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Preface

Context interpretation and context-based reasoning are key factors in the development
of intelligent autonomous systems in a variety of applications. The ability to represent
contextual factors, interpret them and combine them with other sources of knowledge
are some of the challenges to enable intelligent systems achieve correct behavior. Much
work has been done in application areas that make use of contextual information, such
as pervasive computing, logic-based sensor fusion and data integration. As well, the
theoretical foundations for context-based reasoning have been studied. However, there
is still a great deal to do in context modeling, since generic context models for context-
aware application development need to be further explored, as does the role of context
reasoning with more recently emerging areas such as ontologies, including the semantic
web, and approaches to belief change.

Context-dependent data can arise from different sources; for example it may be
gathered by sensors or collected from different knowledge- or databases. The incom-
pleteness and heterogenous nature of such data and the need for state-based context
interpretation in dynamic systems suggest that nonmonotonic reasoning techniques can
be a powerful tool for effective context-dependent reasoning. Given the increasing in-
terest in hybrid knowledge representation formalisms as basis of the Semantic Web, it is
interesting to consider proposals that assume hybrid formalisms combining Description
Logics and Logic Programming as the basic representation framework for reasoning
with (distributed) contexts.

The Log-IC’09 workshop provides a forum for researchers investigating context-
aware applications and context-based reasoning with the goal of sharing and comparing
their views on the efficacy of different context representation and context interpretation
frameworks. Log-IC 2009 will also propose targeted discussions on the topic. Hold-
ing the workshop in conjunction with LPNMR 2009 (organized in Potsdam) has the
additional advantage of reaching out to the logic programming community, facilitating
collaboration between different formalisms for context-based reasoning.

Apart from the regular and short paper presentations, the workshop also welcomes
Gerhard Brewka (University of Leipzig, Germany) and Grigoris Antoniou (University
of Crete, Greece) as invited speakers. We plan a panel to initiate discussions on dealing
with contexts both in theoretical and application-oriented perspectives.

Within these proceedings you can find the five papers that were accepted for publi-
cation by our programme committee and the abstract of our invited talk.

The programme committee and organisers wish to thank all the authors who sub-
mitted papers, the invited speaker, the panel members, the reviewers, all participants
and everyone who contributed to the success of this workshop.

September 2009 Alessandra Mileo
James P. Delgrande

Organisers
Log-IC’09
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Part I

Invited Speaker





Nonmonotonic Multi-Context Systems: State of the Art
and Future Challenges

Gerhard Brewka

Intelligent Systems Department
Computer Science Institute

University of Leipzig, Germany
brewka@informatik.uni-leipzig.de

1 Invited Abstract

In our talk we will describe recent developments in the area of multi-context systems
(MCS). We will first discuss nonmonotonic generalizations of multi-context systems
as introduced by Brewka and Eiter. These systems allow us to combine a large class
of monotonic and nonmonotonic knowledge representation formalisms in a principled
and modular way. The information flow among the component formalisms is modelled
using nonmonotonic bridge rules which generalize the rules originally introduced by
Giunchiglia and colleagues.

We then present a more recent approach, argumentation context systems (ACS),
which focus on a particular form of component formalisms, namely Dung argumen-
tation frameworks. In this respect ACS are more restricted than nonmonotonic MCS.
However, ACS go beyond MCS in at least two important aspects: they include a vari-
ety of inconsistency handling methods integrating possibly conflicting information from
different components, and they allow for more drastic effects of parent modules on child
modules, including the deletion of arguments and attacks and the specification of rea-
soning mode and semantics. Technically this is achieved by introducing a new type of
components called mediators and a context-dependent form of abstract argumentation.

The natural next step is to combine these ideas, that is to generalize both nonmono-
tonic MCS and ACS to a new form of mediator based MCS. We report on our current
ideas about how this can be done.



Reasoning about Context in Ambient Intelligence
Environments

Grigoris Antoniou

Institute of Computer Science (FORTH)
University of Crete, Greece

antoniou@ics.forth.gr

1 Invited Abstract

The imperfect nature of context in Ambient Intelligence (AmI) environments, and the
special characteristics of the entities that possess and share the available context in-
formation render contextual reasoning a very challenging task. The accomplishment of
this task requires formal models that handle the involved entities as autonomous logic-
based agents, and provide methods for handling the imperfect and distributed nature of
context.

In this talk, we (a) review the reasoning challegenes associated with these environ-
ments; (b) propose a solution on reasoning about context based on the Multi-Context
Systems formalism and defeasible reasoning, and (c) report on a prototypical imple-
mentation on small devices.
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From Symbolic to Probabilistic Models

Sebastian Bader, Christoph Burghardt, and Thomas Kirste

MMIS, Rostock University, Germany
first.lastname@uni-rostock.de, http://mmis.informatik.uni-rostock.de

Abstract. We argue, that generative probabilistic models should be
used to detect user activities, and we discuss two approaches to create
those model from symbolic descriptions.

1 Motivation

In many application areas, a computer needs to recognise the user’s current
activity. Examples are the automatic creation of diaries, user assistance in in-
strumented environments and many others. Unfortunately, activity recognition
is by no means a simple problem, because we have to deal with the problems
of noisy sensor data, incomplete descriptions of the domain, unpredictable be-
haviours of humans and many others. In this paper, we argue that we need (i)
generative probabilistic models for activity recognition and (ii) high-level de-
scription of these models in a human readable form. And we show two possible
approaches currently under investigation in our lab.

