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Abstract The ability to process large numbers of con-

tinuous data streams in a near-real-time fashion has

become a crucial prerequisite for many scientific and

industrial use cases in recent years. While the individ-

ual data streams are usually trivial to process, their

aggregated data volumes easily exceed the scalability

of traditional stream processing systems.

At the same time, massively-parallel data process-

ing systems like MapReduce or Dryad currently en-

joy a tremendous popularity for data-intensive appli-

cations and have proven to scale to large numbers of

nodes. Many of these systems also provide streaming

capabilities. However, unlike traditional stream proces-

sors, these systems have disregarded QoS requirements

of prospective stream processing applications so far.

In this paper we address this gap. First, we analyze

common design principles of today’s parallel data pro-

cessing frameworks and identify those principles that

provide degrees of freedom in trading off the QoS goals
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latency and throughput. Second, we propose a highly

distributed scheme which allows these frameworks to

detect violations of user-defined QoS constraints and

optimize the job execution without manual interaction.

As a proof of concept, we implemented our approach

for our massively-parallel data processing framework

Nephele and evaluated its effectiveness through a com-

parison with Hadoop Online.

For an example streaming application from the mul-

timedia domain running on a cluster of 200 nodes, our

approach improves the processing latency by a factor of

at least 13 while preserving high data throughput when

needed.

1 Introduction

In the course of the last decade, science and the IT in-

dustry have witnessed an unparalleled increase of data.

While the traditional way of creating data on the In-

ternet allowed companies to lazily crawl websites or re-

lated data sources, store the data on massive arrays of

hard disks, and process it in a batch-style fashion, re-

cent hardware developments for mobile and embedded

devices together with ubiquitous networking have also

drawn attention to streamed data.

Streamed data can originate from various different

sources. Every modern smartphone is equipped with

a variety of sensors, capable of producing rich media

streams of video, audio, and possibly GPS data. More-

over, the number of deployed sensor networks is steadily

increasing, enabling innovations in several fields of life,

for example energy consumption, traffic regulation, or

e-health. However, an important prerequisite to lever-

age those innovations is the ability to process and an-

alyze a large number of individual data streams in a
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near-real-time manner. As motivation, we would like to

illustrate two emerging scenarios:

– Live Media Streaming: Today, virtually all smart

phones can produce live video streams. Several web-

sites like Justin.tv [2], Livestream [3], or Ustream [6]

have already responded to that development and of-

fer their users to produce and broadcast live media

content to a large audience in a way that has been

reserved to major television networks before. In re-

cent years, these platforms have been recognized to

support a new form of “citizen journalism” during

the political incidents in the Middle East or the

“Occupy Wall Street” movement. However, at the

moment, the capabilities of those live broadcasting

services are limited to media transcoding and simple

picture overlays. Although the content of two differ-

ent streams may overlap to a great extent (for exam-

ple because the people filming the scene are standing

close to each other), they are currently processed

completely independent of each other. In contrast

to that, future services might also offer to automat-

ically aggregate and relate streams from different

sources, thereby creating a more complete picture

and eventually better coverage for the viewers.

– Energy Informatics: Smart meters are currently

being deployed in a growing number of consumer

homes by power utilities. Technically, a smart meter

is a networked device that monitors a household’s

power consumption and reports it back to the power

utility. On the utility’s side, having such near-real-

time data about power consumption is a key aspect

of managing fluctuations in the power grid’s load.

Such fluctuations are introduced not only by con-

sumers but also by the increasing, long-term inte-

gration of renewable energy sources. Data analytics

applications that are hooked into the live meter data

stream can be used for many operational aspects

such as monitoring the grid infrastructure for equip-

ment limits, initiating autonomous control actions

to deal with component failures, voltage sags/spikes,

and forecasting power usage. However, especially in

scenarios that involve autonomous control actions,

the freshness of the data that is being acted upon is

of paramount importance.

Opportunities to harvest the new data sources in

the various domains are plentiful. However, the sheer

amount of incoming data that must be processed online

also raises scalability concerns with regard to existing

solutions. As opposed to systems working with batch-

style workloads, stream processing systems must often

meet particular Quality of Service (QoS) goals, other-

wise the quality of the processing output degrades or

the output becomes worthless at all. Existing stream

processors [9,10] have put much emphasis on meeting

provided QoS goals of applications, though often at the

expense of scalability or a loss of generality [27].

In terms of scalability and programming generality,

the predominant workhorses for data-intensive work-

loads at the moment are massively-parallel data pro-

cessing frameworks like MapReduce [19] or Dryad [21].

By design, these systems scale to large numbers of nodes

and are capable of efficiently transferring large amounts

of data between them. Many of the newer systems [16,

18,21,26,28] also allow to assemble complex parallel

data flow graphs and to construct pipelines between the

individual parts of the flow. Therefore, these systems

generally are also suitable for streaming applications.

However, so far they have only been used for relatively

simply streaming application, like online aggregation or

“early out” computations [18], and have not considered

QoS goals.

In this paper we attempt to bridge that gap. We

have analyzed a series of open-source frameworks for

parallel data processing and highlight common design

principles they share to achieve scalability and high

data throughput. We show how some aspects of these

design principles can be used to trade off the QoS goals

latency and throughput in a fine-grained per-task man-

ner and propose a scheme to automatically do so dur-

ing the job execution based on user-defined latency

constraints. Starting from the assumption that high

data throughput is desired, our scheme monitors po-

tential latency constraint violations at runtime and can

then gradually apply two techniques, adaptive output

buffer sizing and dynamic task chaining, to met the

constraints while maintaining high throughput as far

as possible. As a proof of concept, we implemented

the scheme for our massively-parallel data processing

framework Nephele and evaluated their effectiveness

through a comparison with Hadoop Online.

This paper is an extended version of [24]. In com-

parison to the original work, this version extends our

approach by a new, fully-distributed scheme to monitor,

collect, and process the QoS data. Moreover, it contains

the results of new experimental evaluations, conducted

on a large-scale cluster with 200 nodes as well as an

updated related work section.

The rest of this paper is structured as follows: In

Section 2 we examine the common design principles of

today’s massively-parallel data processing frameworks

and discuss the implications for meeting the aforemen-

tioned QoS constraints. Section 3 presents our scheme

to dynamically adapt to the user-defined latency con-

straints, whereas Section 4 contains an experimental

evaluation. Section 5 contrasts our work against exist-
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ing stream and parallel data processors. Finally, we con-

clude our paper in Section 6.

2 Massively-Parallel Data Processing and

Streamed Data

In recent years, a variety of frameworks for massively-

parallel data analysis has emerged [16,18,19,21,26,28].

Many of those systems are available in an open-source

version. After having analyzed their internal structure,

we found they often follow common design principles to

achieve scalability and high throughput.

In this section we highlight those common design

principals and discuss their implications on stream pro-

cessing under QoS constraints.

2.1 Design Principles of Massively-Parallel Data

Processing Frameworks

Frameworks for massively-parallel data processing typ-

ically follow a master-worker pattern. The master node

receives jobs from the user, splits them into sets of indi-

vidual tasks, and schedules those tasks to be executed

on the available worker nodes.

The structure of those jobs can usually be described

by a graph with vertices representing the job’s individ-

ual tasks and the edges denoting communication chan-

nels between them. For example, from a high-level per-

spective, the graph representation of a typical MapRe-

duce job would consist of a set of Map vertices con-

nected to a set of Reduce vertices. Some frameworks

have generalized the MapReduce model to arbitrary

directed acyclic graphs (DAGs) [16,21,28], some even

allow graph structures containing loops [26].

However, independent of the concrete graph model

used to describe the jobs for the respective parallel pro-

cessing framework, the way both the vertices and edges

translate to system resources at runtime is surprisingly

similar among all of these systems.

