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Semi-supervised learning Problem

Given:

e Social Network G = (V,E) O wale
e Labels for some subset nodes . Female
Goal:

e Infer labels for unlabeled nodes .
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Approaches for attribute prediction

e Approach 1: Graph Smoothing based on Gaussian
Random Field [Zhu, Ghahramani, Lafferty 2003]

o Assumption: Gaussian Markov Random Field Prior on true
label of all the nodes  ~ N(0,7%(D — vA)™!) € R"

o Get the Bayes estimator of @ on unlabeled nodes under the
GMREF prior

o Bereferred as ZGL later



Approaches for attribute prediction

e Approach 2: LINK classification [Lu-Getoor 2003]
o Learn a function F:
F(row i in adjacency matrix) =i's label
o Example F: regularized logistic regression

Labeled . [0,1, ...0,1]

[0,1, ...0,1]

regularized

—> logistic
regression

Labeled

[1,0,...0,1] 0,0,..,0,1] [1,0,...0,1] [0,0,..,0,1]



ZGL's assumption: Homophily

e Homophily [one-hop similarity]:
o Individuals are similar to their friends
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ZGL's assumption: Homophily

e Homophily [one-hop similarity]:
o ZGL assumes information of a given node decays
smoothly across the topology of the graph (by
imposing the GMREF prior)
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Labeled Labeled
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Homophily Assumption: NOT always necessary!

e [Altenburger-Ugander 2018]:
o LINK does well even without assuming homophily
o Homophily assumption is not necessary for

inference to succeed

e ..but ZGL and a lot of other graph smoothing methods
all assumes homophily. Can we do graph smoothing
without it?
o Yes (this talk)
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A situation where Homophily assumption fails

e Gender example:

Male ©

Female @
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A situation where Homophily assumption fails

e Gender example:
o Want to predict the gender of the center node

Male ©

Female @ Q\

Q/?

o
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A situation where Homophily assumption fails

e Gender example:
o Want to predict the gender of the center node:
m Assume Homophily (1-hop majority vote): false

Male ©

Female @

®

.5@ el

o
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A situation where Homophily assumption fails

e Observation: there are difference between one’s
identity and preference

';A:rlfmeg Identity: male
Preference: female
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Decoupled smoothing Method



Decoupled smoothing: idea

e Idea: decoupling one's “identity” @ and “preference” ¢
e Use separate parameters to model them accordingly!

Male @ Identity: male

Female @ Q Preference: female

Without homophily

(or heterophily)

assumption
Yatong Chen, Stanford University, WWW 2019
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Decoupled smoothing: idea

e Idea: decoupling one's “identity” @ and “preference” ¢
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Decoupled smoothing: idea
e Idea: decoupling one's “identity” @ and “preference” ¢

identity Qpreference
0. i

e Intuition: a person’s identity will reveal information
about their friend’s preference, and vice versa



Decoupled smoothing: idea

e Idea: decoupling one's “identity” @ and “preference” ¢

identity preference: can’t observe,
@ 6, o *how to reveal?
(4)
AL > OS2 > 2

e Intuition: a person’s identity will reveal information
about their friend’s preference, and vice versa 20



Decoupled smoothing: model

e Intuition: a person’s identity will reveal information
about their friend’s preference, and vice versa
e Assumption:

9¢|¢%N(Z?:1 Wiidj a7) @510 = N3 1L, Wi ‘92703)

P1 01
) ¢ ?; () 6
ng
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Decoupled smoothing: model

Intuition: a person’s identity will reveal information
about their friend’s preference, and vice versa
Assumption:

9¢|¢%N(Z?:1 Wfij?ij"?) ¢j|0 ~ N (D, Wi;0;,
Goal: to obtain predictions for the identity 4

O

the preference ¢ is nuisance!

Get the marginal prior for @ :

O

0~ N(0,7°(Z —y*WZ'twi)-1)

Yatong Chen, Stanford University, WWW 2019
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Decoupled smoothing: impose a prior
0~ N©O,72(Z —v*WZ'1WwT) 1)

!

