, here, indicted, indictment, indictmentg, e pastm documents (the latter three, of course, up to
judge, judicial, judiciary, jury, juries, lawsuit, leniency, yqrq wy—_1). The choice only depends on what information
overturned, plaintiffs, prosecute, prosecution, prosecis ayailable on the dynamics of the relevant parameters, to
tions, prosecutors, ruled, ruling, sentenced, sentencingmaple the selection of the largest semantically consistent text
suing, suit, suits, witness unit. This is a major benefit of the large-span approach.

The first thing to note is that these word classes compriseWithout loss of generality, let us therefore continue to
words with different part of speech, a marked difference withssume thak,_, consists of the current document up to word
conventional class-gram techniques (cf. [4]-[7]). This is aw,_;. There are several way of proceeding, depending on what
direct consequence of the semantic nature of the derivatiexpansion ofPr(w,|H,_1, S) is considered. The choice of
Second, some obvious words seem to be missing from timés expansion is directly related to the amount of smoothing

We are now ready to exploit the framework developed so

q=1
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desired in the spac&, and hence will be most likely dictatedcan thus be obtained as

by training corpus structure and coverage considerations. R Pr(wy, d,_1)
Pr(wg|dg—1) = L

A. Direct Modeling > Pr(w;, dy_1)

w; €V

(28)

The simplest choice is to mod&(w,|H,—1, S) directly, h ion in the d . d I
in which case no smoothing applies. Obviously, the curre}%here the summation in the denominator extends over a

document will not (normally) have been seenn there- Wol\rlds 'nr:}‘ Prlw.|d f he “rel " of q
fore qualifying as a pseudodocument in the terminology of ote that Pr(wg|d,—.) reflects the *relevance’ of wor

Section III. If we denote this pseudodocument By ; = wq to the admissible history, as observed throu@hl. As

d,_,, then we will be able to use (14) to derive a Vecto§uch, it will be highest for words whose meaning aligns
! ost closely with the semantic fabric af_; (i.e., relevant

representatiof,_; € S associated with this pseudodocumenf.n . ;
The language model thus becomes content” words), and lowest for words which do not convey

any particular information about this fabric (e.g., “function”
Pr(wy|H,—1, S) = Pr(wq|a?q_1) (26) words like “the”). Since content words tend to be rare and
function words tend to be frequent, this will translate into a
where Pr(w,|d,_,) is computed directly from the represen-elatively high value for (25). Thus, even though this model
tations of w, and d,_; in the spaceS. In other words, appears to have the same order as a standard unigram, it will
this expression can be directly inferred from the “closenestikely exhibit a significantly weaker predictive power.
betweenu, andv,_; in §. We now follow a reasoning similar
to that of the previous section to specify that relationship. B. Smoothing via Word Clustering

Since the matrixiV’ embodies structural associations be- ajiernatively, we can take advantage of the additional layer
tween words and documents, the extent to which werd of \nowledge uncovered in the previous section through word
and documentd; co-occur in the training corpus can b&,stering. This clustering essentially acts as a smoothing

inferred from the(s, ;) cell of W. From the SVD formalism, it \echanism on top of the vector space representation derived
follows that this can be characterized by taking the dot produgty, [ SA. By exploiting it, we can expect words related to
between theth row of the matrix/5*/* and thejth row of the  the current document to contribute with more synergy, and

H 1/2 1/2 1/2 H
matrix V.$*/2, namelyu;$*/* andv;S*/%. In other words, this | related words to be better discounted. Along those lines,
dot product reflects how “close; is tov; in the spaces. As a the right-hand side of (26) is expanded as:
result, a natural metric to consider for the “closeness” between

u, and @, is the cosine of the angle betweepS'/? and i

va_15/2. Thus Pr(wg|dy—1) = Z Pr(w,|Cy) Pr(Cr|d,—1) (29)
k=1
K(ug, 54_1) = cos(ugSY?, ,_15Y?) where the clusters”;, result from the word clustering of
uq5@£1 Section IV-A. In (29), the probabilityr(Cy|d,—1) is qual-
- g ST2| [[Eg—15172]| (27) itatively similar to (26) and can therefore be obtained with
q q9—