Each task vertex of the overall job typically trans-

lates to either a separate process or a separate thread

at runtime. Considering the large number of CPUs (or

CPU cores) these frameworks must scale up to, this is

a reasonable design decision. By assigning each task to

a different thread/process, those tasks can be executed

independently and utilize a separate CPU core. More-

over, it gives the underlying operating system various

degrees of freedom in scheduling the tasks among the

individual CPU cores. For example, if a task cannot

fully utilize its assigned CPU resources or is waiting for

an I/O operation to complete, the operating system can

assign the idle CPU time to a different thread/process.

In most cases, the communication model of parallel

data processing systems follows a producer-consumer

pattern. Tasks can produce a sequence of data items

which are then passed to and consumed by their succes-

sor tasks according to the edges of the job’s graph repre-

sentation. The way the data items are physically trans-

ported from one task to the other depends on the con-

crete framework. In the most lightweight case, two tasks

are represented as two different threads running inside

the same operating system process and can use shared

memory to exchange data. If tasks are mapped to dif-

ferent processes, possibly running on different worker

nodes, the data items are typically exchanged through

files or a network connection.

However, since all of these frameworks have been

designed for data-intensive workloads and hence strive

for high data throughput, they attempt to minimize

the transfer overhead per data item. As a result, these

frameworks try to avoid shipping individual data items

from one task to the other. As illustrated in Figure 1,

the data items produced by a task are typically col-

lected in a larger output buffer. Once its capacity limit

has been reached, the entire buffer is shipped to the re-

ceiving task and in many cases placed in its input buffer

queue, waiting to be consumed.

2.2 Implications for QoS-Constrained Streaming

Applications

After having highlighted some basic design principles of

today’s massively-parallel data processing frameworks,

we now discuss which aspects of those principles provide

degrees of freedom in trading off the different QoS goals

latency and throughput.

2.2.1 The Role of the Output Buffer

As explained previously, most frameworks for paral-

lel data processing introduce distinct output buffers to

minimize the transfer overhead per data item and im-

prove the data item throughput, i.e. the average number

of items that can be shipped from one task to the other

in a given time interval.

For the vast majority of data processing frameworks

we have analyzed in the scope of our research, the out-

put buffer size could be set on a system level, i.e. all

jobs of the respective framework instance were forced

to use the same output buffer sizes. Some frameworks

also allowed to set the output buffer size per job, for

example Apache Hadoop [7]. Typical sizes of these out-

put buffers range from several MB down to 8 or 4 KB,

depending on the focus of the framework.
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Fig. 1 Typical processing pattern of frameworks for massively-parallel data analysis
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Fig. 2 The effect of different output buffer sizes on data item latency and throughput

While output buffers are pivotal to achieve high

data throughputs, they also make it hard to optimize

jobs for current massively-parallel data processors to-

wards the QoS goal latency. Since an output buffer is

typically not shipped until it has reached its capacity

limit, the latency which an individual data item expe-

riences depends on the system load.

To illustrate this effect, we created a small sample

job consisting of two tasks, a sender task and a receiver

task. The sender created data items of 128 bytes length

at a fixed rate n and wrote them to an output buffer

of a fixed size. Once an output buffer had reached its

capacity limit, it was sent to the receiver through a

TCP connection. We ran the job several times. After

each run, we varied the output buffer size.

The results of this initial experiment are depicted

in Figure 2. As illustrated in Figure 2(a), the average

latency from the creation of a data item at the sender

until its arrival at the receiver depends heavily on the

creation rate and the size of the output buffer. With

only one created data item per second and an output

buffer size of 64 KB, it takes more than 222 seconds

on an average before an item arrives at the receiver. At

low data creation rates, the size of the output buffer has

a significant effect on the latency. The more the data

creation rate increases, the more the latency converges

towards a lower bound. At a rate of 108 created items

per second, we measured an average data item latency

of approximately 50 milliseconds (ms), independent of

the output buffer size.

As a baseline experiment, we also executed sepa-

rate runs of the sample job which involved flushing

incomplete output buffers. Flushing forced the system

to transfer the output buffer to the receiver after each

written data item. As a result, the average data item

latency was uniformly 38 ms, independent of the data

creation rate.

Figure 2(b) shows the effects of the different data

creation rates and output buffer sizes on the through-

put of the sample job. While the QoS objective latency

suggests using small output buffers or even flushing in-

complete buffers, these actions show a detrimental ef-

fect when high data throughput is desired. As depicted

in Figure 2(b), the data item throughput that could
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be achieved grew with the size of the output buffer.

With relatively large output buffers of 64 or 32 KB in

size, we were able to fully saturate the 1 GBit/s net-

work link between the sender and the receiver, given a

sufficiently high data creation rate. However, the small

output buffers failed to achieve a reasonable data item

throughput. In the most extreme case, i.e. flushing the

output buffer after every written data item, we were un-

able to attain a data item throughput of more than 10

MBit/s. The reason for this is the disproportionately

high transfer overhead per data item (output buffer

meta data, memory management, thread synchroniza-

tion) that parallel data processing frameworks in gen-

eral are not designed for. A similar behavior is known

from the TCP networking layer, where the Nagle algo-

rithm can be deactivated (TCP NODELAY option) to

improve connection latency.

In sum, the sample job highlights an interesting

trade-off that exists in current data processing frame-

works with respect to the output buffer size. While jobs

with low latency demands benefit from small output

buffers, the classic data-intensive workloads still require

relatively large output buffers in order to achieve high

data throughput. This trade-off puts the user in charge

of configuring a reasonable output buffer size for his job

and assumes that (a) the used processing framework al-

lows him to specify the output buffer size on a per-job

basis, (b) he can estimate the expected load his job will

experience, and (c) the expected load does not change

over time. In practice, however, at least one of those

three assumptions often does not hold. One might also

argue that there is no single reasonable output buffer

size for an entire job as the job consists of different

tasks that produce varying data item sizes at varying

rates, so that any chosen fixed output buffer size can

only result in acceptable latencies for a fraction of the

tasks but not for all of them.

2.2.2 The Role of the Thread/Process Model

Current frameworks for parallel data processing typ-

ically map different tasks to different operating sys-

tem processes or at least different threads. While this

facilitates natural scalability and load balancing be-

tween different CPUs or CPU cores, it also raises the

communication overhead between tasks. In the most

lightweight case, where different tasks are mapped to

different threads within the same process and commu-

nication is performed via shared memory, the commu-

nication overhead typically only consists of thread syn-

chronization, scheduling, and managing cache consis-

tency issues. However, when the communicating tasks

are mapped to different processes or even worker nodes,

passing data items between them additionally involves

serialization/deserialization and, depending on the way

the data is exchanged, writing the serialized data to the

network/file system and reading it back again.

Depending on the complexity of the tasks, the com-

munication overhead can account for a significant frac-

tion of the overall processing time. If the tasks them-

selves are lightweight, but the data items are rather

large and complex to serialize/deserialize (as in case of

a filter operation on a nested XML structure [12]), the

overhead can limit the throughput and impose a con-

siderable processing latency.

Compute Node X 

Input Buffer 

Queue 

Thread/ 

Process 

Output 

Buffer 

Thread/ 

Process 

Task n Task n+1 

(a) Pipeline without task chaining

Compute Node X 

Input Buffer 

Queue 

Output 

Buffer 

Thread/ 

Process 

Task n Task n+1 

(b) Pipeline with task chaining

Fig. 3 Different execution models with and without task
chaining

As illustrated in Figure 3, a common approach to

address this form of communication overhead is to chain

lightweight tasks together and execute them in a single

thread/process. The most popular example in the area

of parallel data processing is probably the chained map

functions from Apache Hadoop. However, a similar idea

was also described earlier as rewriting a program to its

“normal form” by Aldinucci and Danelutto [11] in the

context of stream parallel skeletons.

Before starting a Hadoop job, a user can specify a

series of map functions to be chained. Hadoop will then

execute these functions in a single process. Chaining

tasks often also eliminates the need for separate output

buffers. For example, in case of Hadoop’s chained map

functions, the user code of the next map function in the

processing chain can be directly invoked on the previous

map function’s output. Depending on the semantics of

the concatenated tasks, chaining may also render the

serialization/deserialization between tasks superfluous.

