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Abstract— This paper presents a complete method for pedes-
trian detection applied to infrared images. First, we study an im-
age descriptor based on histograms of oriented gradients (HOG),
associated with a Support Vector Machine (SVM) classifier and
evaluate its efficiency. After having tuned the HOG descriptor
and the classifier, we include this method in a complete system,
which deals with stereo infrared images. This approach gives
good results for window classification, and a preliminary test
applied on a video sequence proves that this approach is very
promising.

I. I NTRODUCTION

Since the last few years now, the development of driving
assistance system has been very active in order to increase
the vehicle and its environment safety. At the present time,
the main objective in this domain is to provide drivers some
informations concerning its environment and any potential
hazard. One among all useful informations is the detection
and localization of a pedestrian in front of a vehicle.

This problem of detecting pedestrians is a very difficult
problem that has essentially been addressed using vision
sensors, image processing and pattern recognition techniques.
In particular, detecting pedestrians thanks to images is a com-
plex challenge due to their appearance and pose variability.
In the context of daylight vision, several approaches have
been proposed and are based on different image processing
techniques or machine learning [9], [5], [12].

Recently, owing to the development of low-cost infrared
cameras, night vision systems have gained more and more
interest, thus increasing the need of automatic detection of
pedestrians at night. This problem of detecting pedestrians
from infrared images has been investigated by various research
teams in the last years. The main methodology is based on
extracting cues (symmetry, shape-independent features, ...),
pedestrian templates from images and then using these features
for performing detection [8], [1], [6].

This paper addresses the problem of detecting pedestrian
from infrared images. The approach that we propose is based
on shape-based cues and a machine learning technique that
learns to recognize a pedestrian.

Recents works have shown that efficient and robust shape-
based cues can be obtained from histogram of oriented gra-
dient (HOG) in images [7]. For instance, Shashua et al.

[10] has made a complete system for pedestrian detection
with monocular acquisition system. Its one-frame classification
method is based on a description of images with histograms
of gradients, computed over a determined number of regions
according to a mask of distribution. Recently, Dalal and Triggs
have further developed this idea of histogram of gradient and
have achieved excellent recognition rate of human detection
in images [4].

In this paper, we introduce a complete pedestrian detection
system, applied to infrared images. At first, we propose a
single frame pedestrian detection system which follows the
path of Shashua and al. and Dalal and al. This detection
system is based on histogram of gradients combined with a
Support Vector Machines for the recognition stage. It has been
developed for detecting a pedestrian centered in a128 × 64
single image. The paper provides a comprehensive study of
this system parameters in order to point out its best setting.
Then we propose a complete detection system based on a focus
of attention approach. This complete system is then able to
detect any scale of pedestrians in a large size image.

The paper is organised as follows. In section II-A, we
describe the single frame detector and we give details the HOG
descriptor and its parameters. Then, we propose our method to
scan a complete image and to detect pedestrians. The results
section gives a study of the parameters setting of the HOG
descriptor and also presents some performances of the full
system. Conclusions and perspectives are presented in the final
section.

II. OVERVIEW OF THE METHOD

A. Histogram of Oriented Gradients based Detector

In the context of object recognition, the use of edge orien-
tation histogram has gain popularity [10], [4]. However, the
concept of dense and local histogram of oriented gradients
(HOG) is a method introduced by Dalal et al.[4]. The aim
of such method is to describe an image by a set of local
histograms. These histograms count occurences of gradient
orientation in a local part of the image. In this work, in order
to obtain a complete descriptor of an infrared image, we have
computed such local histograms of gradient according to the
following steps :



Fig. 1. This figure shows the gradient computation of an image. (left) is the
original image, (middle) shows the direction of the gradient,(right) depicts
the original image according to the gradient norm.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
4

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
8

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
16

Fig. 2. This figure shows the histograms of gradient orientation for (left) 4
bins, (middle) 8 bins (right) 16 bins.

1) compute gradients of the image,
2) build histogram of orientation for each cell,
3) normalize histograms within each block of cells.

The following paragraphs give more details on each of these
steps.

1) Gradient computation:The gradient of an image has
been simply obtained by filtering it with two one-dimensional
filters :

• horizontal :
(

−1 0 1
)

• vertical :
(

−1 0 1
)T

An example of gradient is shown in figure 1. Gradient could
be signed or unsigned. This last case is justified by the fact
that the direction of the contrast has no importance. In other
words, we would have the same results with a white object
placed on a black background, compared with a black object
placed on a white background. In our case, we have considered
a unsigned gradient which value goes from0 to π.

