Proofs-of-delay and randomness beacons
in Ethereum

Benedikt Biinz', Steven Goldfeder*,Joseph Bonneau® *Princeton University, Stanford
University

Abstract—Blockchains generated using a proof-
of-work consensus protocol, such as Bitcoin or
Ethereum, are promising sources of public random-
ness. However, the randomness is subject to manip-
ulation by the miners generating the blockchain.
A general defense is to apply a delay function,
preventing malicious miners from computing the
random output until it is too late to manipulate it.
Ideally, this delay function can provide a short proof-
of-delay that is efficient enough to be verified within
a smart contract, enabling the randomness source
to be directly by smart contracts. In this paper
we describe the challenges of solving this problem
given the extremely limited computational capacity
available in Ethereum, the most popular general-
purpose smart contract framework to date. We
introduce a novel multi-round protocol for verifying
delay functions using a refereed delegation model.
We provide a prototype Ethereum implementation
to analyze performance and find that it is feasible in
terms of gas costs, costing roughly 180000 gas (US$
0.11') to post a beacon and 720000 gas (US$ 0.98)
to resolve a dispute . We also discuss the incentive
challenges raised by providing a secure randomness
beacon as a public good.

I. INTRODUCTION

Many security protocols require public random-
ness which cannot be manipulated or predicted by
any party in the protocol. The simplest example
is a public lottery in which a random winner
most be chosen from a set of candidates. There
are many more examples in the cryptographic
literature, including unpredictable challenges for
non-interactive zero-knowledge proofs [15], ran-
dom audits of verifiable elections [2] or generating
random parameters for cryptographic standards to
preclude the presence of backdoors [5]. Rabin
first coined the term randomness beacon [21] to

IThroughout the paper we assume a gas cost of 2 - 1078
ETH per gas and an ETH price of 68 $/ETH

describe an ideal service which publishes unpre-
dictable random values at regular intervals that
no party can manipulate. Rabin introduced the
concept as a tool for fair exchange protocols,
another important application.

Because no ideal beacon exists, traditional ap-
proaches include emulating an ideal beacon using
a trusted third party (such as the NIST bea-
con [19]) or generating randomness from the
parties in a protocol using a commit-and-reveal
approach [10] in which each party commits to
a nonce before all commitments are opened and
the nonces combined to form a random output.
Basic commit-and-reveal protocols produce un-
predictable randomness as long as at least one
participant is honest. However, preventing mali-
cious parties from selectively aborting the protocol
(and hence manipulating the result) requires either
provably verifiable secret-sharing techniques [16,
22] or financial penalties enforced by a pro-
grammable cryptocurrency to punish parties that
abort [3]. Commit-and-reveal approaches are used
in practice, typically in specific protocols where a
semi-trusted set of authorities exists (e.g. the Tor
protocol [13] uses a commit-and-reveal approach
to establish a random seed to build routing paths
through the network). A commit-and-reveal pro-
tocol called RANDAO [1] has been implemented
using Ethereum in which anybody can commit to
a random seed and parties which do not reveal
forfeit a bond.

An alternative approach is to extract random
values from a “naturally occurring” source of
entropy such as stock-market data [12], national
lottery results [5] or proof-of-work blockchains [6,
8, 20] such as Bitcoin [18] or Ethereum [23].
However, while costly to manipulate, each of these
sources is vulnerable to malicious insiders (e.g.
high-frequency traders, lottery administrators, or



cryptocurrency miners).

A. Manipulating blockchain-based beacons

Our primary focus is on extracting random-
ness from proof-of-work blockchains. Consider
the basic approach of simply agreeing to take
a specific future block and running it through
an extractor function to provide uniform random-
ness. Indeed, many Ethereum-based contracts, in
particular gambling contracts, already apply this
approach to generate randomness [4]. It has also
been used in several Bitcoin-based protocols [9,
15]. In the absence of manipulation by miners,
this approach provides good randomness. It can be
shown that the min-entropy of each block must be,
at minimum, equal to the difficulty of the current
proof-of-work puzzle [8], or else a shortcut to
computing the puzzle would exist.