2 Probabilistic Models and Abstract Description

As mentioned above, we have to deal with noisy sensor data while trying to
recognise the user’s activity. Probabilistic models, for example hidden Markov
models or more general dynamic Bayesian networks, have been applied success-
fully. We believe that generative models should be used for the high-level activity
recognition because they allow an easy integration of prior knowledge and we
can not only recognise the user’s activity but also predict and simulate it.

Unfortunately, probabilistic models quickly become rather complex. There-
fore, they are neither easy to construct nor to debug by humans. Both problems
could be solved, if we were able to automatically construct complex models based
on a symbolic description, and to extract such a description from a (trained)
model later.

Below we discuss the creation of hidden Markov models (HMM) from (a)
grammars and (b) STRIPS descriptions [2]. While the first is a top-down ap-
proach (starting at the highest level, which is then detailed) the latter works
in a bottom-up fashion (starting from atomic actions that are composed into
sequences).

We propose to use a extension of probabilistic context free grammars [2]
(EPCFG) to define the language of human activities of daily living such that



Day
0.7→ WDay | 0.3→ Weekend

WDay
0.3→ Car, work[8h], Car

Car
0.5→ carfast[1min], @0.9

Car
0.3→ carslow[1min], @0.9

Car
0.2→ carstop[1min], @0.9

(:action present :parameters(?who)
:precondition (and (at ?who stage)
(forall (?x - user) (or (=?x ?who) (at ?who seat))))

:effect (and (has-presented ?who)))
(:action move :parameters(?who ?from ?to)
:precondition (at ?who ?from)
:effect (and ((at ?who ?to)(not (at ?who ?from)))))

(:goal (forall (?p - person)
(and (has-presented ?p) (has-discussed ?p))))

Fig. 1. Excerpts of an extended grammar describing a human’s life (on the left) and a
STRIPS formalisation of a smart meeting room (on the right).

the underlying terminal symbols correspond to observable primitive activities.
I.e., for each of them we can define a probability distribution over the raw sensor
data. Figure 1 shows a grammar which is annotated by probabilities and timing
information. For a speedometer, the terminal carfast can be defined as a normal
distribution with mean “50 km/h” and variance of “10km/h”. The EPCFG is
translated into a hierarchical HMM, which then is flattened. The resulting HMM
can be used for annotation. But, we can also assign labels to the states of the
model which allows the detection of high-level activities.

As a second approach, we propose to use STRIPS operators as known from
planning [2, 1]. These operators define pre- and post-conditions of actions. A
simple example is shown in Figure 1 on the right, in which we model the activities
during meetings. Those meetings are hard to model using grammars, because all
possible sequences of actions have to be modelled. By employing the STRIPS
formalism, we can generate all possible meeting sequences via expansion from
an initial state, given the number of participants and the agenda of the meeting.
This allows a straight-forward integration of prior knowledge of the domain, e.g.,
social norms. Those sequences of states can easily be modelled using HMMs.

3 Discussion

We have discussed two approaches to create probabilistic models for high-level
activity recognition based on symbolic descriptions. Both allow the automatic
generation of such models based on a symbolic description. The training and
the extraction of symbolic descriptions from the revised models needs to be
investigated in the future. Furthermore, we need to evaluate our approach using
real problems.

Acknowledgements We like to thank two anonymous reviewers for their com-
ments on an earlier version of this paper.
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1. Ch. Burghardt and Th. Kirste: Inferring intentions in generic context-aware
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Towards Diagnosing Inconsistency in
Nonmonotonic Multi-Context Systems?

Thomas Eiter, Michael Fink, Peter Schüller, and Antonius Weinzierl

Institute of Information Systems
Technische Universität Wien

Favoritenstrasse 11, A-1040 Vienna, Austria
{eiter,fink,schueller,weinzierl}@kr.tuwien.ac.at

Abstract. In multi-context systems, heterogeneous contexts interact
via nonmonotonic bridge rules. We seek to understand and give rea-
sons for inconsistencies in such systems by means of diagnosis. For this
purpose, we propose notions of consistency-based and abduction-based
diagnosis, where diagnoses are characterized by sets of bridge rules. Inter-
estingly, the notions of consistency-based and abduction-based diagnoses
lead to the same sets of bridge rules which are potentially erroneous.

Introduction. Multi-context systems (MCSs) as defined by Brewka and Eiter[1]
are a powerful framework for integrating heterogeneous nonmonotonic logics
like ontologies, databases or answer set programs. MCSs can represent inter-
contextual information flow and express reasoning with respect to contextual
information. The formalism allows for decentralized systems which use point-
wise information exchange and consist of multiple components like, for instance,
business logics, agents, or knowledge bases in general.

An MCS consists of contexts and bridge rules. Each context is a knowledge
base with an underlying (nonmonotonic) logic providing its semantics in terms
of belief sets. Contexts interact through nonmonotonic bridge rules of the form

(cs : s)← (c1 : p1), . . . , (cj : pj), not (cj+1 : pj+1), . . . , not (cm : pm). (1)

where cs, c1 . . . , cm are names of contexts and s, p1, . . . , pm are beliefs of the
respective contexts. Intuitively, rule (1) is applicable wrt. belief sets S1, . . . , Sm

of the respective contexts, if pi ∈ Si, for 1 ≤ i ≤ j, and pk 6∈ Sk, for j+1 ≤ k ≤ m.
If the rule is applicable, then its head s is added to the knowledge base of cs.

Example 1. Assume a health care decision support system which contains the
following contexts: a patient history database C1, a blood and X-Ray analysis
database C2, a description logic ontology of diseases C3, and a disjunctive logic
program implementing an expert system C4 which suggests proper treatments.