the help of (27), by simply replacing the representation of the
for any ¢ indexing a word in the text data. A value ofwordw, by that of the centroid of word clusté¥;.. In contrast,
K(u,, ;1) = 1 means thatd,_; is a strong semantic the probabilityPr(w,|C;) depends on the “closeness” af,
predictor ofw,, while a value ofK(u,, ¢,-1) < 1 means relative to this (word) centroid. To derive it, we therefore
that the history carries increasingly less information about thave to rely on the empirical multivariate distribution induced
current word. Note that (27) is functionally equivalent to (2000t by the distance obtained from (27), but by that obtained
and (23), but involves scaling b§'/? instead ofS. Thus, a from the measure (20) mentioned in Section IV-A. Note that
transformation similar to (21) can be used to infer from (274 distinct distribution can be inferred on each of the clusters
a bona fidedistance in the spacs. Cy, thus allowing us to compute all quantiti®s(w;|Cy,) for
To enable the computation #(w,|d, ), itremainstogo 1 < i < M andl < k < K.
from this distance measure to an actual probability measureThe behavior of the model (29) depends on the number
This can be done through simple induction (see, e.g., [26]), b word clusters defined in the spaée If there are as many
just normalizing appropriately to ensure that the total probabdlasses as words in the vocabulaly € M), then (29) reduces
ity mass is equal to one. In this manner, the distance meastore(26), thus introducing no smoothing compared to direct
naturally induces an empirical multivariate distribution in thenodeling. Conversely, if all the words are in a single class
spaceS.! Since this is a joint distribution on words and X = 1), the model becomes maximally smooth: the influence
documents, it is suitable to look up the quanity(w,, dq_l), of specific semantic events disappears, leaving only a broad
for every wordw, € V and every (pseudo-)documenif ; € (and therefore weak) vocabulary effect to take into account.
7+. Applying marginal probability expansiorP,r(w,]|cZ,1_1) This may in turn degrade the predictive power of the model.
Generally speaking, as the number of word claséks
_1A!ternatiyely, it is also possible to induce a family of exponential disincreases, the contribution dtr(w,|Cy) tends to increase,
tributions with pertinent marginality constraints, which is potentially optimal .
[29]. In practice, we have not found problematic to rely on the empirici?ecause the clusters become more and more semanucally
distribution instead. meaningful. By the same token, however, the contribution of
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Pr(Cy|d,_1) for a givend,_, tends to decrease, because thehich, for tractability, can be approximated as
clusters eventually become too specific and fail to reflect the ~
overall semantic fabric Orfq_l. These two trends have the net Pr(wagq*i)
effect to decrease perplexity at first, and then increase it as the ~
number of classes continues to increase. Thus, there exists an — Z Z Pr(wy|Cx) Pr(Cy|De) Pr(Deldy—1).  (32)
optimal cluster set size where perplexity is minimized. k=l (=1

In this expression, the clustets, and D, are as previously,
C. Smoothing via Document Clustering as are the quantitie®r(w,|Cy) and Pr(D¢|d;—1). As for
Another possibility is exploit document clusters as opposéﬁe probabilityPr(Cj; | De), it IS qualltatlvel_y similar to (26),
to word clusters. This amounts to a different kind of smootl"?‘-.nd can _therefore be obtained accordingly. Note .that the
ing, in which we express the right-hand side of (26) as simplification from (31) to (32) enables us to derive the