If the chained tasks are stateless (as typically expected

from map functions in Hadoop), it is safe to pass the

data items from one task to the other by reference.
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With regard to stream processing, chaining tasks

is an interesting approach to reduce processing latency

and increase throughput at the same time. However,

similar to the output buffer size, there might also be an

important trade-off, especially when the job’s workload

is unknown in advance or likely to change over time.

Currently, task chaining is performed at compile

time, so once the job is running, all chained tasks are

bound to a single execution thread. In situations with

low load, this might be beneficial since communication

overhead is decreased and potential throughput and

latency goals can be met more easily. However, when

the load increases in the course of the job processing,

the static chaining prevents the underlying operating

system from distributing the tasks across several CPU

cores. As a result, task chaining can also be disadvan-

tageous if (a) the complexity of the chained tasks is

unknown in advance or (b) the workload the streaming

job has to handle is unknown or changes over time.

3 Automated QoS-Optimization for Streaming

Applications

Currently, it is the user of a particular parallel data

processing framework who must estimate the effects of

the configured output buffer size and thread/process

model on a job’s latency and throughput characteristics

in a cumbersome and inaccurate manner.

In this section, we propose an extension to parallel

data processing frameworks which spares the user this

hassle. Starting from the assumption that high through-

put continues to be the predominant QoS goal in par-

allel data processing, our extension lets users add la-

tency constraints to their job specifications. Based on

these constraints, it continuously monitors the job ex-

ecution and detects violations of the provided latency

constraints at runtime. Our extension can then selec-

tively trade high data throughput for a lower processing

latency using two distinct strategies, adaptive output

buffer sizing and dynamic task chaining.

As a proof of concept, we implemented this exten-

sion as part of our massively-parallel data processing

framework Nephele [28], which runs data analysis jobs

based on DAGs. However, based on the common prin-

ciples identified in the previous section, we argue that

similar strategies are applicable to other parallel data

processing frameworks as well.

3.1 Prerequisites

For the remainder of the paper, we will assume that

the underlying structure of a job is a DAG. For a given

Compute Node X

Runtime

Vertex 1(1)

Compute Node Y

Runtime

Vertex 1(2)

Runtime

Vertex 1(3)

Runtime

Vertex 1(4)

Runtime
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Runtime

Vertex 2(2)

Runtime

Vertex 2(3)

Runtime

Vertex 3(1)

Runtime

Vertex 3(2)

Compute Node Z

Job Vertex 1

Job Vertex 2

Job Vertex 3

Fig. 4 Exemplary job graph with embedded runtime graph
and worker node allocation

job we will formally distinguish between two represen-

tations, the job graph and the runtime graph. The job

graph is a compact description of the of the job’s struc-

ture provided by the user and serves as a template for

constructing the runtime graph. The runtime graph is

then derived from the job graph by the execution frame-

work once the job is started.

3.1.1 The Job Graph

The job graph is provided by the user and indicates to

the framework which user code to run and with which

degree of parallelism this should be done. It shall be

defined as a DAG JG = (JV, JE) that consists of job

vertices jv ∈ JV connected by directed job edges je ∈
JE.

3.1.2 The Runtime Graph

The runtime graph is a parallelized version of the job

graph to be used by the execution framework during

job execution. It shall be defined as a DAG G = (V,E)

where each runtime vertex v ∈ V is a task containing

user code. The directed runtime edge e = (v1, v2) ∈ E
is a channel along which the task v1 can send data items

of arbitrary size to task v2. The terms task and runtime

vertex, as well as channel and runtime edge will be used

synonymously.

At runtime, each job vertex is equivalent to a set of

vertices in the runtime graph. For notational simplicity

we shall sometimes view job vertices as sets jv ⊆ V .

Analogous, each job edge je ⊆ E shall be regarded as

a set of runtime graph edges.

Each vertex of the runtime graph is allocated to

a worker node by the framework. We will denote this
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mapping by worker(v) ∈ W , where W is the set of all

worker nodes.

Figure 4 shows the underlying structure of a job

in an aggregated form, depicting both the job graph

as well as the runtime graph. Note that the details of

how the mapping between job and runtime graph is

constructed is left up to the framework and that we do

not make any assumption other than the existence of

the two graphs and the existence of a relationship.

3.2 Specifying Latency Constraints

In order to specify latency constraints, a user must be

aware how much latency his application can tolerate in

order to still be useful. With his knowledge from the

application domain a user should then identify latency

critical series of vertices and edges within the job graph

for which he can express required upper latency bounds

in the form of job constraints. Since the job constraints

are part of the job description provided by the user,

they must be attached to the job graph and indicate to

the framework which portions of the runtime graph to

monitor and optimize.

In the following, we will first introduce the runtime-

level notions of task, channel, and sequence latency.

Based on these, we will define the semantics of user-

provided latency constraints on the job graph.

3.2.1 Task Latency

Given three tasks vi, vx, vy ∈ V , an incoming channel

ein = (vx, vi) and an outgoing channel eout = (vi, vy),

we shall define the task latency tl(d, vi, vx→vy) as the

time difference between a data item d entering the user

code of vi via the channel ein and the next data item

exiting the user code via eout.

This definition has several implications. First, task

latency is undefined on source and sink tasks as these

task types lack incoming or, respectively, outgoing chan-

nels. Task latencies can be infinite if the task never

emits for certain in/out channel combinations. More-

over, task latency can vary significantly between sub-

sequent items, for example, if the task reads two items

but emits only one item after it has read the last one of

the two. In this case the first item will have experienced

a higher task latency than the second one.

3.2.2 Channel Latency

Given two tasks vi, vj ∈ V connected via channel e =

(vi, vj) ∈ E, we define the channel latency cl(d, e) as the

time difference between the data item d exiting the user

code of vi and entering the user code of vj . The channel

latency may also vary significantly between data items

on the same channel due to differences in item size, out-

put buffer utilization, network congestion, and queues

that need to be transited on the way to the receiving

task.

3.2.3 Sequence Latency

We shall define a sequence as an n-tuple of connected

tasks and channels. Sequences can thus be used to iden-

tify the parts of the runtime graph for which the appli-

cation has latency requirements.

Let us assume a sequence S = (s1, . . . , sn), n ≥ 1

of connected tasks and channels. The first element of

the sequence is allowed to be either a task or a channel,

the same holds for the last element. For example, if s2
is a task, then s1 needs to be an incoming and s3 an

outgoing channel of the task. If a data item d enters the

sequence S, we can define the sequence latency sl(d, S)

that the item d experiences as sl∗(d, S, 1) where

sl∗(d, S, i) =

{
l(d, si) + sl∗(si(d), S, i+ 1) if i < n

l(d, si) if i = n

If si is a task, then l(d, si) is equal to the task la-

tency tl(d, si, vx→vy) and si(d) is the next data item

emitted by si to be shipped via the channel (si, vy).

If si is a channel, then l(d, si) is the channel latency

cl(d, si) and si(d) = d.

3.2.4 Latency Constraints

When the user has identified latency critical portions

of the job graph, he can express his requirements as

latency constraints on the respective parts of the job

graph. Similar to the way the runtime graph is derived

from the job graph, a framework can derive runtime

latency constraints from user-provided job latency con-

straints. We will first introduce a formal notion of job

latency constraints and then describe how the relation-

ship between job and runtime graph can be used to

derive runtime latency constraints.

Job Latency Constraints Analogous to the runtime-level

sequence introduced in Section 3.2.3 we can define a

job-level sequence. A job sequence JS shall be defined

as an n-tuple of connected vertices and edges within the

job graph, where both the first and last element can be

a job vertex or a job edge. Each JS is hence equivalent

to a set of sequences {S1, . . . , Sn} within the runtime

graph.