? This work was supported by the Vienna Science and Technology Fund (WWTF)
under grant ICT 08-020.



Consider the following knowledge bases for these contexts, focusing on pneu-
monia (a lung disease treatable by antibiotics):

C1 = {allergy strong antibiotic}
C2 = {¬blood marker , xray pneumonia}
C3 = {atypical pneumonia v pneumonia umarker}
C4 = {give s ∨ give w ← need antibiotic.

give s ← need strong .
⊥ ← give s, not allow strong .
nothing required ← not need antibiotic, not need strong .}

Contexts C1 and C2 provide the information that the patient is allergic to strong
antibiotics, that a certain blood marker is not present, and that pneumonia was
detected in the X-Ray. C3 classifies atypical pneumonia as a combination of
pneumonia and the presence of a blood marker. C4 suggests a medication which
is either a strong antibiotic s, a weak antibiotic w, or no medication at all.

The bridge rules of the MCS are given as:

r1 = (3 : pneumonia(p)) ← (2 : xray pneumonia).
r2 = (3 : marker(p)) ← (2 : blood marker).
r3 = (4 : need antibiotic)← (3 : pneumonia(p)).
r4 = (4 : need strong) ← (3 : atypical pneumonia(p)).
r5 = (4 : allow strong) ← not (1 : allergy strong antibiotic).

Rules r1 and r2 provide input for disease classification to the ontology, r3 and r4

link disease information with medication requirements, and r5 relates acceptance
of strong antibiotics with an allergy check on the patient database. ut

The semantics of MCSs is defined in terms of equilibria. An equilibrium con-
sists of a belief state, i.e., a belief set Si for each context Ci, which is acceptable
for Ci under the addition of beliefs from applicable bridge rules.

Example 2. In our example there exists exactly one equilibrium S, and rules
r1 and r3 are applicable wrt. S (for C3, a belief state S3 consists of all class
instances):

S = ({allergy strong antibiotic}, {¬blood marker , xray pneumonia},
{pneumonia(p)}, {need antibiotic, give w}). ut

Inconsistency in an MCS is the lack of an equilibrium. As the interaction and
combination of heterogeneous systems can easily lead to unforeseen and intricate
effects, inconsistency is a major—according to our knowledge unaddressed—
problem in MCSs. In order to provide support for restoring consistency, we seek
to understand and give reasons for inconsistency by means of diagnosis.

Example 3. As a running example, we consider a slightly modified version of
Example 1, where the blood serum analysis shows presence of the blood marker:

C2 = {blood marker , xray pneumonia}.
This MCS is inconsistent since r2 and r4 become applicable, which require that
strong antibiotic s is applied. This is in conflict with the patient’s allergy. ut

10 T. Eiter and M. Fink and Peter Schüller and Antonius Weinzierl
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We assume that every context is consistent without the influence of bridge
rules, therefore we characterize reasons for inconsistency in terms of bridge rules.

Definition 1. Let M be an MCS and R a set of bridge rules. We write R |=M ⊥
to say that the semantics of M using R as its set of bridge rules yields inconsis-
tency. We write R 6|=M ⊥ to say that M using R as its set of bridge rules has
an equilibrium. In the following, BR denotes the original set of bridge rules of
M , and heads(R) denotes the set of heads of rules in R transformed to facts.

Diagnoses and Explanations for Inconsistency. In nonmonotonic reason-
ing, forcing rules to be applicable (or forcing them to be not applicable) can
cause and prevent inconsistency. For our consistency-based diagnosis, we there-
fore consider pairs of sets of bridge rules, s.t. deactivating the rules in the one
set and forcing the rules in the other to be active allows to establish consistency
(i.e. an equilibrium) in the system.

Definition 2. A diagnosis D± of an MCS M wrt. BR is a pair D±=(R−, R+),
where R−, R+ ⊆ BR and R− ∩R+ = ∅ s.t. BR \R− ∪ heads(R+) 6|=M ⊥.

Noticeably, this definition resembles the notion of anti-explanation [2], as well
as the answer set program debugging approach in [3].

Example 4. Notable diagnoses in our running example are the following:
({r1}, ∅), ({r2}, ∅), ({r4}, ∅), and (∅, {r5}).

Accordingly, deactivating r1, r2, or r3, resp. forcing r5 to be active, will result
in a consistent MCS. All other diagnoses are pointwise supersets thereof. ut
A research issue are preferred diagnoses wrt. an application domain. Minimality
criteria (e.g. applied to preference orderings) can be used for this purpose. For
domains where the removal of bridge rules is preferred to the forced activation of
unjustified rules, we specialize D± to obtain diagnoses of the form (R−, ∅) only.
We compare such diagnoses using subset-minimality as preference criterion.

Definition 3. An s-diagnosis1 D− of an MCS M wrt. BR is any set R− ⊆ BR
s.t. BR \R− 6|=M ⊥. An s-diagnosis is minimal iff it is minimal wrt. ⊆.

Example 5. Minimal s-diagnoses in our example are {r1}, {r2} and {r4}. ut
Motivated by abduction-based diagnosis, we consider an explanation as a pair

of sets of rules whose joint (de-)activation reproduces the observed inconsistency.

Definition 4. An inconsistency explanation E± of an MCS M wrt. BR is
a tuple E± = (R−, R+), where R−, R+ ⊆ BR and R− ∩ R+ = ∅ s.t. R− ∪
heads (R+) |=M ⊥.