. probabilities in exactly the same way as above.
~ ~ As before, the behavior of the model (32) depends on the
Pr(wg|dg-1) = Z Pr(w,| D) Pr(De|dy—1) (30) " humber of word clusters and document clusters defined in the
=1 spaceS. Most of the earlier comments can be extended to
where the clustersD, result from the document cluster-thjs case in a straightforward fashion. For example, if there
ing of the preViOUS section. This time, it is the probabilithre as many word classes as words in the Vocabuﬁrw(
Pr(w,|D,) that is qualitatively similar to (26), and can thereqy), then (32) reduces to (30), thus introducing no further
fore be obtained with the help of (27). As for the probabilitgmoothing compared to the modeling based on document
Pr(Dq|d,-1), it depends on the “closeness”df ; relative to cjysters. Generally speaking, for a given number of word
the centroid of document CIUStQ@. ThUS, it can be obtained C|asses1 we can expect the model to follow the behavior of
through the empil’ical multivariate distribution induced by th@g), and for a given number of document C|asses’ we can
distance derived from (23) in Section IV-B. As before, @axpect the model to follow the behavior of (30). Consequently,
distinct distribution can be inferred on each of the Clustefﬁere exist an Opt|ma| set of word clusters and an Opt|ma|
Dy, thereby allowing us to compute all quantities(w;|D¢) set of document clusters which are associated with minimal

for 1 S 7 S N and1 S V4 S L. perp|exity'
Again, the behavior of the model (30) depends on the
number of document clusters defined in the sgad€ompared VI. INTEGRATION WITH N-GRAMS

to (29), however, (30) is more difficult to interpret in the limits _ ) )
(e., L =1andL = N). If L = N, for example, (30) does As pointed out earlier, the LSA framework just proposed

not reduce to (26) becaussé_l has not been seen in thedoes not exploit positional information at all. Hence, it is
training data, and therefore cannot be identified with any 8therently unable to adequately capture the (local) branching

the existing clusters. Similarly, the fact that all the documenk§0Perties of the language. But this is precisely what is
are in a single cluster(= 1) does not necessarily imply theN0rmally assessed through perplexity, of course. Thus, in
degree of degenerescence observed in Section V-B, becd§§@s of predictive power, as measured by perplexity, LSA

the cluster itself is strongly indicative of the general discourdB0dels should not be expected to matefgrams. On the
domain (which was less true of the “vocabulary cluster” igther hand, it is clearly desirable to combine global (document

Section V-B). Hence, depending on the size and structure /8¥€l) constraints such as provided by the LSA paradigm with

the corpus, the model may still be adequate to capture gendP§p! (immediate context) constraints such as provided by
discourse effects. the n-gram paradigm. This amounts to leveraging multispan

So what happens as the number of document clagses information to derive an integrated language model combining

increases? The contribution ®%(w,|D;) tends to increase, e benefits of both short- and large-span contexts.

to the extent that a more homogeneous topic boosts thel Nis integration could occur in a number of ways, such as

effects of any related content words. On the other hargiraightforward interpolation, or within the maximum entropy
the contribution ofPr(D;|d, ;) tends to decrease, becausffamework [13]. In the following, we develop an alternative
the clusters represent more and more specific topics, whigfmulation for the combination of the two paradigms. The
increases the chance that the pseudodocud},ent becomes Underlying premise of this formulation is that it makes most
an outlier. These two trends have the same net effect as abGREISe for the recognition process to proceed locally while

Thus, again there exists an optimal cluster set size whd@&ing global constraints into account. Consequently, ithe
perplexity is minimized. gram paradigm should assume a primary role and the LSA

framework a secondary role. The end result, in effect, is
a modifiedn-gram language model incorporating large-span

. . . semantic information.
Finally, the above two alternatives can be merged. This Ieads]-0 achieve this goal, we need to compute:

to a mixture language model specified by z
] ko1 ) Pr(w,|Hy-1) = Pr(w,|H HD ) (39)
Pr(wg|d,—1) = > Y Pr(w,|Cy, Dr) Pr(Cr, Deld,—1)

k=1 (=1

D. Smoothing via Joint Clustering

where the historyd,_; now comprises an-gram component

(31) [Hé’j)]L = wy 1wy 2 -+ Wy_nt1] @S Well as an LSA com-
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ponent (Hq(l_)1 = dq,l). Following the same reasoning as for TABLE |