For latency critical job sequences, the user can ex-

press his or her maximum tolerable latency as a set



8 Björn Lohrmann et al.

of job constraints JC = {jc1, . . . , jcn} to be attached

to the job graph. Each such constraint jci = (JS, l, t)

expresses a desired upper latency limit l for the data

items passing through all the runtime-graph sequences

of JSi during any time span of t time units.

Runtime Latency Constraints A given job constraint

jc = (JS, l, t) induces a set of runtime constraints C =

{C1, . . . , Cn}. Each runtime constraint C = (Si, l, t) is

induced by exactly one of the runtime sequences of JS.

Such a runtime constraint expresses a desired upper

latency limit l for the arithmetic mean of the sequence

latency sl(d, Si) over all the data items d ∈ Dt that

enter the sequence Si during any time span of t time

units:∑
d∈Dt

sl(d, Si)

|Dt|
≤ lSi

(1)

Note that a runtime constraint does not specify a

hard upper latency bound for every single data item

but only a “statistical” upper bound over the items run-

ning through the workflow during the given time span

t. While hard upper bounds for each item may be desir-

able, we doubt that meaningful hard upper bounds can

be achieved considering the complexity of most real-

world setups in which such parallel data processing

frameworks are deployed. In this context the purpose

of the time span t is to provide a concrete time frame

for which the violations of the constraint can be tested.

With t→∞ the constraint would cover all data items

ever to pass through the sequence of tasks and chan-

nels. In this case, it is not possible to evaluate during

the job’s execution whether or not the constraint has

been violated as we may be dealing with a possibly in-

finite stream of items.

3.3 Measuring Workflow Latency

In order to make informed decisions where to apply

optimizations to a running workflow we designed and

implemented means of sampling and estimating the la-

tency of a sequence. The master node that has global

knowledge about the defined latency constraints will in-

struct the worker nodes about where they have to per-

form latency measurements. For the elements (task or

channel) of each constrained sequence, latencies will be

measured on the respective worker node once by during

a configured time interval, the measurement interval.

This scheme can quickly produce high numbers of mea-

surements with rising numbers of tasks and channels.

For this reason, each node runs a QoS Reporter that

locally preaggregates measurement data on the worker

node and prepares a report for each QoS Manager it

has to report to. For which QoS Managers reports must

be sent is determined by the scheme described in Sec-

tion 3.4. To avoid bursts of reports, the QoS Reporter

chooses a random offset for the reports of each QoS

Manager. Each report contains the following data:

1. An estimation of the average channel latency of

the locally incoming channels (i.e. it is an incom-

ing channel on the worker node) of the constrained

sequences that the QoS Manager is interested in.

The average latency of a channel is estimated using

tagged data items. A tag is a small piece of data

that contains a creation timestamp and a channel

identifier and it is added when a data item exits the

user code of the channel’s sender task and is evalu-

ated just before the data item enters the user code

of the channel’s receiver task. The QoS Reporter on

the receiving worker node will then add the mea-

sured latency to its aggregated measurement data.

The tagging frequency is chosen in such a way that

we have one tagged data item during each measure-

ment interval if there is any data flowing through

the channel. If the sending and receiving tasks are

executed on different worker nodes, clock synchro-

nization is required.

2. The average output buffer lifetime for each locally

outgoing channel of the constrained sequences that

the QoS Manager is interested in. This is the average

time it took for output buffers to be filled.

3. An estimation of the average task latency for each

task of the constrained sequences that the QoS Man-

ager is interested in. Task latencies are measured in

an analogous way to channels, but here we do not

require tags. Once every measurement interval, a

task will note the difference in system time between

a data item entering the user code and the next

data item leaving it on the channels specified in the

constrained sequences. Again, the measurement fre-

quency is chosen in a way that we have one latency

measurement during each measurement interval.

As an example, let us assume a constrained sequence

S = (e1, v1, e2). Tags will be added to the data items

entering channel e1 once every measurement interval.

Just before a tagged data item enters the user code of

v1, the tag is removed from the data item and the dif-

ference between the tag’s timestamp and the current

system time is added to the locally aggregated mea-

surement data. Let us assume a latency measurement

is required for the task v1 as well. In this case, just be-

fore handing the data item to the task, the current sys-

tem time is stored in the task’s environment. The next

time the task outputs a data item to be shipped via

channel e2 the difference between the current system
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time and the stored timestamp is again added to the

locally aggregated measurement data. Before handing

the produced data item to the channel e2, the worker

node may choose to tag it, depending on whether we

still need a latency measurement for this channel. Once

every measurement interval the QoS Reporters on the

worker nodes flush their reports with the aggregated

measurement data to the assigned QoS Managers.

A QoS Manager stores the reports it receives from

its reporters. For a given constraint (Si, lSi
, t) ∈ C, it

will keep all latency measurement data concerning the

elements of Si that are fresher than t time units and

discard all older measurement data. Then, for each ele-

ment of Si, it will compute a running average over the

measurement values and add the results up to an esti-

mation of the left side of Equation 1. The accuracy of

this estimation depends mainly on the chosen measure-

ment interval.

The aforementioned output buffer lifetime measure-

ments are subjected to the same running average proce-

dure. To the running average of the output buffer life-

time of channel e over the past t time units we shall

refer as oblt(e, t). Note that the time individual data

items spend in output buffers is already contained in

the channel latencies, hence we do not need the output

buffer lifetime to estimate sequence latencies. It does

however play the role of an indicator when trying to

locate channels where the output buffer sizes can be

optimized (see Section 3.5).

3.4 Locating Constraints Violations

The task of analyzing all of the measurement data and

locating latency constraints can quickly overwhelm any

central node. While it may still be possible for a central

node to keep all of the measurement data in memory,

it is impractical to repeatedly search through the set C

of all runtime constraints in order to detect constraint

violations. For large runtime graphs, even explicitly ma-

terializing all runtime constraints can be infeasible. As

an example, consider a DAG such as the one in Fig-

ure 5. Due to the amount of channels between the Par-

titioner and Decoder, as well as between the Encoder

and RTP Server tasks, the number of sequences with

latency constraints grows quickly with the degree of

parallelism. For this specific graph, the number of con-

strained runtime sequences is m3, where m is the degree

of parallelism between tasks of the same type, hence for

m = 800 we obtain 512 × 106 constrained sequences.

Therefore, we chose to distribute the work of locating

and reacting to constraint violations in order to mini-

mize the impact on a running job.

In the following we will first provide an overview

of our distributed QoS management scheme and then

provide details on how such a structure can be set up

for a framework following a master-worker pattern.

3.4.1 Distributed QoS Management Overview

When the master node receives the job description with

attached latency constraints from a user, it schedules

the tasks as usual to run on the available worker nodes.

However, besides executing the scheduled tasks, worker

nodes are also responsible for independently monitoring

constraints and reacting to constraints violations. For

this purpose, the master node assigns the roles of QoS

Reporter and QoS Manager to selected worker nodes.

QoS Reporter Role A worker node with this role runs

a background process that collects measurement data

for all of the tasks and channels which are local to

the worker node and part of a constrained runtime se-

quence. It collects the measurement data described in

Section 3.3 and also knows which measurement values

to send to which QoS Manager. Reports that aggregate

measurement data for the QoS Managers are sent once

every measurement interval on an as-needed basis, i.e.

no empty reports are sent.

QoS Manager Role A worker node with this role runs

a background process that analyzes the measurement

data it receives from its QoS Reporters. For this pur-

pose, the QoS Manager is equipped with a subgraph of

the original runtime graph. This subgraph both stores

the measurement data and can be used to efficiently

enumerate violated runtime constraints. Upon detec-

tion of a constraint violation a QoS Manager can initi-

ate countermeasures to improve latency as described in

Section 3.5.

3.4.2 Distributed QoS Management Setup

For large DAGs the main complexity lies in assigning

the QoS Manager role to the available worker nodes.