However, this approach is subject to manipu-
lation by miners [6, 8, 20] who can choose to
withhold valid blocks they find if they produce a
beacon output they do not want. This attack might
be performed by a large mining pool [6, 20] or
even by a non-miner who is able to bribe miners
not to publish blocks [8]. These attacks are costly
as blocks are valuable and thus discarding them
represents a large opportunity cost. For example,
fixing a single-bit beacon output would cost (on
expectation) an entire block reward, equal to about
US$16,250 for Bitcoin or US$340 for Ethereum
at today’s prices (note that Ethereum blocks are
found ~40 times more frequently).

This cost can be amplified somewhat by com-
bining multiple blocks using a low-influence func-
tion to mitigate the effects of the last block [6].
This provides a limited defense, with n blocks
increasing security by a factor of ©(y/n).

Low-cost attack opportunities might arise when
colliding blocks are naturally found. Due to net-
work latency, it is common for two miners to
discover separate valid blocks at nearly the same
time. Other miners may choose arbitrarily which
block to attempt to extend, and can attempt to
influence the beacon result at no cost when doing
so. An attacker might also attempt to manipulate
the network itself to prevent or delay propaga-
tion of a block producing an undesirable beacon
output. Unlike withholding attacks, these attacks
are difficult to provide precise cost estimates for

and thus are a major impediment to relying on
blockchain-based beacons.

Network attacks are a particular concern for
an Ethereum-based blockchain, as Ethereum’s low
inter-block arrival time means colliding blocks are
found frequently and hence attack opportunities
are commonplace. For example, colliding blocks
are found several times a day for Bitcoin (about
one in one hundred blocks), but about 400 times
per day in Ethereum?) as the inter-block time is
much lower.

B. Preventing manipulation using delay functions

To prevent both network-manipulation and
block-withholding attacks, we can apply a delay
function to the block before extracting random-
ness [8]. Intuitively, the idea is that miners (or any
other party) cannot determine the beacon result
from a given block before some non-negligible
amount of time has elapsed, at which point it is
too late to attack as the blockchain has already
moved on.’?

A delay function, also called a slow-time func-
tion [17], is an inherently-sequential function that
is believed to be difficult to compute in less
than some adjustable amount of wall-clock time.
Ideally, this function is a permutation so that it
maintains the full-entropy of the input (although a
pseudorandom function is a reasonable substitute
at the relatively low iteration counts likely to be
used in practice).

A trivial example of a delay function would
be simply iterating a pseudorandom permutation
(such as a block cipher with a random key) or
a collision-resistant hash function. Assuming the
underlying function is secure, this produces an
effective delay function. Any user of the beacon
would have to recompute this delay function to
derive the beacon result. This may be acceptable
in some non-latency sensitive applications such as
generating cryptographic parameters [5] or elec-
tion auditing [2], but it is likely not acceptable in

2This only counts blocks which are included as uncle blocks
in the Ethereum chain. The real rate of stale block discovery
is strictly higher.

30f course, it would always be possible to attack retroac-
tively by attempting to induce a deep fork of the blockchain,
but we consider this attack out-of-scope as it violates a
fundamental security assumption of the blockchain.



latency-sensitive applications such as a gambling
contract in Ethereum.

A better delay function might produce a proof
that the output is correct which is faster to ver-
ify than recomputation. We call such a proof a
proof-of-delay. A classic example is computing
modular square roots, first suggested by Dwork
and Naor [14]. For p = 3 (mod 4), computing
y = T = i (mod p) requires ©O(lgp)
modular squarings, whereas verifying that x = 32
(mod p) requires just one squaring. Lenstra and
Wesolowski [17] proposed the Sloth function,
chaining together multiple modular square roots to
induce an arbitrary amount of delay, with verifica-
tion still faster by a factor of O(lgp). Currently,
this is the most efficient proof-of-delay known.

C. Our contributions

We show that a proof-of-delay built using
modular square roots is not efficient enough for
use in Ethereum. Given the extremely limited
(and costly) computation environment provided
by Ethereum, verifying a sufficiently long proof-
of-delay (e.g., for a ~10 minute delay) is cost-
prohibitive and impossible due to network con-
stants. As we show in Section V even the cheapest
computation that can be done in a second on a
standard notebook takes on the order of 22 million
gas which is equivalent to USD$29.92. This is not
only very expensive but also already above the
global per block gas limit which is currently at 4
million gas®.