(28) this expression can be rewritten as PERPLEXITY FIGURES FORINTEGRATED BIGRAM AND TRIGRAM LANGUAGE
’ MOoDELS (36), COMPARED TO STANDARD BIGRAM AND TRIGRAM

{ n
Pr(w,, H |H)

Pr(w,|H,—1) = (34) .
qltiq " . ]
Z Pr(w;, H(l_)1|H(71)1) Language Model Test Set Perplexity
q q
w; CV
. . . Standard Bigram 215
where the summation in the denominator extends over all Standard Trigram 149

words inV. Expanding and rearranging, the numerator of (34)
is seen to be: Combined Bigram/LSA 147
Combined Trigram/LSA 115

l n
Pr(w,, H | |H)
n { n
= Pr(w,|H) - Pr(HY, Jwy, H)

A. Direct Model

We performed the SVD of the matrix of co-occurrences be-
tween words and documents in the same manner as described

N ke th . hat th babil ¢ hin Section IV-C. This led to a vector spack of dimension
ow we make the assumption that the probability of thg _ 195 \we then constructed the direct model (26) and com-

docgment .history given the current wprd is not affected bl¥ined it as in (36), either with the standard bigram (yielding the
the immediate context preceding it. This reflects the fact th?rlitegrated bigram/LSA, or bi-LSA, language model), or with

for a given word, different syntactic constructs_ (immediatfhe standard trigram (yielding the integrated trigram/LSA, or
context) can be used to carry the same meaning (documrgg_

. . . -LSA, language model). Finally, we measured the resulting
history). This is obviously reasonable for content words, a rplexity on the test data previously set aside. A summary is
probably does not matter very much for function words. As &ovided in Table |
result, the integrated probability becomes We found a value of 147 for the bi-LSA model and 115 for
the tri-LSA model. These results are to be compared with the

= Pr(wg|wg—1 wg—2 + Wy—pnt1)

: Pr(czq,l |wg wy—1Wq 2 -+ Wy pg1)- (35)

Pr(w,|Hy-1) . baseline results obtained with the standard bigram and trigram
__ Pr(wgfwy w9 - wgnpn) Pr(dy1|wg) .(36) 'anguage models, found to be 215 and 142, respectively. Thus,
Z Pr(w;wy 1wy - Wy_pt1) Pr(dy_1|w;) the bi-LSA language model (36) leads to a 32% reduction in
WV perplexity compared to the standard bigram, which brings it

to the same level of performance as the standard trigram. The
Interestingly, this expression has a quasi-Bayesian interptg- SA language model leads to a somewhat smaller relative
tation. If Pr(d,—1|w,) is viewed as a prior probability onimprovement compared to the standard trigram; however, the
the current document history, then (36) simply translates theduction in perplexity still reaches almost 20%.
classical Bayesian estimation of thegram (local) probability  To investigate scalability issues, we also randomly sepa-
using a prior distribution obtained from (global) LSA. Thisated the documents into five bins of approximately 17 000
provides additional evidence to justify the above assumptioecuments each. We then performed five distinct SVD’s of

As a final remark, note that the above derivation does ngfe resulting matrices, again usidg§) = 125 throughout for

assume any particular form &fr(d,—1|w,). Thus, any of the the order of the decomposition. This allowed us to measure
expressions (26), (29), (30), or (32) can be used to compyerplexity for each bin. We then took the average to obtain
(36), resulting in four families of combined-gram/LSA 3 single perplexity value. The results, reported in Table Il
language models. for the bi-LSA case, show that the binning process does
not significantly degrade performance. This in turn indicates
that, if necessary, the computational load can be alleviated

by using a random sample of documents in lieu of the entire
To evaluate the performance of the language models pgQspys. This strategy might also be required to avoid numerical

posed in the previous section, it was desirable to train @p convergence problems in the case of very large corpora.
a larger, more typical corpus than that used in Section IYyith the full NAB Newscorpus (comprising about half a
C. We considered the so-callekiSIOpart of theNAB News yjjlion documents), for example, the matri¥ would have
corpus [19]. This was convenient for comparison purposggen too large for our current implementation of the SVD
since conventional bigram and trigram language models gfgqyithm.

readily available, trained on exactly the same data [11], [19].