The next step is orientation binning, that is to say to com-
pute the histogram of orientation. One histogram is computed
for each cell according to the number of bins.

2) Cell and block descriptors:The particularity of this
method is to split the image into different cells. A cell could
be defined as a spatial region like a square with a predefined
size in pixels. For each cell, we then compute the histogram of
gradient by accumulating votes into bins for each orientation.
Votes could be weighted by the magnitude of a gradient, so
that histogram takes into account the importance of gradient
at a given point. This could be justified by the fact that, a
gradient orientation around an edge should be more significant
than the one of a point in a nearly uniform region. Examples

of histogram of the square region given in the middle image
of figure 1 is shown in figure 2. As expected, the larger the
number of bins, the more detailed the histogram is.

When all histograms have been computed for each cell, we
can build the descriptor vector of an image concatenating all
histograms in a single vector.

However, due to the illumination variations and other
variability in the images, it is necessary to normalize cells
histograms. Cells histograms are locally normalized, accord-
ing to the values of the neighboured cells histograms. The
normalization is done among a group of cells, which is called
a block.

A normalization factor is then computed over the block
and all histograms within this block are normalized according
to this normalization factor. Once this normalization stephas
been performed, all the histograms can be concatenated in a
single feature vector.

Different normalization schemes are possible for a vectorV

containing all histograms of a given block. The normalization
factor nf could be obtained along these schemes :

• none : no normalization is applied on the cells,nf = 1.
• L1-norm : nf = V

‖V ‖
1
+ε

• L2-norm : nf = V√
‖V ‖2

2
+ε2

ε is a small regularization constant. It is needed as we
sometime evaluate empty gradients. The value ofε has no
influence on the results.

Note that according to how each block has been built, a
histogram from a given cell can be involved in several block
normalization. In thus case, the final feature vector contains
some redundant informations which have been normalized in
a different way. This is especially the case if blocks of cells
have overlapping.

B. SVM Classifier

As we have stated in the introduction, the recognition
system is based on a supervised learning technique. Hence, we
have used a set or training image examples with and without
pedestrian, and described by their HOG, for learning a decision
function. In our case, we have used a Support Vector Machines
classifier.

The Support Vector Machines classifier is a binary classifier
algorithm that looks for an optimal hyperplane as a decision
function in a high-dimensional space [2], [11], [3]. Thus,
consider one has a training data set{xk, yk} ∈ X × {−1, 1}
wherexk are the training examples HOG feature vector and
yk the class label. At first, the method consists in mappingxk

in a high dimensional space owing to a functionΦ. Then, it
looks for a decision function of the form :f(x) = w ·Φ(x)+b

andf(x) is optimal in the sense that it maximizes the distance
between the nearest pointΦ(xi) and the hyperplane. The class
label ofx is then obtained by considering the sign off(x). This
optimization problem can be turned, in the case ofL1 soft-
margin SVM classifier (misclassified examples are linearly
penalized), in this following way :



min
w,ξ

1

2
‖w‖2 + C

m
∑

k=1

ξk (1)

under the constraint∀k, ykf(xk) ≥ 1− ξk. The solution of
this problem is obtained using the Lagrangian theory and it is
possible to show that the vectorw is of the form :

w =

m
∑

k=1

α∗
kykΦ(xk) (2)

whereα∗
i is the solution of the following quadratic optimiza-

tion problem :

max
α

W (α) =

m
∑

k=1

αk − 1

2

m
∑

k,ℓ

αkαℓykyℓK(xk, xℓ) (3)

subject to
∑m

k=1
ykαk = 0 and ∀k, 0 ≤ αk ≤ C, where

K(xk, xℓ) = 〈Φ(xk),Φ(xℓ)〉. According to equation (2) and
(3), the solution of the SVM problem depends only on the
Gram matrixK.

III. SETTING PARAMETERS

In this section, we will describe a method for choosing the
optimal parameters for the HOG descriptors. As we have seen
in section II-A, the HOG descriptor involves many parameters
concerning the cells, blocks, or cells histograms that needto
be treated.

• Cell

– size of the cell, that is to say the number of pixel
contained in a cell.

• Blocks

– size : number of cells contained in a block,
– shift : number of cells overlapped by block,
– norm : normalization scheme.

• Histogram

– number of bins,
– sign : gradient signed or unsigned,
– weighting vote method.

To evaluate the most efficient set of parameters, we have
set up a complete test. This test has been realised with
4400 infrared images with a size of 128×64 pixels : 2200
pedestrians, and 2200 non-pedestrians. Figure 3 shows some
example of images used for learning. These images are ob-
tained by selecting manually in original images different boxes
contained a pedestrian or any kind of object. Images are then
resized to comply with the requested size of 128×64 pixels.