Again we specialize the definition to the first component. In this case we addition-
ally require that an explanation has no consistent superset, to avoid reproducing
irrelevant inconsistencies. For instance, the program {a← not a.} is inconsistent
under the answer set semantics, but its superset {a← not a. a.} is consistent.
1 The prefix s stands for simple.

Towards Diagnosing Inconsistency in Nonmonotonic Multi-Context Systems 11
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Definition 5. An s-inconsistency explanation E+ of an MCS M wrt. BR is
any set R− ⊆ BR s.t. R− |=M ⊥ and there exists no R′ s.t. R− ⊂ R′ ⊆ BR and
R′ 6|=M ⊥. An s-inconsistency explanation is minimal iff it is minimal wrt. ⊆.

Example 6. The only minimal s-inconsistency explanation E+ in our running
example is {r1, r2, r4}; its rules are thus necessary to derive inconsistency. ut

The union of all minimal diagnoses (explanations) is a set of rules relevant for
repairing (causing) inconsistency. Interestingly, these unions coincide (cf. also our
example with minimal diagnoses {r1}, {r2}, {r4}, resp. explanation {r1, r2, r4}).
Theorem 1. For an inconsistent MCS,the unions of all minimal s-diagnosesD−m
and all minimal s-inconsistency explanations E+

m coincide, i.e.,
⋃

D−m =
⋃

E+
m.

Discussion and Future Work. Minimal D− diagnoses, i.e., giving preference
to rule deactivation, correspond to consistent MCSs, and thus may be used
for restoring consistency. However, the resulting options for repair may be too
limiting for certain application domains. In our example, the option to disregard
the allergy and prescribe strong antibiotics is missed. Rule deactivation either
ignores the X-Ray, respectively blood test results, or that atypical pneumonia
requires strong antibiotics, with the effect that either the disease is ignored at
all, or a medication is suggested which might be to weak.

The study of more specific preference relations between diagnoses is a further
research issue in our ongoing project on inconsistency management for MCSs. In
addition to an investigation of abstract properties, preferences between diagnoses
that emerge from application specific preferences on bridge rules or contexts, e.g.,
trust levels, are of particular interest. Moreover, we currently investigate approx-
imations of diagnoses given incomplete information (when context knowledge is
not fully disclosed), e.g., due to information hiding or security concerns.

Our aim is to provide support for resolving inconsistencies based on pre-
ferred diagnoses and inconsistency explanations. Note that due to presence of
nonmonotonic contexts (witnessed by context C4 in our example) the problem
is more general than the problem of ontology merging (which may serve to build
part of an MCS, however). Moreover, a decision for repair may need to take fur-
ther domain knowledge into account, as illustrated by our example, where it is
not obvious how to resolve the dilemma. Providing a declarative policy language
for (semi-)automatic support for repair is the suggestive goal. Also, we plan to
apply and evaluate the developed techniques in real world applications.

References
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Relations as Context to Improve Multi-Target Tracking
and Activity Recognition

Cristina Manfredotti12, Enza Messina1, David Fleet2

1 DISCo, University of Milano-Bicocca,
{manfredotti, messina}@disco.unimib.it

2 Computer Science Dept, University of Toronto,
{cristina, fleet}@cs.toronto.edu

Abstract. The explicit recognition of the relationships between interacting ob-
jects can improve the understanding of their dynamic model.
In this work, we investigate the use of Relational Dynamic Bayesian Networks
to represent the dependencies between objects behavior in the context of multi-
target tracking. We propose a new formulation of the transition model that ac-
commodates for First-Order Logic relations and we extend the Particle Filter al-
gorithm in order to directly track relations between targets.
Many applications can benefit from this work, as activities recognition, traffic
monitoring, strategic analysis, sports coaching and others. We present some re-
sults about activity recognition in monitoring Canadian costal borders.

Key words: Multi Target tracking, Probabilistic Relational Models, Bayesian
Filtering, Particle Filtering.

1 Introduction and Motivations

Context interpretation and context-based reasoning have been shown to be key factors
for Computer Vision in the development of algorithms for object recognition [3]. In this
domain the context is the scene where objects are located andthe knowledge about it is
expressed by the beliefs over the scene [4].

In this paper we deal with moving objects and we refer the concept of context to
“what is happening around the object we are tracking”. Knowing the scene can im-
prove the objects recognition task and the knowledge about the identity of the objects
improves the belief over the scene; knowing what is happening in the scene (which “re-
lations” are believed to be true in the scene) can improve thetracking and the knowledge
about the state of the objects can improve our knowledge about the relation between the
objects in the scene (i.e. the context).

Consider, for example, the situation in which we have a groupof people walking in
a park. If we know they are walking together (i.e. if we have a certain belief over their
relation), we know they will have a similar behavior or a similar motion. This will help
us in tracking them. Moreover, taking into account the relations between objects can
also allow us to recognize complex activities like, for example, the activity of “going
to a pub together”: single persons walking can be a simple fragment of a more com-
plex activity that includes some people meeting, going in the same direction, waiting



each other at different points and entering together into the pub. Dealing with relations
between moving objects allows us to recognize a complex activity like this one from
another similar one that can be the “catching the subway during rush hour”: this com-
plex activity also includes a group of people walking together in the same direction but
those people will not wait for each other. In the last years Computer Vision has mostly
dealt with the recognition of activities composed by the repetition of simple movements
[12], instead those are examples of more complex activitiesthat involve relations be-
tween objects and/or single actions during time.

In our work we model thecontextas a set of First-Order Logic relations using them
in two principal ways:

– We will userelations to improve the efficiency of the tracking.The information con-
tained in the relationships can improve prediction, resulting in a better estimation
of objects trajectories.