Thus, the training text corpu§ was composed of about

N = 87000 documents spanning the years 1987 to 19g§; Smoothed Models

comprising approximately 42 million words. In addition, about To take advantage of smoothing in the integrated language
2 million words from 1992 and 1994 were set aside for testodels, word and/or document clustering had to be done.
purposes. The vocabula®ywas the same as in Section IV-CWe used the same two-level procedure (using K-means and
and comprised a total of/ = 23 000 words. bottom-up clustering) as described in Section IV-C to cluster

VIl. PERFORMANCE
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TABLE I 200
PERPLEXITY FIGURES FORSCALABILITY INVESTIGATION. “BIGRAM/LSA P
FuLL” REFERS TOINTEGRATED BIGRAM LANGUAGE MODEL DERIVED ‘: 160
ON ENTIRE CorPUS “BIGRAM/LSA BIN " (n = 1, ---, 5) p
REFERs TOMODEL DERIVED ON BIN n; “BIGRAM/LSA | o
AVERAGE 1-5" REFERS TOAVERAGE PERPLEXITY OVERALL BINS 1 —_— A
e 120 o 4 ole |e
]
Language Model Test Set Perplexity y
40— —
Bigram/LSA Full 147 1
1 10 100 1000 10000 100000
Bigram /LSA Bin 1 134 Number of Word Clusters (L:1)
Bigram/L.SA Bin 2 159 ) ) )
Bigram/LSA Bin 3 151 Fig. 3. Perplexity versus number of word clusters for bigram/LSA language
Bigram/Lé A Bin 4 146 model (36) with expansion (32), in case of single document cluster.
Bigram/LSA Bin 5 155
200
Bigram/LSA Average 1-5 149 :
r 160 -
1 ® o
200 e 120 & o @ .
P x 1’4
e 160 — . ; 80 - S
: 120] ¢ ¢ S
I N4 & I [~ [ P - -
e > °
X 80 1 1
; 1 10 100 1000 10000 100000
y 40 , Number of Word Clusters (L=10)
1 Fig. 4. Perplexity versus number of word clusters for bigram/LSA language
1 10 100 1000 10000 100000 model (36) with expansion (32), in case of ten document clusters.
Number of Word Clusters
Fig. 1. Perplexity versus number of word clusters for bigram/LSA Ianguagq, 200
model (36) with expansion (29). e
r = :
o 160 ® &
200 | * o ©
P e 120 - % - —
e © X
r 160 I < @ i 80 P S R B |
i o ‘
_ ; y
e 1200 <o 40— — . S
X
; 80 }- 1
v 1 10 100 1000 10000 100000
40 - Number of Word Clusters (L=500)
1 1 10 100 1000 10000 100000 Fig. 5. Perplexity versus number of word clusters for bigram/LSA language

model (36) with expansion (32), in case of 500 document clusters.
Number of Document Clusters

Fig. 2. Perplexity versus number of document clusters for bigram/LSA ]
language model (36) with expansion (30). Figs. 1 and 2 correspond to using word classes only and

document classes only, respectively. Figs. 3-5 corresponds to

the word vectors obtained above, and merged related clasdadd both word ‘F?md document clgsses. In all cases perplexity
. . . IS plotted (on a linear scale) against the relevant number of

to create cluster sets of different size. We then independen

C (iters (on a log scale). All plots are seen to go through

repeated this procedure to cluster the document vectors, an erplexity minimum for a particular size of the cluster

again merged related classes to create cluster sets of differgqt

size. Finally, for each combination of cluster set sizes, we onp Fig. 1, this minimum is equal to 106 and is reached for

measured perplexity as before. a word cluster set siz& = 100. This is to be compared
The bi-LSA results are illustrated in Figs. 1-5 for differentvith the perplexity associated with = 23000 clusters,

sizes of the word and document cluster sets, as appropriatbich, as predicted earlier, is 147, i.e., the same value as