We will briefly discuss our objectives when designing

our approach to QoS Manager Setup and then propose

an algorithm to efficiently allocate the QoS Manager

role even for large runtime graphs.

Objectives The main objective is to split the runtime

graph G into m subgraphs Gi = (Vi, Ei) each of which

is to be assigned to a QoS Manager while meeting the

following conditions:
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1. The number m of subgraphs is maximized. This en-

sures that the amount of work to be done by each

QoS Manager is minimized and thus reduces the im-

pact on the job.

2. The number of common vertices between subgraphs

should be minimized:

minimize
G1,...,Gm

∑
0≤i<m

∑
j 6=i

|Vi ∩ Vj |

This objective reduces the amount of reports QoS

Reporters have to send via network. The reason for

this is that if a task or channel is part of more

than one subgraph Gi, multiple QoS Managers re-

quire the measurement values of the element to be

able to evaluate whether some of their constraints

constr(Gi) are violated.

For some runtime graphs, objectives (1) and (2) are

contradictory. Since we deem the network traffic caused

by the QoS Reporters to be negligible, we believe con-

dition (1) should be the primary focus. Every allocation

that optimizes the above objectives must however fulfill

the following side conditions:

– Every constraints lies within exactly one subgraph

Gi and is thus attended to by exactly one QoS Man-

ager. Given that constr(Gi) is the subset of runtime

constraints whose sequence elements (tasks and chan-

nels) are included in Gi, the subgraphs must be cho-

sen so that⋃
0≤i<m

constr(Gi) = C

and all constr(Gi) are pairwise disjoint.
– The subgraphs Gi = (Vi, Ei) are of minimal size and

thus do not contain any vertices irrelevant for the

constraints. Given that vertices(C) is the set of ver-

tices contained in the sequences of C ′s constraints,

the following equation must hold:

vertices(constr(Gi)) = Vi

QoS Manager Setup After worker nodes have been al-

located for all tasks, the master node will compute the

subgraphs Gi = (Vi, Ei) and send each one to a worker

node so that it can start the QoS Manager background

process.

Algorithm 1 presents an overview of our approach

to compute the subgraphs Gi. The algorithm is passed

the user-defined job graph and job constraints and com-

putes a set of QoS Manager allocations in the form

of tuples (wi, Gi), where wi is the worker node sup-

posed to run the QoS Manager for the (runtime) sub-

graph Gi. First, GetConstrainedPaths() enumerates

all paths (tuples of job vertices) through the job graph

which are covered by a job constraint. We do not pro-

vide pseudo-code for GetConstrainedPaths() as the

paths can be enumerated by simple depth-first traver-

sal of the job graph. For each such path, we invoke

GetQoSManagers() to compute a set of (wi, Gi) tuples

which is then merged into the set of already existing set

of of QoS Manager allocations.

Algorithm 1 ComputeQoSSetup(JG, JC)

Require: Job graph JG and set of job constraints JC
1: managers← ∅
2: for all path in GetConstrainedPaths(JG, JC) do
3: for all (wi, Gi) in GetQoSManagers(path) do
4: if ∃(wi, G∗

i ) ∈ managers then
5: G∗

i ← mergeGraphs(G∗
i , Gi)

6: else
7: managers← managers ∪ {(wi, Gi)}
8: end if
9: end for

10: end for
11: return managers

Algorithm 2 computes the set of tuples (wi, Gi) that

models which worker node runs a QoS Manager for the

(runtime) subgraph Gi, where each Gi is derived by

splitting up the runtime graph corresponding to the

given job graph path. First, it uses GetAnchorV ertex()

to determine an anchor job vertex on the path. The an-

chor vertex serves as a starting point when determin-

ing the QoS Managers and their subgraphs. The func-

tion PartitionByWorker() is used to split the anchor

vertex into disjoint sets of runtime vertices that have

been allocated to run on the same worker node. Using

GraphExpand() each such set Vi of runtime vertices is

then expanded to a runtime subgraph. This is done by

traversing the runtime graph both forwards and back-

wards (i.e. with and against the edge direction of the

DAG), starting from the set of runtime vertices Vi.

Algorithm 2 GetQoSManagers(path)

Require: path ∈ JV n

1: anchor ← GetAnchorV ertex(path)
2: ret← ∅
3: for all Vi in PartitionByWorker(anchor) do
4: ret← ret ∪ {(worker(Vi[0]), GraphExpand(Vi))}
5: end for
6: return ret

Finally, Algorithm 3 illustrates a simple heuristic to

pick an anchor vertex for a constrained path through

the job graph. The heuristic considers those job ver-

tices as anchor candidates that have the highest worker

count. It then picks the anchor candidate that has the
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job edge with the lowest number of runtime edges. To

do so, cntChan(jv, path) returns the number of run-

time edges of the ingoing or outgoing job edge of jv

within the given path with the lowest number of run-

time edges. The reasoning behind this is that anchor

vertices with low numbers of runtime edges are more

likely to produce smaller subgraphs for the QoS Man-

agers when invoking GraphExpand() in Algorithm 2.

Algorithm 3 GetAnchorVertex(path)

Require: path = (jv1, . . . , jvn) ∈ JV n

1: ret← {jv1, . . . , jvn}
2: maxWork ← max{cntWorkers(jv)|jv ∈ ret}
3: ret← ret \ {jv ∈ ret|cntWorkers(jv) < maxWork}
4: minEdge← min{cntEdge(jv, path)|jv ∈ ret}
5: ret← ret \ {jv ∈ ret|cntEdge(jv, path) > minEdge}
6: return ret[0]

QoS Reporter Setup The setup of the QoS Reporter

processes is directly based on the QoS Manager setup.

For each constrained runtime vertex v ∈ V there is at

least one QoS Manager with a subgraph Gi = (Vi, Ei)

and v ∈ Vi. The master node tracks this accordingly

and instructs the QoS Reporter to send measurement

values of the running task to all interested QoS Man-

agers. Channels are tracked in an analogous way.

3.5 Reacting to Latency Constraint Violations

Based on the workflow latency measured as described

in Section 3.3, each QoS Manager process can identify

those sequences of its assigned runtime subgraph Gi

that violate their constraint and initiate countermea-

sures to improve latency. It will apply countermeasures

until the constraint has been met or the necessary pre-

conditions for applying countermeasures are not met

anymore. In this case it will report the failed optimiza-

tion attempt to the master node which in turn notifies

the user who has to either change the job or revise the

constraints.

Given a runtime subgraph Gi = (Vi, Ei), a run-

time sequence S = (s1, . . . , sn), and a violated latency

constraint (S, l, t), the QoS Manager attempts to elim-

inate the effect of improperly sized output buffers by

adjusting the buffer sizes for each channel in S individ-

ually and can apply dynamic task chaining to reduce

latencies further. Buffer size adjustment is an iterative

process which may increase or decrease buffer sizes at

multiple channels, depending on the measured laten-

cies. Note that after each run of the buffer adjustment

procedure the QoS Manager waits until all latency mea-

surement values based on the old buffer sizes have been

flushed out. The conditions and procedures for chang-

ing buffer sizes and dynamic task chaining are outlined

in the following sections.

3.5.1 Adaptive Output Buffer Sizing

For each channel e ∈ Ei in the given sequence S the

QoS Manager permanently receives output buffer life-

time measurements (see Section 3.3) and maintains a

running average oblt(e, t) of all measurements fresher

than t time units. It then estimates the average out-

put buffer latency of the data items that have passed

through the channel during the last t time units as

obl(e, t) = oblt(e,t)
2 . If obl(e, t) supersedes both a sensi-

ble minimum threshold (for example 5 ms) and the task

latency of the channel’s source task, the QoS Manager

sets the new output buffer size obs∗(e) to

obs∗(e) = max(ε, obs(e)× robl(e,t)) (2)

where ε > 0 is an absolute lower limit on the buffer

size, obs(e) is the current output buffer size, and 0 <

r < 1. We chose r = 0.98 and ε = 200 bytes as a

default. This approach might reduce the output buffer

size so much that most records do not fit inside the

output buffer anymore, which is detrimental to both

throughput and latency. Hence, if obl(e) ≈ 0, we will

increase the output buffer size to

obs∗(e) = min(ω, s× obs(e)) (3)

where ω > 0 is an upper bound for the buffer size

and s > 1. For our prototype we chose s = 1.1.