How to estimate W?

Yatong Chen, Stanford University, WWW 2019
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How to estimate W?

Intuition:
o Node j'th preference will imply a 2-hop similarity between
node i and node k's identities

Nm Node k
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How to estimate W?

e Intuition:
o Node j'th preference will imply a 2-hop similarity between
node i and node k's identities
o Make use of the information of k when predicting i
e Assumption:
o i's 2-hop friend k has the distribution: 8 ~ N(6;, 0?)

Nm Node k
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How to estimate W?

e Why 0;as mean:
o Similarity amongiand k
e WhyJ; as variance?
o The more friends j have— the better its preference being
revealed — the less uncertainty about the/shTilarity
between i and k \

Hk ~ N(HZ,O'?)

/
MNode k 27



How to estimate W?

e Assumption:
o 2-hop friend k has the distribution 6 ~ N(6;,07)
o Homogeneous standard error a? — a/d?

e Then W can be reduced to W;; = A;j/0?

We get W!



Decoupled smoothing: model

e Now we know everything about the marginal prior forg:
O @ ~ N(O,Tz(Z — 'yzWZ’_lWT))
e Next step:
o Compute the Bayes estimator of @ for unlabeled node
and then make the prediction (recall ZGL)
e Done!

Yatong Chen, Stanford University, WWW 2019

29



Relationship between Decoupled smoothing
and some phenomenon/concept/method that
are related to it
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Decoupled smoothing and Monophily

e The phenomenon of Monophily [Altenburger-Ugander 2018]

o Two-hop similarity: individuals are similar to their friends’

friends

o Innovative concept compared to Homophily

Male ©

Female @

Identity: male
Preference: female
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Decoupled smoothing implies Monophily

e The phenomenon of Monophily [Altenburger-Ugander 2018]
o Two-hop similarity:
m similarity among the friends of a person is the result of
personal preference
o The 2 hop similarity phenomenon is implied by our
decoupling smoothing idea!

Male @© Identity: male
Female @ Preference: female v
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Decoupled smoothing and 2-hop MV

e Decoupled smoothing reduces to iterative 2-hop
majority vote (under homogeneous standard error):

2 hop Majority
Vote (MV):
Average over

the labeled
nodes in 2-hop
friend sets

Aij =3 A Aji/ (dio?)

_ 1 _ (O )
1 1 '*t—].
B D_ten, af_z ZkEN dkai ZJENk 9'7
ét 1 '\t—].
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Decoupled smoothing and ZGL

o ZGL: e Decoupled smoothing:

e Assume Homophily o Don't assume Homophily

e Prior: o Prior:
9~ N(0,72(D —~vA) ') 6~ N(0,7%(Z — *WZ'wT)1)

e Matrix A: o Auxiliary matrix:
adjacency matrix A=Wz wT

e Reduce to iteratively o Reduce to iteratively
1-hop majority vote 2-hop majority vote

update method! update method!
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Empirical Results

Yatong Chen, Stanford University, WWW 2019
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Dataset

e Facebook 100: Single-day snapshots of Facebook in
September 2005.

e Goal: gender prediction

School Name Number of Nodes Number of Edges
Amherst 2032 78733
Reed 962 18812
Haverford 1350 53904
Swarthmore 1517 53725




Decoupled smoothing: empirical result
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Decoupled smoothing: empirical result
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Decoupled smoothing: empirical result
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Decoupled smoothing: empirical result
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Why 2-hop Majority Vote beats Decoupled Smoothing?

1.0

0.8 A

AUC
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Summary

Introduce the idea of decoupling one’s “identity”
and “preference”
Justify/explain the phenomenon of 2-hop similarity

without assuming homophily

Open questions:

o How to choose the weighted matrix W?

o Why 2-hop Majority Vote outperforms decoupled
smoothing: can you do better?

Yatong Chen, Stanford University, WWW 2019
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Questions?
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Thank you For your attention!