Instead, we propose using a refereed delegation
of computation protocol to build a public random-
ness beacon (Section II). The basic idea is that a
designated authority (a beacon maintainer) com-
putes a delay function and publishes the result to
a smart contract providing queryable access to the
beacon results. Trust in this authority is mitigated
by the use of a challenge protocol that any third
party can initiate to prove that the authority has
published an incorrect beacon result.

We implemented our protocol (Section V) and
evaluate its efficiency. It is very cheap in the
absence of any challenge (80000 gas/US$ 0.11)
and provides acceptable performance in the event
of a challenge (720000 gas/US$ 0.98 to mount a
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successful challenge and up to 280000 gas/USS$
0.38 to defend against an invalid one) using the
conservative parameters from Section V.

Our second contribution is to analyze the in-
centives of running a public randomness beacon
(Section IV). A randomness beacon is inherently
a public good and hence it is not suitable to
be administered as a for-profit business. We dis-
cuss potential economic models and the difficulty
of incentivizing faithful behavior by the beacon
authority as well as vigilant checking by third
parties.

II. PROTOCOL

We start with any deterministic function f as
our building block. The only essential require-
ments of is that it is compositionally-sequential:
that is, there should be no algorithm for computing
its composition:

[r@)=(fof...[)z)

which is faster than n times the cost of computing
f- This property should hold for most crypto-
graphic hash functions or pseudorandom permu-
tations. Note that the compositionally-sequential
property implies that there are no loops in f’s
functional graph (or at least, they are not feasible
to find), as loops in the function would enable long
compositions to be efficiently computed. Permu-
tations are guaranteed to have no loops, whereas
for secure hash functions they are believed to be
computationally intractible to find.

Equivalently, we can choose an f with an asym-
metric verification cost, such as modular square
roots [14] or chained modular square roots [17]. In
this case, it is possible to compute f~! much faster
than f and therefore F'~! can also be computed.

Given such a function f, we build our delay
function F' for a desired delay time ¢ as:

(n iterations) (1)

F(x) = f'(z) @

We assume that a designated prover, who main-
tains a beacon service, will compute the value
y = F(X) and publish it to the beacon contract.
The question becomes, how can we gain confi-
dence that y = F(X) as claimed?
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A. Recomputation

The simplest solution is to directly verify that
y = F(z) (either by recomputation or computing
F~(y) if F has a cheaply computable inverse).
However, this puts a low limit on ¢ as computation
by the beacon contract is expensive. This approach
is not practical, although we will explore in Sec-
tion V the costs of this approach.

B. Refereed delegation model

Due to the limits on ¢ imposed by complete
recompuation, we can use a refereed delegation of
compuation model, as first formalized by Canetti
et al. [11]. In this model the beacon service include
a fidelity bond to the contract, which is forfeited
if it can be proven that an incorrect y' # F(X)
has been published. Our goal is to make it efficient
for independent verifiers (or referees) to check that
the computation was performed correctly.

1) One-round refereeing protocol: A simple
addition to the protocol is for the prover to publish
a series of checkpoints representing intermediate
states in the computation of F. For example,
the prover might publish &k checkpoints y; for
i € [1,k] as follows:

yi =% (x) 3
If we define yy = z, then we have the property
that for all ¢ € [1, k]:

“

The final result of F' is simply the last checkpoint:

y=F(X)=flz)=fF @)=y &

Now, any verifier can prove that the result is
incorrect simply by specifying a single ¢ for which
Equation 4 does not hold. There are two advan-
tages to this approach. First, recomputation can
now be done in parallel (with up to & processors)
rather than requiring a sequential computation.
Second, the beacon contract can now check any
claim of misbehavior with m = £ invocations of
either f or f~!, as appropriate.

This approach also has the advantage that the
prover simply needs to upload its k checkpoints
and then claims by verifiers can be adjudicated
with no further action.

Yi = f%(yiq)

The downside is that this approach requires
uploading k£ values to the contract, which is
expensive, and therefore large k is prohibitive.
We are left with the tradeoff that m - k = ¢,
where m is the number of invocations of f/f~!
that can be performed and k is the number of
intermediate states which can be uploaded. We
consider concrete parameters in Section V.