– We will monitor relations as a goal in itself.This is the case in many applications
like traffic prediction or consumer monitoring, anomaly detection or activity recog-
nition.

In this work we considerRelational Dynamic Bayesian Networks(RDBNs)1, an
extension ofProbabilistic Relational Model[5] to dynamic domains, as a formalism
to monitor relations between moving objects. In our RDBN-based model, relationships
are considered as random variables whose values may change over time. While tracking
the objects in the domain, we also track the evolution of their relationships. For this
purpose, in the next sections we propose a formalization of anew dynamic model able to
predict the future state of the objects taking into account their relations and we introduce
a new version of Particle Filter (that we callRelational Particle Filter) that adapts to
these settings. After presenting some preliminary resultsobtained on the Intelligent
System Challenge 2008-2009 data set2, and a brief review of the literature, we conclude
with some final remarks.

2 Modeling and Inference

A relational domainis a set of objects with relations between them. We will call the
states of a relational domainrelational state, and we define it as the set of instantia-
tions of all the objects and their relations in the domain. Therefore, we can divide the
relational state in two parts: thestate of the objects3 so and thestate of the relationssr

and we will write:s = [so, sr].
A Relational Bayesian Network(RBN) is a directed acyclic graph whose nodes are

First-Order Logic attributes or relations between objectsin the relational domain and
whose structure represents the causality between the nodes.

1 The authors are aware of the works of Sanghai, Weld and Domingos on
RDBNs; however the paper presenting their work has been retracted. Refer to:
http://www.aaai.org/Library/JAIR/Vol24/jair24-019.php

2 http://www.intelligent-systems-challenge.ca/home/index.html
3 We will use the termsstate of objectsandstate of instantiationsinterchangeably.
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When we deal with dynamic, relational states evolve with time and RBNs has to be
extended to RDBNs. ARelational Dynamic Bayesian Networkis structured as a pair
of RBNs (B0, B→), whereB0 represents the probability distribution over the state of
the relational domain at time0 andB→ is a RBN of nodes at timet whose parent are
predicates at timet − 1 or predicates at timet and nodes at timet − 1 without their
parents.

In order to make inference in a multi-target setting, we needto extend the algorithms
traditionally used in tracking to represent relations. As in classic tracking, the aim is
to estimate the current posterior distribution of the statespacest conditioned to the
sequence of observationsz1:t up to timet: p(st|z1:t). This distribution is often called
thetarget’s belief(bel(st)).

The trackerpredicts the probability distribution of the future statest, given the
knowledge about the current statest−1, by means of astate transition modelp(st|st−1).
Once measurements about the state at timet (zt) are acquired, the state isfilteredusing
thesensor modelp(zt|st) that relates (potentially noisy) measurements to the state.

Fig. 1.Relational Transition Model. Arrows indicate probabilistic dependence between variables.

To extend the traditional tracking algorithms to representrelations we introduce the
following components:

The relational transitional model p(st|st−1) = p(so
t , s

r
t |so

t−1, s
r
t−1) is a joint proba-

bility of the state of all instances and relations. We assumethat the state of relations
is not directly affected by the state of the objects at the previous time step (see Fig-
ure 1). Therefore the transition model can be rewritten as:

p(so
t , s

r
t |so

t−1, s
r
t−1) = p(so

t |so
t−1, s

r
t−1)p(sr

t |sr
t−1, s

o
t ). (1)

The sensor modelp(zt|st) gives the probability of the state at timet given the mea-
surements obtained at the same time. We assume the relationsto be not directly
measurable, so the observationzt is independent of the relations between objects:

p(zt|st) = p(zt|so
t , s

r
t ) = p(zt|so

t ). (2)

Under the Markov assumption and the conditional independence of the data given
the state, we can use aBayesian filter algorithmto compute the belief of the relational
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state:

bel(st) = α p(zt|so
t ) b̃el(st) (3)

whereα is a normalization constant and̃bel(st) is the prediction done over the system
(p(so

t , s
r
t |z1:t−1)) that can be computed as:

b̃el(st) =
∫

p(so
t , s

r
t |so

t−1, s
r
t−1)bel(st−1)dst−1. (4)

According to the state transition model (Equation 1), we canwrite Equation (4) as:

b̃el(st) =
∫

p(so
t |so

t−1, s
r
t−1)p(sr

t |sr
t−1, s

o
t )bel(st−1)dst−1. (5)

In the most general case we can represent the two partial transition models of Equa-
tion (1) by a First Order Logic Tree (FOPT)4. We will introduce an example of FOPT
when dealing with the experiments.

2.1 Relational Particle Filter

The specific and complex probabilistic nature of the presented setting makes impossible
to use filters that require a probabilistic function in closed form, such as the Kalman
filter. To solve this issue we developed an extension of the Particle Filter (PF) algorithm
whose properties are appealing for our case.

The PF algorithm [1] is a Monte Carlo method that approximates the required poste-
rior density function by a set of random samples with associated weights and computes
estimates based on these samples and weights. As the number of samples becomes very
large, the Monte Carlo approximation to the correct posterior improves and the PF ap-
proaches the optimal Bayesian estimate.

We integrate the relational transitional model introducedin Equation (1) in a new
Relational Particle Filter(RPF), shown in Algorithm (1).