466 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 6, NO. 5, SEPTEMBER 1998

obtained using direct modeling. This important difference in TABLE Il

perplexity illustrates the smoothing benefits brought about by PERPLEXITY FIGURES FORBEST INTEGRATED BIGRAM AND TRIGRAM
. . LANGUAGE MODELS (36) UNDER VARIOUS SMOOTHING SCHEMES

clustering. Words related to the current document contribute

with more synergy, while unrelated words are better dis-
counted, This, in turn, causes perplexity to drop. Conversely, Language Model Test Set Perplexity
when K is too small, too much smoothing is introduced and
information gets lost in the process, causing perplexity to ,
Bigram/LSA, No Smoothing 147
edge up. . ; .
. L . . . With Document Smoothing 116
Fig. 2 e_xh|b|ts the same gene_ra_ll behavior as Fig. 1, with two With Word Smoothing 106
notable differences. First, the minimum perplexity is somewhat With Joint Smoothing 102
higher (116) than in Fig. 1. This indicates that clustering
documents is not as powerful as clustering words, in the sense Trigram/LSA, No Smoothing 115
. . - . . . . J1 o o ine
just described. Second, the minimum is attained for a size of ~ "Vith Document Smoothing 103
he document cluster set smaller (1) than the optimal size of the with Word Smoothing o
the docu : : p S With Joint Smoothing 95
word cluster set observed in Fig. 1, and perplexity increases

faster away from this value. This may perhaps reflect the
fact that it is more difficult to achieve semantic homogeneity
at the document level than at the word level, an intuitivel . . o
reasonable proposition. Alternatively, it may be an artifact bodies the major structural associations of the corpus as

the document collection considered, which arguably is alreat termlnled by the Ov(fr?” pattern oft_th_e Iantguage.dHenct:e,
quite homogeneous to begin with, e new language models are semantic in nature and capture

Figs. 3-5 plot the perplexity obtained against the number IgTrge span relationships between words. This stands in marked

word clusters, for three values of the document cluster set S&%ntrast with co_nventlonah-grams, which |nhgrently rely .
on more syntactically-oriented, short-span relationships. This

(L =1, L =10, andL = 500, respectively). The three curves . . .
exhibit the same general convex shape observed in Fig. 1 ans that one .paradlgm is better ;wted to account. for the
reach different minimum values. The minimum is equal to 1 Qcal constralnt_s in the Ianguage,_ while the other one is more
in Fig. 3, 107 in Fig. 4, and 118 in Fig. 5. Thus, the best cur\f'ed'ipt at halr;dltlrr:g tglobal constr:alnts. | i h other. T
is the one of Fig. 3, obtained with a document cluster set size s aresuft, the two approaches complement each other. 7o
L = 1. In this case the minimum is reached for a word clustef-c>> th|s_synergy, we have derived an mtegratlve formula-
set sizeK = 100. Note, however, that the curve is fairly flat tion to_ combine the standavetgram forma!lsm W'th the LSA
with perplexity values virtually identical over a wide range Oparadlg_m. By taking advan_tage O.f the various kinds of smooth-
word cluster set sizes. ing available, several families of integrateeram/LSA mod-
have been obtained. The resulting multispan language

A qualitatively similar behavior was observed in the cas%lsd | h i bstantiall terf th ated
of the corresponding tri-LSA language models, and the pdRpaels were shown to substantially outperiorm the associate

results obtained in each case have been grouped in TabIeSﬁﬁr]d""rd”'gramS on a subset of tRAB Newscorpus.

To summarize, the best smoothed bi-LSA perplexity values

(102-106) are about 50% better than that obtained using the ACKNOWLEDGMENT
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