2) n-round refereeing protocol: The non-
interactive model provides a limited tradeoff. To
enhance it, observe that the prover is in fact
claiming that a certain pair y;_1,¥; iS incorrect,
that is, that y; # f* (y;_1). The prover can instead
make a slightly more specific claim by providing
a y, such that 4} = f#(y;_1). Now the prover’s
claim is similar to the verifier’s original claim,
only for a new iteration count ¢’ = £.

We can therefore run a second round in which
the original verifier is now the prover checking
the original prover’s claim. The original verifier
should itself provide a series of k checkpoints, to
which the original prover can claim any pair of
which are not valid.

In general, we can build an n-round protocol
using this intuition, with the prover and verifier
taking turns publishing a series of checkpoints
until the distance between checkpoints is small
enough (a distance m apart) that it is economical
for the contract to directly verify. This protocol is
defined in Protocol 1.

Note that a successful challenge does not prove
that y # F'(x) (nor does a failed challenge prove
that y = F'(x)). In either case, a malicous prover
or challenger can “lose” the protocol by choosing
a pair of checkpoints incorrectly at any given step.
However, the protocol does provider the property
that if y = F(z), an honest (and online) prover
can never be successfully challenged. Similarly, if
y # F(z), and honest and online challenger can
always mount a successful challenge.

3) Efficiency: Efficiency can be meaured in
terms of the number of rounds, the amount of data
sent to the contract, and the amount of compu-
tation performed by the contract. Given the total
amount of work ¢ performed by the prover, the
number of rounds n, the number of checkpoints &
sent in each round, and the number of iterations
m, the invariant must hold that:

t=m- k"



Protocol parameters:

f(): core function

t: desired number of invocations of f by the prover
F(): aggregate function, equivalent to f*()

x: input value

y: output value, y = F(z)

k: number of checkpoints per round
-: the jth checkpoint of round %

Q@s

P: the prover for the overall protocol
C': the challenger for the overall protocol
P,

The protocol then proceeds between the prover P and a challenger C' as follows, after P computes y = F'(z). The first
round requires both parties to post bonds and is thus slightly different:

1) P sends a fidelity bond of value bp to the contract.

2) P publishes the final value y and the initial checkpoints y8, . yg with y8 =z and yz =
3) Any challenger may post a fidelity bond of value b to begin the protocol.
The protocol then proceeds through n rounds, with the prover and challenger alternating roles in each round. Each round

i proceed as follows:

1) If 4 is odd, then the prover P; for this round is C. Otherwise, P; is P.

2) P; claims that a checkpoint y’]‘.*1 for j € [1, k] is incorrect.

3) If i < n, P; publishes a series of checkpoints ¢ ... y% with y§ = y;:ll and yij # y;‘f .
If the prover P; fails to provide a new set of checkpoints in any round ¢ within a given time period, the protocol aborts

and P;_q is considered the winner.

If all n rounds complete, then the contract computes f™*(y
final round. The contract then sets a flag b to true iff fm(y;‘_l) = y;‘_:f.
Alternately, if f~1 is easier to compute then the contract can compute f~™ (yn_l) and set b to true iff f _m(y;”_'fll) =

n—1

Yj

m number of invocations of f or f~! to be checked by the contract
n: number of rounds in the protocol. Without loss of generality, we assume n is even.

d;: the distance between checkpoints in round 4. That is, y§ = fdi(y y ). Note that d; = ¢

5. the challenger for round 3. If 4 is odd, P; = C. Otherwise P; = C.
b: a flag set by the contract as a result of its direct verification after the final round of the protocol.

n—

i—1 —m
. =

1

1) for the checkpoint y;.l 1 ¢laimed to be incorrect in the

Jj+1

Assuming n is even, then if b is true the challenger C is the winner and the challenge is upheld. If b is false, the final
prover P, = P is the winner and the challenge is rejected. Note that the protocol simply declares a winner, and proves
nothing about if y = F'(x). We discuss possible implications of the protocol in Section IV.

Protocol 1: n-round refereed computation prototocl

Assuming neither party aborts, the n-round proto-
col really consists of n+ 1 rounds, including a O™
round in which the prover publishes the claimed
value y L F(z). The total amount of data sent to
the contract is k - n checkpoint values (elements
from the range of f) and n indices of challenged
checkpoints (each an integer in the range [1, k].