Algorithm 1 : Pseudo Code for the Relational Particle Filter algorithm
bel(st) = RPF (bel(st−1), zt)
for all m = 1 : M do

1. xo
t,(m) ∼ p(so

t |so
t−1, s

r
t−1); hypothesis for the state of instantiations

2. xr
t,(m) ∼ p(sr

t |sr
t−1, s

o
t = xo

t,(m)); hypothesis for the state of relations
3. ω(m) = p(zt|xo

t,(m)); weights computation
for all m = 1 : M do

4. ω̃(m) =
ω(m)∑M

m=1 ω(m)
; weights normalization

5. Resamplebel(st) from {[xo
t,(m), x

r
t,(m)]} according to weights{ω̃(m)} with repetition.

4 A FOPT (also known as First Order Decision Diagram [2]) is Probabilistic Tree whose nodes
are First Order Logic formulas.
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A particle (xt,(m)) is a representation of the state. For this reason, in our setting,
it is divided in two parts: the part of the objectsxo

t,(m) and the part of the relations
xr

t,(m). (see Figure 2(a)). The part of the particle relative to the instantiations is sampled
according top(so

t |so
t−1, s

r
t−1) (Line 1), subsequently the part of the particle relative to

the relations is sampled according to the second part of the relational transition model
(Line 2). When the measurement is acquired, particles are weighted according to the
sensor model (Line 3). The sensor model takes into account only the part of the parti-
cles relative to the objects, since the particles are composed by two parts, also the parts
associated to the relations are weighted. After the weighting step, weights are normal-
ized (Line 4) and the set of particles for the next iteration is extracted according to the
normalized weights in the resampling step (Line 5).

(a) Particle representation. (b) First step of hypothesis.

(c) Second step of hypothesis. (d) Particle weighting.

Fig. 2. Cartoon representation of the proposed algorithm.

3 Experiments

We evaluated the proposed method on a synthetic data set thatis based on the Intelli-
gence System Challenge 2008-2009 data set. We chose to use this data set because it
is easier than a real data set but still challenging. The dataset contains the description
of the events happened in the sea; each element of the data setreports the tracks of two
boats participating in an event (i.e. Rendezvous, PickUp and Avoidance) together. At
each time interval at most one event takes place.

We are particularly interested in the case where there is uncertainty about the par-
ticipants taking part in an event, in order to demonstrate the advantage of maintaining

Relations as Context to Improve Multi-Target Tracking and Activity Recognition 17

ISSN 1613-0073 c© 2009 for the individual papers by the papers’ authors. 17



beliefs over the set of possible relations. In order to test our relational particle filter
algorithm for activity recognition in a more challenging scenario with multiple targets,
we use the original data set to build a new synthetic data set of 120 situations (either
rendezvous or avoidance), obtained by pairing two encounters randomly sampled from
the original data set. In this way, four ships are present at the same time in the scene.

In the experiment, we consider the task of detecting a rendezvous between a yacht
and a fisher ship. After describing the setting of our experiments, in the next subsection,
we report some results.

3.1 Settings and Results
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Fig. 3.Example of Rendezvous.
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Fig. 4.Example of no relation.
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We used the data set to estimate the prior for the event Rendezvous between a Fisher
and a Yacht (33/80). Then, we examined the data relative to the encounters in order to
acquire information about the two different events (rendezvous or avoidance) that can
be used to predict the relation. In particular, we focused onthe variation of speed of
the two targets. Consider for example, the rendezvous in Figure (3): the two ships come
closer and both progressively reduce their speed until a nearly-zero value. Different
is the case of ships that are avoiding each other (thus not in relation according to our
model), one maintains its speed and the other decelerates (Figure (4)).

From the images it is also possible to notice the three-phases which characterize the
event of rendezvous: ships approach each other reducing their speed in the first phase,
they travel in the same direction with nearly-zero speed in the second phase and finally
they go apart and at least one of them change its speed. Our relational transition model
takes into account these three different phases allowing todetect when the event starts
and when it finishes but also allowing to understand if two ships can be in relation (since
a ship can be in relation only with another ship).

An example of the relational transition model used in our experiments is given in
Figure (5) and in Figure (6) .

Fig. 5. FOPT forp(so
t |so

t−1, s
r
t−1).

We ran the experiments on each of the 120 sets of four tracks inthe data set. In
table (1) we show the accuracy of our method for the rendezvous detection compared
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Fig. 6. FOPT forp(sr
t |sr

t−1, s
o
t ).

to the accuracy of a method that randomly choses which boats are in relation. In the
table it is also reported the average tracking error of the RPF algorithm compared to a
PF algorithm that does not take into account relations. The tracking error is computed
as the distance between the trajectories acquired by the particle filter (at each time-step,
it averages the position considering the states of all particles) and the real trajectories.

method TP ration TN ratioTracking Error(km, mean)
RPF 0.4545 0.7235 1.8379
PF 3.3906

random choice 0.4444 0.4841
Table 1. In columns TP ratio and TN ratio the ratio over the 120 set of tracks of true positive
and true negative is reported for our method and a random choice method. In the last column
the average tracking error for our method (RPF) and a method that does not take into account
relations (PF) is reported.
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3.2 Related Works

Our work is at the intersection of work in Probabilistic Relational Models, that to our
knowledge have never before considered applications in tracking, and Computer Vision,
where often heuristics are used to improve tracking, but notwith a systematic account
of relationships between targets.