Note that some channels may be in the subgraph

of multiple QoS Managers and that these may try to

change its output buffer size at the same time. To deal

with this, the worker node applies the buffer size up-

date it receives first and discards any older updates.

Additionally it will notify all relevant QoS Managers of

the buffer size update with the next measurement value

report so that they can keep their data up-to-date.

3.5.2 Dynamic Task Chaining

Task chaining pulls certain tasks into the same thread,

thus eliminating the need for queues and thread-safe

data item hand-over between these tasks. In order to be

able to chain a series of tasks v1, . . . , vn ∈ Vi within the

constrained sequence S they need to fulfill the following

conditions:

– They all run as separate threads within the same

process on the worker node, which excludes any al-

ready chained tasks.
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– The sum of the CPU utilizations of the task threads

is lower than the capacity of one CPU core or a

fraction thereof, for example 90% of a core. How

such profiling information can be obtained has been

described in [15].

– They form a path through the QoS Manager’s run-

time subgraph, i.e. each pair vi, vi+1 ∈ Vi is con-

nected by a channel e = (vi, vi+1) ∈ Ei.

– None of the tasks has more than one incoming and

more than one outgoing channel, with the exception

of the first task v1 which is allowed to have multi-

ple incoming channels and the last task vn which is

allowed to have multiple outgoing channels.

The QoS Manager looks for the longest chainable se-

ries of tasks within the sequence. If it finds one, it in-

structs the worker node to chain the respective tasks.

When chaining a series of tasks the worker node needs

to take care of the input queues between them. There

are two principal ways of doing this. The first one is

to simply drop the existing input queues between these

tasks. Whether this is acceptable or not depends on the

nature of the workflow, for example in a video stream

scenario it is usually acceptable to drop some frames.

The second one is to halt the first task v1 in the series

and wait until the input queues between all of the sub-

sequent tasks v2, . . . , vn in the chain have been drained.

This will temporarily increase the latency in this part of

the graph due to a growing input queue of v1 that needs

to be reduced after the chain has been established.

3.6 Relation to Fault Tolerance

In large clusters, individual nodes are likely to fail [19].

Therefore, it is important to point out how our pro-

posed techniques to trade off high throughput against

low latency at runtime affect the fault tolerance capa-

bilities of current data processing frameworks.

As these parallel data processors mostly execute ar-

bitrary black-box user code, currently the predominant

approach to guard against execution failures is referred

to as log-based rollback-recovery in literature [20]. Be-

sides sending the output buffers with the individual

data items from the producing to the consuming task,

the parallel processing frameworks additionally materi-

alize these output buffers to a (distributed) file system.

As a result, if a task or an entire worker node crashes,

the data can be re-read from the file system and fed

back into the re-started tasks. The fault tolerance in

Nephele is also realized that way.

Our two proposed optimizations affect this type of

fault tolerance mechanism in different ways: Our first

approach, the adaptive output buffer sizing, is com-

pletely transparent to a possible data materialization

because it does not change the framework’s internal

processing chain for output buffers but simply the size

of these buffers. Therefore, if the parallel processing

framework wrote output buffers to disk before the ap-

plication of our optimization, it will continue to do so

even if adaptive output buffer sizing is in operation.

For our second optimization, the dynamic task chain-

ing, the situation is different. With dynamic task chain-

ing activated, the data items passed from one task to

the other no longer flow through the framework’s in-

ternal processing chain. Instead, the task chaining de-

liberately bypasses this processing chain to avoid se-

rialization/deserialization overhead and reduce latency.

Possible materialization points may therefore be incom-

plete and useless for a recovery.

We addressed this problem by introducing an addi-

tional annotation to the Nephele job description. This

annotation prevents our system from applying dynamic

task chaining to particular parts of the DAG. This way

our streaming extension might lose one option to re-

spond to violations of a provided latency goal, however,

we are able to guarantee that Nephele’s fault tolerance

capabilities remain fully intact.

4 Evaluation

After having presented both the adaptive output buffer

sizing and the dynamic task chaining for Nephele, we

will now evaluate their impact based on an example

job. To put the measured data into perspective, we

also implemented the example job for another parallel
data processing framework with streaming capabilities,

namely Hadoop Online [1].

We chose Hadoop Online as a baseline for compar-

ison for three reasons: First, Hadoop Online is open-

source software and was thus available for evaluation.

Second, among all large-scale data processing frame-

works with streaming capabilities, we think Hadoop

Online currently enjoys the most popularity in the sci-

entific community, which also makes it an interesting

subject for comparison. Finally, in their research pa-

per, the authors describe the continuous query feature

of their system to allow for near-real-time analysis of

data streams [18]. However, they do not provide any

numbers on the actually achievable processing latency.

Our experiments therefore also shed light on this ques-

tion.

Please note that the experimental results presented

in the following supersede the results from our previous

publication [24]. Although the example job is nearly

identical to the one used in the original paper, we were
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able to run the job on a significantly larger testbed

(200 servers compared to ten servers) for this article.

For the sake of a clearer presentation, we decided not

to include the description of the original testbed and

the experimental results again, however, would like to

refer the interested reader to [24].

4.1 Job Description

The job we use for the evaluation is motivated by the

“citizen journalism” use case described in the introduc-

tion. We consider a web platform which offers its users

to broadcast incoming video streams to a larger au-

dience. However, instead of simple video transcoding

which is done by existing video streaming platforms,

our system additionally groups related video streams,

merges them to a single stream, and also augments the

stream with additional information, such as Twitter

feeds or other social network content. The idea is to pro-

vide the audience of the merged stream with a broader

view of a situation by automatically aggregating related

information from various sources.

In the following we will describe the structure of the

job, first for Nephele and afterwards for Hadoop Online.

4.1.1 Structure of the Nephele Job

Figure 5 depicts the structure of the Nephele evaluation

job. The job consists of six distinct types of tasks. Each

type of task is executed with a degree of parallelism of

m, spread evenly across n worker nodes.

The first tasks are of type Partitioner. Each Par-
titioner task acts as a TCP/IP server for incoming

video feeds, receives H.264 encoded video streams, as-

signs them to a group of streams and forwards the video

stream data to the Decoder task responsible for streams

of the assigned group. In the context of this evalua-

tion job, we group video streams by a simple attribute

which we expect to be attached to the stream as meta

data, such as GPS coordinates. More sophisticated ap-

proaches to detect video stream correlations are possi-

ble but beyond the scope of our evaluation.

The Decoder tasks are in charge of decompressing

the encoded video packets into distinct frames which

can then be manipulated later in the workflow. For the

decoding process, we rely on the xuggle library [8].

Following the Decoder, the next type of tasks in the

processing pipeline are the Merger tasks. Merger tasks

consume frames from grouped video streams and merge

the respective set of frames to a single output frame. In

our implementation the merge step simply consists of

tiling the individual input frames in the output frame.

Node 1 Node 2 Node n-1 Node n

Decoder

Merger

Overlay

Encoder

Partitioner

RTP

Server

Fig. 5 Runtime graph of the Nephele job

After having merged the grouped input frames, the

Merger tasks send their output frames to the next task

type in the pipeline, the Overlay tasks. An Overlay task

augments the merged frames with information from ad-

ditional related sources. For the evaluation, we designed

each Overlay task to draw a marquee of Twitter feeds

inside the video stream, which are picked based on lo-

cations close to the GPS coordinates attached to the

video stream.