III. SECURITY AND CORRECTNESS

To show the security of Protocol 1, we model
the interaction as a game between a prover P and
a challenger C'. We show that an honest prover
will always have a winning strategy against any
challenger, whereas for every dishonest prover,
there will always exist a challenger with a winning

strategy. Moreover, we show that the respective
winning strategy is simply following the steps of
Protocol 1 honestly.

This is still not enough, however, for the beacon
to be secure. The outcome of the game does not
prove whether or not the prover is honest and
posted the correct beacon output. For example, an
honest prover may incorrectly answer a challenge
(or abort) causing it to lose the game. Alterna-
tively, a dishonest prover may receive a challenge
for which it can win (i.e. the challenger did not
challenge at the correct checkpoint). The security
of the protocol instead rests on the existence of
winning strategies as well as an incentive structure
that ensures that rational actors will follow their



winning strategies.

In this section, we prove the existence of and
identify the winning strategies. In Section IV we
show how to incentivize the players to follow these
strategies.

First, we prove a simple lemma that will aid us
in our proofs.

Lemma 1 (Transition Point ). If yi # f&9i(y}),
there exists some j € [1,k], such that checkpoint
y; is incorrect, but checkpoint y;;l is correct. We
call y; the transition point.

Proof. The first checkpoint, ¥ is supplied by the
contract and will always be correct. In particular,
yy = x and for i € [1,n], yi = yjj where
y;’-_l is the checkpoint that was challenged from
the previous round. Thus, if we iterate through
checkpoints 4}, - -+, ! in order, the first incorrect
one that we encounter will be a transition point.
Moreover, we are guaranteed to encounter an
incorrect checkpoint since yi # f*4i(y}), which
means the the last checkpoint, y}c is incorrect. [

We now use this lemma to show that an honest
prover always has a winning strategy, and that
there is always a winning strategy for a challenger
against a dishonest prover.

We prove these as separate theorems. Our pro-
tocol has a recursive structure, and the prover in
one round becomes the challenger in the next. This
is reflected in out proof as our theorems reference
one another. The argument is not circular as every
time one theorem references the other, the round
is incremented, and each theorem proves its own
base case for the final round.

Theorem 1. Let P be a computationally un-
bounded prover and C be a computationally
bounded challenger. If in any round i € [1,n],
P posts a checkpoint i # f¥di(yd), there exists
a winning strategy for C.

Proof. To prove this theorem, we explicitly con-
struct the winning strategy.

If, i = n, C will be declared the winner by
the contract. In particular, the contract will itself
compute yi = fFdi(yi). Since §i # yi, C will
be declared the winner.

Ifi <n:

1) Compute yi = f*9i(y}) and compare each

checkpoint with the one posted by the prover.

2) Find the transition point y§ (i.e. the smallest
j such that the checkpoint posted by the
prover does not equal yj—) and post this as the
challenge. Since ¢! # f*i(y}), by Lemma
1, such a point is guaranteed to exist.

3) In round % 4+ 1 post the correct checkpoints
between yit!' = yi_; and ' =yt

4) At this point, the challenger has assumed
the role of the honest prover and thus has
a winning strategy by Theorem 2.

Thus, in any round there is a winning strategy

for C' against a dishonest prover.
O

Theorem 2. Let P be a computationally bounded
prover and C be a computationally unbounded
challenger. If in any round i € [1,n], P is an
honest prover, then there exists a winning strategy
for P against any C.

Proof. Since P is an honest prover, all of the
checkpoints that it posted were correct. Thus, if
i = n, the contract will itself compute yi =
fHdi(yd) and declare P to be the winner.

If i < n, then for j € [1,k], for every
checkpoint value, y;-, that the prover posted it will
be the case that y! = f*i(yi ;). To challenge,
C will have to choose a j and claim that y; is
incorrect. In particular, it will have to post a value
17; #* y; and claim that this is the correct value.

But since f is deterministic, we have that
gt # fFdi(yi_)). Thus, C assumes the role
of a dishonest prover in the next round, and by
Theorem 1, there exists a winning strategy for
P. O

IV. INCENTIVES

In this section we will discuss the incentive
structure required for running a public beacon.
In particular, four related behaviors need to be
incentivized:

1) There must be an incentive for some party
to compute the delay function—that is to
post some beacon output value onto the
blockchain.