We tested a large variety set of parameters :

• Size of cell : 4×4, 8×8 or 16×16 pixels,
• size of block : 1×1 , 2×2 or 4×4 cells,
• overlap of block : 1, 2,
• number of bins for histogram : 4,8 or 16,
• vote method for histogram : weigthed with gradient

magnitude or no,
• normalization factor for block : no, L1 or L2,

(a) (b) (c) (d)

Fig. 3. This figure shows some example of images in the learning set. (a)
and (b) are pedestrians, (c) and (d) are non-pedestrian but are potential objects
that could be detected in the image.

To complete the test, we also tested different parameters for
SVM classifier :

• size of learning set : 10, 100, 1000 object per class,
• weight for misclassified points C : 0.01, 1, 100.
First, we compute a dataset for a given HOG set of

parameters. Then we evaluate its efficiency with the classifier.
The classifier was runnig 10 times on different combination
of data for learning and test. It should be noticed that all
combination have been fixed at the beginning of the test, and
for different sets of parameters, we took the same elements
for classification.

We present here some results of our test. Results in figure
4 highlights the parameters setting. All results are given with
respect to default parameters which are :

• size of block=2,
• number of bins = 4,
• size of cell = 8,
• overlap of blocks = 1,
• adding values in histogram = normalized,
• normalization factor for block = L2.
Figure 4 shows different results obtained for setting HOG

parameters. We can see that some parameters are increasing
performance significantly, like block factor normalization or
cell size. On the other hand, some parameters are less signif-
icant but participate also to the global performance.

We could deduce the optimal set of parameters :
• size of block=2,
• number of bins = 8,
• size of cell = 8,
• overlap of blocks = 1,
• adding values in histogram = normalized,
• normalization factor for block = L2.
A result should be pointed out. Graphic 4-(f) seems to be

better for a shortest size of cell. Indeed, results are better for
a size equal to 4, but with these parameters, size of HOG
descriptor becomes too large for our machine and the test
could not be running.

In fact, size of a vector varies for 128 up to 100000,
depending on parameters. With a small vector, computation of
HOG descriptor is fast and does not require a lot of memory.
In the contrary, largest vector requires more time, but detection
rate is higher. In pratice, a compromise could be made between
time computation and high detection rate.
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Fig. 4. This figure shows main results obtained for different set of HOG parameters. All figure have been obtained for a 2-classes linear svm with 100
elements for learning. For HOG descriptor, here are the default parameters that have been retained : size of block=2,numberof bins = 4, size of cell = 8,
overlap of blocks = 1, adding values in histogram = normalized, normalization factor for block = L2. (a), (b) and (c) shows results for block parameters. (d)
and (e) shows parameters for histogram parameters. (f) shows the cell parameter.

True
P N

Prediction
P 2096 54
N 71 2079

detection 0.9749
accuracy 0.9709
precision 0.9672

Fig. 5. Confusion matrix obtained with a learning set of 1000 examples,
tested on 4400 examples.

IV. RESULTS

A. Windows classifier

Here are some results for the single windows classifier. We
use the optimal HOG parameter set that have been found in
section III. We test 3 sizes for the learning set : 10, 100
and 1000 for each class. The total number of images is 2200
positive and 2200 negative examples. For each test, we use
given learning set, and test the classifier with all other images.

Results have been averaged over 10 trials with random
splitting of learning and testing data. This random splitting
has been performed prior to parameter testing so that result
are comparable.

Figure 6 presents some results of ROC Curve obtained with
the classifier. An example of Confusion Matrix obtained during
our tests is shown on figure 5.

The ROC curve enables us to compare different result
obtained for the prediction functionf(x) whenf(x) > θ, θ ∈
R. For a high value ofθ, false prediction are rejected. At
the contrary, whenθ is low, the classifier becomes more
permissive and some misclassification appear.

As we can see in figure 6, with 1000 examples in the
learning set, for 90% of detection rate, we have one false
alarm for 330 computed images. The accuracy obtained is up
to 99%.

As we can see on figure 6, size of learning set is an
important parameter. It clearly shows that when the learning
set covers the largest variety of pedestrians, the recognition is
easier. But it should be noticed that, even for 100 pedestrians
in the learning set, detection rate is already good. Concerning
the weight of misclassified C, we have test some different
values (0.01, 1 and 100), but this change has little effects on
the results.

Now we will present some preliminary results for the
complete system. We test the system on a video sequence
containing infrared stereo images. Note that the sequence is
completely different with the sequence used during the HOG
test.