The output frames of the Overlay tasks are encoded

back into the H.264 format by a set of Encoder tasks

and then passed on to tasks of type RTP Server. These

tasks represent the sink of the streams in our work-

flow. Each task of this type passes the incoming video

streams on to an RTP server which then offers the video

to an interested audience.

4.1.2 Structure of the Hadoop Online Job

For Hadoop Online, the example job exhibits a simi-

lar structure as for Nephele, however, the six distinct

tasks have been distributed among the map and reduce

functions of two individual MapReduce jobs. During

the experiments on Hadoop Online, we executed the

exact same task code as for Nephele apart from some

additional wrapper classes we had to write in order to

achieve interface compatibility.

As illustrated in Figure 6 we inserted the initial Par-

titioner task into the map function of the first MapRe-

duce job. Following the continuous query example from

the Hadoop Online website, the task basically “hijacks”
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Job 2 Reduce Phase

Job 2 Map Phase

Job 1 Reduce Phase

Job 1 Map Phase

Chain Mapper

Fig. 6 Runtime graph of the Hadoop Online job

the map slot with an infinite loop and waits for incom-

ing H.264 encoded video streams. Upon the reception of

the stream packet, the packet is put out with a new key,

such that all video streams within the same group will

arrive at the same parallel instance of the reducer. The

reducer function then accommodates the previously de-

scribed Decoder task. As in the Nephele job, the De-

coder task decompresses the encoded video packets into

individual frames.

The second MapReduce job starts with the three

tasks Merger, Overlay, and Encoder in the map phase.

Following our experiences with the computational com-

plexity of these tasks from our initial Nephele experi-

ments, we decided to use a Hadoop chain mapper and

execute all of these three tasks consecutively within a

single map process. Finally, in the reduce phase of the

second MapReduce job, we placed the task RTP Server.

The RTP Server tasks again represented the sink of our

data streams.

In comparison to the classic Hadoop, the evaluation

job exploits two distinct features of the Hadoop On-

line prototype, i.e. the support for continuous queries

and the ability to express dependencies between dif-

ferent MapReduce jobs. The continuous query feature

allows to stream data from the mapper directly to the

reducer. The reducer then runs a moving window over

the received data. We set the window size to 100 ms

during the experiments. For smaller window sizes, we

experienced no significant effect on the latency.
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Fig. 7 Latency w/o optimizations (6400 video streams, de-
gree of parallelism m = 800, 32 KB fixed output buffer size)

4.2 Experimental Setup

We executed our evaluation job on a cluster of n = 200

commodity servers. Each server was equipped with an

Intel Xeon E3-1230 V2 3.3 GHz (four real CPU cores

plus hyper-threading activated) and 16 GB RAM. The

nodes were connected via regular Gigabit Ethernet links

and ran Linux (kernel version 3.3.8) as well as and

Java 1.6.0.26, which is required by Nephele’s worker

component. Additionally, each server launched a Net-

work Time Protocol (NTP) daemon to maintain clock

synchronization among the workers. During the entire

experiment, the measured clock skew was below 2 ms

among the machines.

Each of the worker nodes ran eight tasks of type De-

coder, Merger, Overlay and RTP Server, respectively.

The number of incoming video streams was fixed for

each experiment and they were evenly distributed over

the Partitioner tasks. We always grouped and subse-

quently merged four streams into one aggregated video

stream. Each video stream had a resolution of 320×240

pixels and was H.264 encoded. The initial output buffer

size was 32 KB. Unless noted otherwise, all tasks had

a degree of parallelism of m = 800.

Those experiments that were conducted on Nephele

with latency constraints in place, specified one run-
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Fig. 8 Latency with adaptive buffer sizing (6400 video
streams, degree of parallelism m = 800, 32 KB initial out-
put buffer size)

time constraint c = (S, l, t) for each possible runtime

sequence

S = (e1, vD, e2, vM , e3, vO, e4, vE , e5) (4)

where vD, vM , vO, vE represent tasks of the types

Decoder, Merger, Overlay and Encoder, respectively.

The altogether 512×106 constraints specified the same

upper latency bound l = 300 ms over the data items

within the past t = 15 seconds. The measurement in-

terval on the worker nodes was set to 15 seconds, too.

4.3 Experimental Results

We evaluated our approach on the Nephele framework

with the job described in Section 4.1.1 in three sce-

narios which are (1) without any kind of latency op-

timizations (2) with adaptive output buffer sizing and

(3) with adaptive output buffer sizing as well as dy-

namic task chaining. As a baseline for comparison with

other frameworks we evaluated the Hadoop Online job

described in Section 4.1.2 on the same testbed.

4.3.1 Latency without Optimizations

First, we ran the Nephele job with constraints in place

but prevented the QoS Managers from applying any op-

timizations. Figure 7 summarizes the aggregated mea-

surement data of all QoS Managers. As described in
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Fig. 9 Latency with adaptive buffer sizing and dynamic task
chaining (6400 video streams, degree of parallelism m = 800,
32 KB initial output buffer size)

Section 3.3, each QoS Manager maintains running av-

erages of the measured latencies of its tasks and chan-

nels. Each sub-bar displays the arithmetic mean over

the running averages for tasks/channels of the same

type. For the plot, each channel latency is split up

into mean output buffer latency (dark gray) and mean

transport latency (light gray), which is the remainder

of the channel latency after subtracting output buffer

latency. Hence, the total height of each bar is the sum of
the arithmetic means of all task/channel latencies and

gives an impression of the current overall workflow la-

tency. The dot-dashed lines provide information about

the distribution of measured sequence latencies (min

and max).

The total workflow latency fluctuated between 3.5

and 5.5 seconds. The figure clearly shows that output

buffer and channel latencies massively dominated the

total workflow latency, so much in fact that most task

latencies are hardly visible at all. The main reason for

this is the output buffer size of 32 KB which was too

large for the compressed video stream packets between

Partitioner and Decoder tasks, as well as Encoder and

RTP Server tasks. These buffers sometimes took longer

than 1 second to be filled and when they were placed

into the input queue of a Decoder they would take a

while to be processed. The situation was even worse be-

tween the Encoder and RTP Server tasks as the num-

ber of streams had been reduced by four and thus it

took even longer to fill a 32 KB buffer. Between the
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Decoder and Encoder tasks the channel latencies were

much lower since the initial buffer size was a better fit

for the decompressed images.

Another consequence of the buffer size were large

variations in total workflow latency that stemmed from

the fact that task threads such as the Decoder could not

fully utilize their CPU time because they fluctuated

between idling due to input starvation and full CPU

utilization once a buffer had arrived.

The anomalous task latency of the Merger task is

caused by the way we measure task latencies and lim-

itations of our frame merging implementation. Frames

that needed to be grouped always arrived in differ-

ent buffers. With large buffers arriving at a slow rate

the Merger task did not always have images from all

grouped streams available and would not produce any

merged frames. This caused the framework to measure

high task latencies (see Section 3.2.1).

4.3.2 Latency with Adaptive Output Buffer Sizing

Figure 8 shows the results when using only adaptive

buffer sizing to meet latency constraints. The structure

of the plot is identical to Figure 7.

Our approach to adaptive buffer sizing quickly re-

duced the buffer sizes on the channels between Parti-

tioner and Decoder tasks, as well as Encoder and RTP

server tasks. The effect of this is clearly visible in the

diagram, with an initial workflow latency of 3.4 seconds

that is reduced to 340 ms on average and 380 ms in the

worst case. The latency constraint of 300 ms has not

been met, however we attained a latency improvement

of one order of magnitude compared to the unoptimized

Nephele job.

The convergence phase at the beginning of the job

during which buffer sizes were decreased took approx. 9

minutes. There are several reasons for this phenomenon.

First, as the workers started with output buffers whose

lifetime was sometimes larger than the measurement

interval there often was not enough measurement data

for the QoS Managers to act upon during this phase. In

this case it waited until enough measurement data were

available before checking for constraint violations. Sec-

ond, after each output buffer size change a QoS Man-

ager waits until all old measurements for the respective

channel have been flushed out before revisiting the vi-

olated constraint, which took at least 15 seconds each

time.