2) There must be a stronger disincentive to
posting an incorrect output value.

3) Independent parties must have an incentive
to check the posted value and initiate a chal-
lenge if it is incorrect.



4) Independent parties must have a disincentive
to challenging a correct value.

These incentives can be intertwined. We define
the following values to reason about the incentive
structure:

1) ¢, is the cost of computing the beacon output

2) b, is a fidelity bond posted by the prover

3) c. is the cost of verifying the beacon output

4) b, is a fidelity bond required to initiate a
challenge

5) rp, is the reward collected by the prover for
posting a beacon value that was not success-
fully challenged within a set time period

6) r; is the reward collected by the prover for
posting an incorrect value that goes unchal-
lenged

7) p; is the probability that a value posted is
incorrect

8) p. be the probability that someone will chal-
lenge an incorrect value

A. Beacons as a public good

A randomness beacon meets the two economic
criteria of a public good. The utility of a beacon
is non-excludable (anybody can use the beacon’s
output for free, as it is visible on the blockchain).
Its utility is also non-rivalrous (utility is not dimin-
ished as more entities use the service). As a public
good, we should not expect that a beacon will be
provided by a private firm. Instead, it requires a
community effort to fund.

This might take the form of traditional nation-
state governments. For example, the US National
Institute of Standards and Technology (NIST)
currently operates a (non-verifiable) beacon as a
public service [19]. They could potentially fund a
verifiable blockchain-based beacon instead.

Short of nation-state support, the Ethereum
Foundation might be a natural institution to fund
a randomness beacon. The foundation’s mission
is to promote and support research, development
and education to bring decentralized protocols
and tools to the world. . ..

Alternately, a beacon might be supported by
crowdfunding or by an industry consortium of
gambling services seeking to increase public con-
fidence in their business.

1) Incentivizing computation: Assuming public
funding to support the beacon, some party must
actually compute it in return for payment. This
might simply be a contracted service provider who
is given sole charter to publish beacon outputs. An
alternate approach is an open-competition model
in which the first party that posts an output re-
ceives a reward. Two caveats are required here:
first, a commitment to the output (along with a
bond) should be published first to establish pri-
macy before revealing the output value, to prevent
a network attacker from observing an output value
about to be posted and posting it themselves.
Second, the party publishing the output must post
a fidelity bond greater than the reward, which is
lost if they fail to open their commitment or are
successfully challenged.

We assume that even with open competition,
the equilibrium state will be a single entity com-
puting the result. Unlike cryptocurrency mining,
in which even small miners are expected to find
the winning block with probability equal to their
overall share of the hash power, when computing a
delay function the party with the fastest hardware
will always win. Thus a single dominant beacon
operator is likely to emerge.

This makes the open-competition model similar
to the contracted provider model in practice. How-
ever, open competition has a significant benefit in
that it incentivizes hardware upgrades. A desig-
nated service provider with a long-term contract
will have little incentive to maintain the fastest
hardware to compute the delay function. In the
open-competition model, on the other-hand, some-
one with faster hardware will usurp the beacon
operator if they fail to upgrade their hardware, and
we can be sure that the beacon is being computed
at a speed on-par with the most efficient hardware.

In any event, in order to run the beacon there
must be a profitable reward for computing the
correct value. That is, 7, > ¢,.

B. Incentivizing Correctness

Assuming that incorrect result will always be
challenged successfully if posted, we can view
the fidelity bond posted as a means to prevent
spam and to fund successful challenges. We would
like to be able to ensure that there is never an
incentive to post an incorrect result, but this is not



the case if there is a non-negligible probability
that an incorrect result will go unchallenged. The
reason is that the potential gains r; from posting
an incorrect-but-unchallenged result are external
to the protocol and unbounded. For example, an
incorrect result can be used to ensure that the
party posting the value wins a lottery with some
arbitrarily prize. Thus, (r; + 7,) - (1 — p.) can
always be greater than p. - by,.

One potential fix would be to try to bound r;,
that is, to try to limit the amount of money any
party can make by fixing the beacon output. This
could take the form of limiting the prize value
in any lottery depending on the beacon. This is
very difficult to achieve in practice. First, it is
impossible to police what third-party services rely
on the beacon. Second, a cheating prover might
pseudonymously have stake in multiple different
third-party services, so the total incentive 7; is
difficult to infer.