Recently there has been increasing interest in models that extend probabilistic rea-
soning to First Order Logic to exploit redundancies observed in the worlds ([5], [6]).
In this setting, many relational inference algorithms proceed by first fully instantiat-
ing the First-Order relations and then working at the propositional level. In [10] an
inference algorithm that instantiates relations only as needed is presented, but this al-
gorithm can deal only with static domains as the relations are not supposed to change
over time. Moreover, our model is different from the one presented in [9], where the
concept of class is used to develop an inference system able to deal with a large number
of heterogenous objects. We use First-Order Logic to explicitly represent relationships
between objects to improve the inference task. Our method ispotentially applicable to
situations with a large number of objects as well.

Hybrid states models have been used to deal with complex tracking tasks [7]. They
combined continuous-valued dynamic with a discrete state of the world (context) en-
coding which switching dynamic is performed jointly with tracking. Our system uses
relations as representations of the context of each object instead of the context of the
entire world. The explicit recognition of the relations of each object allows us to deal
with much more complex tracking tasks. Moreover, the use of First Order Logic (as
opposed to predicative logic) generalizes our models to different domains.

In [8] the recognition of complex activity (temporally extended activities that can
be fragmented in simple ones) is based on context-free grammar. They decouple the
recognition task in two levels: a lower level that detects single simple activities that are
the inputs for the stochastic context-free grammar used as a“bag of words” for a parsing
mechanism. Instead, our approach does not decouple the recognition task, but seek to
take advantage from the tracking, that provides the detection of simple activities, to
recognize the temporally extended activity and from the knowledge about the complex
activity to improve the tracking.

In [11], the authors address the problem of activity recognition using First Order
Logic rules and Markov Logic Networks to represent common sense domain knowl-
edge. Differently from the method we are proposing, the inference task is performed
off-line: they perform probabilistic inference for input queries about events of interest
already happened. We seek, instead, to perform an on-line probabilistic inference of
both the state of the domain and the activities.

4 Conclusions

In this paper we presented a technique based on relational Bayesian reasoning in order
to address the problem of activity recognition and tracking. We presented an extension
of particle filter, called relational particle filter, that can be used to make inference. From
our preliminary results we can conclude that our method can help to identify the type of
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encounter that the targets are engaging. Moreover we have shown how using relations as
context can improve the tracking task. Compared to hybrid state model techniques, we
are able to model the problem with a single dynamic model and the state representation
is much more compact.

There are a number of possible applications of this approachin problems where
there is the need of monitoring a situation from sensed data (video surveillance, homeland-
security, etc.) that we are interested to consider for future works.
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Introduction. A key challenge in pervasive systems is that of identifying and de-
veloping appropriate formal approaches for understanding and reasoning about
contexts. This is a difficult task since there is no common agreement on what
constitutes a context and what its properties are. Although the literature con-
tains a rich variety of context models [1, 2], most of the resulting implementations
are domain-dependent and lack powerful reasoning capacities. Preliminary work
on logic-based reasoning about contexts has been proposed in [3, 4], using bridge
rules and argumentation theory. However, application-wise there are still open
questions on how to model context-related pieces of knowledge in general do-
mains, so that appropriate reasoning techniques can be applied. In order to put
the basis for a comprehensive theory of contexts one should take into account
the general structure of knowledge needed to represent contexts, in particu-
lar, what is intended as a context in pervasive environments and which compo-
nents/properties should be identified and described. System properties that are
of interest for the specification of contexts should be also considered. Motivated
by application challenges, this short paper highlights observations that can be
used to address these issues.

Generalization of Context in Pervasive Environments. Previous investigations
of context models in pervasive environments revealed that within contexts cer-
tain entities are more important than others in practice. These are location,
identity, activity and time [5, 6]. In pervasive environments, the more intuitively
relevant aspects of the context in which a person acts are who she is, which re-
sources/entities are related to her, where she is and when. The representation of
knowledge about contexts is very similar to the structure of a sentence in natural
language, where actors are the subjects and the objects, verbs are relations and
sensor data are the adjectives in that they assign a value to attributes of the
actors. As an example, in a home monitoring scenario, a generalization of actors
may correspond to the following entities: Person to be monitored, Room and
Area for localization and Object for resources. If attributes correspond to sensor
data, relations that we consider interesting depend on the task we want to solve
(localization of a person, reaction from the system, identification of an action,
etc.). The fact that a relation holds or not should be the result of reasoning
(commonsense, default, temporal) on the knowledge we want to characterize.



To enhance generality and modularity of the representation, we suggest to
represent entities at a primary level while all the other pieces of sensed infor-
mation are at a second level and can be indexed as attributes of the entities
at primary level. As for the relations between subjects, objects, and places in
pervasive environments the basic interesting relations that should be formalized
are spatial (being close/far, being in/out), temporal (occurring before/after) and
causal (occurring because of something).

Properties. In a given context, attributes and relations need to be associated
to a time stamp. In this way, the reasoning system can take into account their
dynamic evolution to characterize aspects such as commonsense, temporal rea-
soning, belief revision and update. In general the temporal evolution of a context
is one of the most important aspect to be correctly and formally characterized.
Additional properties may be needed to determine what is true in a given context
where certain objects, attributes and entities have been defined. These proper-
ties should make it possible to express belief merging and belief revision/update
in contexts.

Conclusions. We believe reasoning about contexts became harder and harder
because of the proliferation of very personal representations of context knowledge
in terms of admissible relations, their arity and their properties, which have been
developed ad-hoc for very diverse specific applications. Our attempt is that of
providing a more general and modular representation of context knowledge. The
intuition is that in this way multi-context reasoning could be supported by the
verification of formal properties at a knowledge representation level, in the same
way as human deduction is based on roles of the grammatical components of a
sentence.
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Abstract. This paper introduces a non-standard semantics for a modal
version of constructive KT for contextual (assumptions-based) verifi-
cation. The modal fragment expresses verifiability under extensions of
contexts, enjoying adapted validity and (weak) monotonocity properties
depending on satisfaction of the contextual data.