We tested a two-classes SVM, with a learning set of 100
pedestrians, and 100 non-pedestrians. These examples are
extracted from the current video sequence, like we extracted
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Fig. 6. This figure shows the ROC Curve of the classifier when the size of
the learning set varies.

examples for our test.

Figure 7 is an example of results. Usually, we consider
the sign of the predictionf(x) to classify the objectx (see
sectionII-B) . The prediction value could be compared as a
distance with the margin. If the distance is over 0, it means
that this is near the pedestrian class, but could be reject
according with the ambiguity of the prediction. So, if we
want to keep only windows which represents a pedestrian with
strong confidence, we could set a threshold for the prediction
ratefx) > θ. Figure 7 shows clearly that when the threshold
θ is higher, we have less false prediction or ambiguity. If we
come back to the ROC Curve (6), it means that whenθ is high,
the ratio between good classification and misclassificationis
high.

V. COMPLETE SYSTEM

In this part, we will describe a proposal for a complete
system. In the section II-A, we have studied a classification
method for a single window. Now, a complete system is
implemented to use this classifier for an image of a scene,
that is to say containing many objects, which of them could
be pedestrians. The HOG descriptor enables us to caracterize
a window with a feature vector. The brute method would be to
test all possible windows in the given image, in order to be the
most exhaustiv. But we could easily conclude that the number
of windows becomes rapidly too large, and the large majority
of the scan is useless. Our aim is now to select potential
windows of the image, that could contained a pedestrian.

Our application concerns FIR images : infrared images. One
specificity of this kind of images, is that warm objects appears
lighter than cold objects which are dark. We propose to use
FIR images during night, so a pedestrian appears lighter than
its environment.

1) Windows extraction:One way to extract potential areas
of the scene is to look at each area whose pixel values
are above a defined threshold. For each area, we extract
some windows around this area, resize it at 128×64 pixels.,
compute HOG descriptor for each windows and classify
vectors. Figure 8 shows an example of potential areas
detected in an image.

(a) (b)

Fig. 8. This figure shows points for potential pedestrian location

(a)

164

14

0

45

(b)

Fig. 9. This figures shows an example of disparity computation.(a) shows
the right and left images, (b) shows result disparity for some windows.

2) Disparity computation: This part is a functionality
which has been added to illustrate the system potentiality.
When the detection stage is correctly accomplished, we could
imagine a large variety of process to use images obtained.
Here, we show an example of pedestrian localization.

For our test, we deal with stereo images, which enable us to
compute the disparity map, that is to say the three dimension
presentation of the viewed scene.

In our case, an exhaustive disparity map is not necessary,
since we recognize pedestrian with only one frame. Indeed,
with stereovision, we could evaluate the position of pedestrian,
and conclude if the pedestrian is in a safe place. At the
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Fig. 7. This figure shows the pedestrian detection. The threshold prediction value for (a) is 0, 1 for (b) 1.5 for (c). C is the prediction rate, D is the disparity
of the window.

contrary, an alert could be sent to the driver or to active presafe
systems of the car.

To simplify our work, pairs of images are calibrated, so for
a given point in the left image, its correspondant is in the same
line in right image. To compute the disparity of a window, we
compare the difference between the original window and a
slipping window in the other image. The disparity is obtained
when the difference is minimum. We can observe, that the
computation is quite efficient, since it is not necessary to
compute all image, and if cameras are well calibrated, results
are good, when we look personaly for the disparity. Figure 9
shows an example of disparity computation, for some windows
in the image.

VI. CONCLUSION

We have presented a new method for detecting pedestrian
using infrared images. The main characteristic of this method
is its single frame based classification method. Indeed, the
classifier deals with a128 × 64 window containing a single
object. From this window, we have extracted a feature vector
composed of local histograms of oriented gradients. Combined
with a SVM classifier, such system yields to very good results
single frame performance. We have integrated this classifier
into a complete system of pedestrian recognition, using an
infrared stereovision system. In FIR images, a pedestrian
has some caracterics which help us to localize all potential
pedestrians in the scene. Then, we look precisely through a
sliding window if the image contains or not a pedestrian. If
a pedestrian is found, we add another functionality, with help
of the stereovision, to locate in real world the position of the
pedestrian.

Results are very encouraging, but there is still some
perspectives for our future search. Firstly, we will develop
a coarse-to-fine approach for localizing pedestrians in large
images. Furthermore, we plan to enhance the performance
of the global system by developing a multiple classifier
system, where each classifier is devoted to a given pedestrian
pose. Besides, when dealing with image sequences, motion
information can be used for still improving the detection
performance.
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