A simpler approach is to assume that we can
achieve p. = 1, that is, to ensure that an incorrect
value will always be caught.

1) Reputation: While we have hitherto as-
sumed b, was a bond paid by the prover into the
beacon contract, we can generalize b, to include
anything the prover stands to lose from being
caught cheating.

Reputation is one such non-monetary asset that
a beacon operator risks losing by posting an in-
correct beacon value. If the beacon operator is a
reputable organization (e.g. NIST), then b, will
contain not only the monetary bounty but also
the “reputation cost” of cheating. By posting an
incorrect value, the beacon operator risks losing
both its monetary bond and its credibility.

Interestingly, the organization’s reputation not
only inflates b, but it also will likely inflate p. —
that is, people may be eager to expose a reputable
organization and will be likely to check the beacon
value even if they have no monetary stakes on the
output.

C. Incentivizing verification

We can incentivize parties to verify (and chal-
lenge if appropriate) by offering an on-chain
challenge reward, 7., to successful challengers,
paid out of the prover’s fidelity bond. We should
obviously require that . > c. (the reward for

challenging is greater than the cost of verification)
or else it would not be rewarding to challenge.

However, note that paying the entire bond to
the challenger is a mistake. This would enable a
cheating prover to notice if a challenge is being
initiated on the network and frontrun by quickly
challenging itself instead. This correct challenge
would enable the prover to retain its fidelity bond.
Thus, a significant portion of the fidelity bond
should be burned,

to ensure that the prover will lose money for
posting an incorrect value even if it recoups the
challenger’s reward 7.

While we must ensure that 7. > c., this is not
enough as we assume most posted values will be
correct and there is no reward possible if a correct
value is posted. Thus, we must ensure that 7. -
pi > ¢, taking into account the (hopefully small)
probability that the posted value is incorrect.

This is still not enough to ensure that verifi-
cation will actually occur for two reasons. First,
given that only the first correct challenger can
be paid (otherwise the same challenger might be
pseudonymously paid multiple times), all potential
challengers might assume they are unlikely to win
the race to challenge and hence not bother to
verify, similar to the way that an open competition
to compute the beacon value is likely to reach
an equilibrium of only one party computing it.
A malicious prover might actually try to amplify
this effect by occasionally posting an incorrect
value and quickly challenging, making it appear
that a very fast challenger exists that other cannot
compete with.

A second problem is that all potential chal-
lengers might rationally conclude that given an
ecosystem with challengers, p; is likely to be zero
and hence there is no incentive to verify. This is
an example of a bystander effect.

To combat these problems, we again may have
to rely on public funding to subsidize a market for
challengers. This can be done by paying for the
challenge rewards (and lost bonds) from intention-
ally posting some incorrect results. By regularly
posting incorrect values (at random times) and
seeing that they are challenged, the beacon funders
can be assured that a healthy ecosystem of veri-
fiers actually exists. Knowing that these incorrect
values are being posted should also overcome the



bystander problem as verifiers know that it is
worthwhile to verify posted results.

D. Disincentivizing incorrect challenges

Finally, we must discourage invalid challenges.
To do this, we require that the challenger puts up
a fidelity bond b, that it will lose in the event
that its challenge is found to be incorrect. As we
assume that the prover will always complete the
protocol and disprove false challenges, there is no
real incentive for a challenger to do this other than
to deny or delay service to the beacon, and thus a
small fee should discourage such an attack.

V. COSTS AND PARAMETERS

In this section we discuss realistic parameters
and evaluate costs for our Ethereum implementa-
tion of Protocol 1. Our implementation is available
online.’

Our main objective in selecting parameters is
to minimize the overall cost of maintaining the
beacon service and of challenging an incorrect
result. As discussed in Section IV, public funding
is likely needed both to run the beacon service
and to ensure challenges are regularly executed.
The lower the transaction costs imposed by these
protocols, the less public funding is needed. In
Ethereum the cost of executing functionality on
a contract is measured in gas which is paid for
using ether, the built-in currency of Ethereum.
This means that all execution carries a precise
monetary cost.