1 Background and Motivation

Modelling contexts is a crucial issue for knowledge representation and problem
solving tasks ([6]). The constructive treatment of contexts, interpreted as mean-
ing determining environments in a pragmatic setting for indexical expressions
([5]) or as databases for information retrieval, is characterized by the reduction
of assumptions to verified instances. From a logical viewpoint, the formulation
of a constructive contextual possible worlds semantics is an interesting challenge
to pair the syntactic calculi presented in [2] for staged computation, in [9] for an
operational semantics that quantifies over contexts and in [10] for a constructive
type theory with refutable assumptions.

Our constructive contextual semantics presents two novel aspects: the repre-
sentation of verification processes under open (non reduced) assumptions, and
their modelling in a contextual dynamics. These properties are given by inter-
preting necessity as verifiability in the empty context of assumptions preserved
to all extensions, and possibility as restricted validity. When performing queries
on ontologies, one wants the theory to deal with validity of varying contextual
values:

[x=Straight, y=3Km, z=NoObstacles :: Path, n::Nat]
prop P = Veichle
Time(P(x, y, z)) ==> Value :: n

[x=Bordeaux :: Wine, Red :: Colour]
prop x = Bordeaux ==> Red(x) :: Bool

? Postdoctoral Fellow of the Research Foundation - Flanders (FWO). Affiliated Senior
Researcher IEG, Oxford and GPI, Hertfordshire (UK).



This dynamics should be admitted both at the typing level (e.g. with type dec-
laration City in place of Wine, resulting in a different output) and at the value
level (e.g. with type value 30km in place of 3km, resulting in a different compu-
tation z). The main applications are knowledge processes with unverified infor-
mation, programming under contextual verification and output correcteness in
distributed and staged computation.

2 Knowledge with Local and Global Contexts

The language Lint is the union of two fragments Lint = {Lver,Linf}. Lver is
a positive (intuitionistic) language for direct verification processes, built in a
standard way from propositional variables P = {A,B,C, . . .}, the propositional
constant >, propositional unary and binary connectives ¬,&,∨,⊃. Linf is an
extension of the previous language with ⊥ and modal operators �,♦, obtained
by defining the satisfaction relation in a context Γ . A set of knowledge states
K = {Ki | i ∈ I} is a finitely enumerable collection of finite sets of evaluated
(modal and non-modal) formulas from Lint; each state is decorated with indices
I = {i, j, k, . . .}; V = {x1, x2, . . .} denotes a finite set of free variables.

A model Mver = {K,≤, R, v} is normal model with an accessibility relation
on ordered states Ki ≤ Ki ∈ K on which monotonicity is preserved for valuating
propositional letters by a standard function v. Contexts Γ, Γ ′ are sets of valuation
functions from V to contents in a knowledge state. The partial order ≤γ holds
for knowledge states on the basis of the relevant informational contexts, where
the function γ defines the extension of Γ holding for a given Ki to Γ ′ of Kj

(Ki ≤γ Kj), with at least one new propositional content assumed in Kj≥i.
Each value obtained in context can be seen as the parametric module of the
new language, collected into a strucutred list. vMinf ,Ki �Γ A is read as: “A
is verified in Ki on the basis of information Γ” and is based on the function
γ := V 7→ K, such that γ verifies A ∈ Kj iff Mver(Ki|i≤j∈I) 2 ¬A. A model
M inf = {K,≤γ , R, v}, has R as a symmetric accessibility relation on K induced
by ≤γ and v.

An informational context is the dynamic structure of information which spec-
ifies the actual program (or theory) against which the knowledge state is valid.
The additional two specific clauses for modalities in this language interpret con-
textual dynamics:

– vM ,Ki �Γ �A iff for any function γ it holds Ki �Γ≤γ A;
– vM ,Ki �Γ ♦A iff there is a function γ for which it holds Ki �Γ≤γ A.

Monotonicity for Linf is expressed under contextual constraints:

Lemma 1 (Contextual Monotonicity for Linf). If Ki �Γ > and for all γ,
Γ ≤γ Γ ′ � >, then Kj �Γ ′ > and if Ki |=Γ A then Kj |=Γ ′

A.

Introducing the distinction between global and local assumptions (see [4])
allows to reduce derivability and consequence relations of the two procols to a
unified frame.
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Definition 1 (Global Context). For any context Γ , the global context �Γ is
given by

⋃{�A1, . . . ,�An} such that γ := x 7→ Ai ∈ Γ .

Definition 2 (Local Context). For any context Γ , the local context ♦Γ is
given by

⋃{◦A1, . . . , ◦An | ◦ = {�,♦}} and γ := x 7→ Ai ∈ Γ and ∃Ai such that
♦Ai.

The resulting system has a correspondingly formulated consequence relation:
Ki ��Γ A iff for every γ, it holds Ki �Γ≤γ A; Ki �♦Γ A iff for some γ it holds
Ki �Γ≤γ A. The class of modelsM(Lver∪Linf ) is equivalent to that of contextual
KT (see [1], [3], [7]) with � and ♦:

Theorem 1. The system CKT�,♦ is sound and complete with respect to the
union class M(Lver∪Linf ); i.e. for every set of formulae Γ and formula A, it
holds Γ `CKT�,♦ A iff either �

∧
Γ ⊃ A, or ��Γ A, or �♦Γ A.
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