4.3.3 Latency with Adaptive Output Buffer Sizing and

Dynamic Task Chaining

Figure 9 shows the results when using adaptive buffer

sizing and dynamic task chaining. The latency con-
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Fig. 10 Latency in Hadoop Online (80 video streams, degree
of parallelism m = 10, 100 ms window size)

straints were identical to those in Section 4.3.2 and the

structure of the plot is again identical to Figure 7.

Our task chaining approach chose to chain the De-

coder, Merger, Overlay and Encoder tasks because the

sum of their CPU utilizations did not fully saturate one

CPU core.

After the initial calibration phase, the total work-

flow latency stabilized at an average of around 270 ms

and a maximum of approx. 320 ms. This finally met

all defined latency constraints, which caused the QoS

Managers to not trigger any further actions. In our case

this constituted another 26% improvement in latency

compared to not using dynamic task chaining and an

improvement by a factor of at least 13 compared to the

unoptimized Nephele job.

4.3.4 Latency in Hadoop Online

Figure 10 shows a bar plot of the task and channel la-

tencies obtained from the experiments with the Hadoop

Online prototype. The plot’s structure is again identi-

cal to Figure 7, however the output buffer latency has

been omitted as these measurements are not offered by

Hadoop Online.

Similar to the unoptimized Nephele job, the overall

processing latency of Hadoop Online was clearly domi-

nated by the channel latencies. Except for the tasks in

the chain mapper, each data item experienced an aver-

age latency of up to one second when being passed on

from one task to the next.
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Due to technical difficulties with the Hadoop On-

line prototype, we were forced to reduce the degree of

parallelism for the experiment to m = 10 with only one

deployed processing pipeline per host. The number of

incoming streams was reduced to 80 in order to match

the relative workload (eight streams per pipeline) of

the previous Nephele experiments. A positive effect of

this reduction is a significantly lower task latency of

the Merger task because, with fewer streams, the task

had to wait less often for an entire frame group to be

completed.

Apart from the size of the window reducer, we also

varied the number of worker nodes n in the range of 2

to 10 as a side experiment. However, we did not observe

a significant effect on the channel latency either.

5 Related Work

Over the past decade stream processing has been the

subject of vivid research. With regard of their scala-

bility, the existing approaches can essentially be sub-

divided into three categories: Centralized, distributed,

and massively-parallel stream processors.

Initially, several centralized systems for stream pro-

cessing have been proposed, such as Aurora [10] and

STREAM [13,25]. Aurora is a DBMS for continuous

queries that are constructed by connecting a set of pre-

defined operators to a DAG. The stream processing en-

gine schedules the execution of the operators and uses

load shedding, i.e. dropping intermediate tuples to meet

QoS goals. At the end points of the graph, user-defined

QoS functions are used to specify the desired latency

and which tuples can be dropped. STREAM presents

additional strategies for applying load-shedding, such

as probabilistic exclusion of tuples. While these sys-

tems have useful properties such as respecting latency

requirements, they run on a single host and do not scale

well with rising data rates and numbers of data sources.

Later systems such as Aurora*/Medusa [17] sup-

port distributed processing of data streams. An Au-

rora* system is a set of Aurora nodes that cooperate

via an overlay network within the same administrative

domain. In Aurora* the nodes can freely relocate load

by decentralized, pairwise exchange of Aurora stream

operators. Medusa integrates many participants such

as several sites running Aurora* systems from differ-

ent administrative domains into a single federated sys-

tem. Borealis [9] extends Aurora*/Medusa and intro-

duces, amongst other features, a refined QoS optimiza-

tion model where the effects of load shedding on QoS

can be computed at every point in the data flow. This

enables the optimizer to find better strategies for load

shedding.

The third category of possible stream processing

systems is constituted by massively-parallel data pro-

cessing systems. In contrast to the previous two cate-

gories, these systems have been designed to run on hun-

dreds or even thousands of nodes in the first place and

to efficiently transfer large data volumes between them.

Traditionally, those systems have been used to process

finite blocks of data stored on distributed file systems.

However, many of the newer systems like Dryad [21],

Hyracks [16], CIEL [26], or our Nephele framework [28]

allow to assemble complex parallel data flow graphs and

to construct pipelines between the individual parts of

the flow. Therefore, these parallel data flow systems in

general are also suitable for streaming applications.

Recently, a series of systems have been introduced

which aim to carry over the popular MapReduce pro-

gramming model to parallel stream processing.

The first work in this space was arguably Hadoop

Online, described in [18]. As already mentioned in Sec-

tion 4.1.2 the developers of Hadoop Online extended

the original Hadoop system by the ability to stream in-

termediate results from the map to the reduce tasks as

well as the possibility to pipeline data across different

MapReduce jobs. To facilitate these new features, they

extended the semantics of the classic reduce function by

time-based sliding windows. Li et al. [23] picked up this

idea and further improved the suitability of Hadoop-

based systems for continuous streams by replacing the

sort-merge implementation for partitioning by a new

hash-based technique.

The Muppet system [22] also focuses on the parallel

processing of continuous stream data while preserving

a MapReduce-like programming abstraction. However,

the authors decided to replace the reduce function by a

more generic update function to allow for greater flex-

ibility when processing intermediate data with identi-

cal keys. Muppet also aims to support near-real-time

processing latencies. Unfortunately, the paper provides

only few details on how data is actually passed between

tasks (and hosts). We assume however that the system

uses a communication scheme unlike the one we ex-

plained in Section 2.1.

The systems S4 [27] and Storm [4] can also be classi-

fied as massively-parallel data processing systems with

a clear emphasis on low latency. Their programming

abstraction is not MapReduce but allows developers to

assemble arbitrarily complex DAG of processing tasks.

Similar to Muppet, both systems do not necessarily

follow the design principles explained in Section 2.1.

For example, Twitter Storm does not use intermediate

queues to pass data items from one task to the other.

Instead, data items are passed directly between tasks
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using batch messages on the network level to achieve a

good balance between latency and throughput.

None of the systems from the third category has

so far offered the capability to express high-level QoS

goals as part of the job description and let the system

optimize towards these goals independently, as it was

common for previous systems from category one and

two.

6 Conclusion and Future Work

The growing number of commodity devices capable of

producing continuous data streams promises to unlock

a whole new class of interesting and innovative use

cases, however also raises concerns with regard to the

scalability of existing stream processors. While the in-

dividual data streams may be characterized by compa-

rably low data volumes, processing them at scale can

quickly call for large compute clusters and platforms for

data-intensive computing.

In this paper, we therefore examined the suitabil-

ity of existing massively-parallel data processing frame-

works for large-scale stream processing. We identified

common design principles among those frameworks and

highlighted two new techniques, adaptive output buffer

sizing and dynamic task chaining, which allow them to

dynamically trade off higher throughput against lower

processing latency. Based on our parallel data processor

Nephele, we thereupon proposed a highly distributed

scheme to detect violations of user-defined QoS con-

straints at runtime and illustrated how both of our

techniques can help to automatically mitigate those.

Through a sample video streaming use case on a large-

scale cluster system, we found that our strategies can

improve workflow latency by a factor of at least 13 while

preserving the required data throughput.

We see the need for future work on this topic in sev-

eral areas. The Nephele framework is part of a bigger

software stack for massively-parallel data analysis de-

veloped within the Stratosphere project [5]. Therefore,

extending the streaming capabilities to the upper layers

of the stack, in particular to the PACT programming

model [14], is of future interest. Furthermore, we plan

to explore strategies for other QoS goals such as jitter

and throughput that exploit the capability of a cloud

to elastically scale on demand.

In general we think our work marks an important

first step towards introducing QoS considerations in the

domain of massively-parallel data processing and helps

to support new classes of QoS-sensitive streaming ap-

plications at scale.
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