A. Selecting the delay function f

When selecting the delay function the objective
is that it can cheaply be verified relative to the
time it took the prover to compute. The best delay
function therefore minimizes the verification cost
required per real-world compute time. We evalu-
ate two basic approaches: using a cryptographic
hash function and using modular square roots. As
discussed in Section I, modular square roots cur-
rently provide the best known delay function with
asymmetric verification time. However, Ethereum
provides a built-in instruction for the Keccak-256

Shttps://gist.github.com/anonymous/
d30af9d7ea52c0882ed433cd675b5207

hash function [7] (now standardized as SHA-3)
which costs only 40 gas, making it relatively cheap
to verify by recomputation. Ethereum also pro-
vides a built-in instruction for SHA-256, although
it costs more at which costs only 76 gas.

We implemented modular squarings in Solidity
(i.e. the verification of a modular square root)
computed the gas cost for 512-bit and 1024-bit
moduli. We also implemented iterated Keccak
directly in EVM (assembly language). We bench-
marked computing both functions on an Intel Core
i5-6360U CPU using OpenSSL. The results are
provided in Table I.

As can be seen, the hash functions provide a
better tradeoff today given the very cheap cost
of computing them in Ethereum today. Keccak
is marginally better than SHA-256, again due to
the current gas price schedule. For the future,
there exists a proposal® to add RSA signature
verification as a cheap precompiled contract to
Ethereum, which would change the calculation
and likely favor modular square roots. RSA signa-
ture verification is essentially a modular squaring
and such a precompiled contract would allow for
cheap verification of modular square roots.

B. Parameter selection and cost estimation

We evaluated our prototype implementation of
Protocol 1 for the multi-round protocol using
Keccak-256 as the basic function f. In addition to
selecting a core function f, we need to choose an
iteration count ¢ (with F() = f*()), the number
of checkpoints per rounds k£ and the number of
iterations m performed by the contract in the final
round of the protocol. We fixed ¢ = 2° to simulate
a very long delay function (on the fastest hardware
available’, this would take roughly 3500 seconds,
or 1 hour, to compute) and selected the optimal
m and k for different number of rounds.

In Figure 1 we present the costs for different
optimal parameterizations given a fixed number
of rounds. We computed the results for different
values of k as additional rounds may have costs
beyond the simple gas consumed . Most impor-
tantly, the number of rounds increases the time it
takes to mount a challenge and therefore also the

Shttps://github.com/ethereum/EIPs/issues/74
Taccording to https://bench.cr.yp.to


https://gist.github.com/anonymous/d30af9d7ea52c0882ed433cd675b5207
https://gist.github.com/anonymous/d30af9d7ea52c0882ed433cd675b5207
https://github.com/ethereum/EIPs/issues/74
https://bench.cr.yp.to
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computation verification ratio
function cycles gas USD USD/106 cycles
vz (mod p), 256-bit modulus 10500 97 1.32-107% 0.012
vz (mod p), 512-bit modulus 20998 36,492 0.050 2.364
vz (mod p), 1024-bit modulus 28070 109,882 0.149 5.324
Keccak-256 (SHA-3) 1233 486 6.61-107° 0.054
SHA-256 1203 84.6 1.15-107% 0.111

TABLE I: Computation costs (using data for AMD64;Skylake from https://bench.cr.yp.to) vs. verifi-
cation costs (in Ethereum, expressed in both gas and US dollars at the exchange rate of at the time
of this writing) for different delay functions. Computation costs are expressed in cycles on a skylake
amd64 chip. Verification costs in Ethereum are expressed in both gas and US dollars, at the exchange
rate of 1 ether ~ $68 and 1 gas ~ 2 - 10~8 ether. The computation/verification ratio is expressed in
terms of the gas cost (measured in usd) of verifying a million cycles of computation.

overall challenge period even if no challenge is
mounted. We therefore suggest setting the number
of rounds to 6 (k = 2% m = 28) for t = 240 as it
only has marginally higher cost than the optimum
value of 9 rounds (k = 23, m = 219). The added
benefit of 3 fewer rounds probably outweighs the
slight increase in gas cost in practice.

Gas cost for different parameterizations in cents

—aChallenger cost No Challenge cost

Fig. 1: Gas costs (in USD) for the protocol with
t = 240 for different values of k (with m chosen
optimally given the choice of k).
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