SuperIso v3.4: A program for calculating flavour physics observables in 2HDM and supersymmetry

F. Mahmoudi*

Université Lyon 1, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France

Abstract

We describe SuperIso v3.4 which is a public program for evaluation of flavour physics observables in the Standard Model (SM), general two-Higgs-doublet model (2HDM), minimal supersymmetric Standard Model (MSSM) and next to minimal supersymmetric Standard Model (NMSSM). SuperIso v3.4, in addition to the branching ratio of $\bar{B} \to X_s \gamma$ and the isospin asymmetry of $B \to K^* \gamma$, incorporates other flavour observables such as the branching ratios of $B_{s,d} \to \mu^+ \mu^-$, the branching ratio of $B \to \tau \nu_{\tau}$, the branching ratio of $B \to D\tau\nu_{\tau}$, the branching ratio of $K \to \mu\nu_{\mu}$, the branching ratio of $D \to \mu \nu_{\mu}$, and the branching ratios of $D_s \to \tau \nu_{\tau}$ and $D_s \to \mu \nu_{\mu}$, and several observables from the $B \to X_s \ell^+ \ell^-$ and $\bar{B} \to K^* \mu^+ \mu^-$ decays. The program also computes the muon anomalous magnetic moment $(g_\mu - 2)$. Several sample models are included in the package, namely SM, 2HDM, and CMSSM, NUHM, AMSB, HCAMSB, MMAMSB and GMSB for the MSSM, and CNMSSM, NGMSB and NNUHM for the NMSSM. SuperIso uses a SUSY Les Houches Accord file (SLHA1 or SLHA2) as input, which can be either generated automatically by the program via a call to external spectrum calculators, or provided by the user. The program can generate also outputs in the Flavour Les Houches Accord (FLHA) format. The calculation of the observables is detailed in the Appendices, where a suggestion for the allowed intervals for each observable is also provided.

PACS numbers: 11.30.Pb, 12.60.Jv, 13.20.-v

^{*}Electronic address: mahmoudi@in2p3.fr

URL: http://superiso.in2p3.fr

Contents

1	Introduction	7
2	Content of the SuperIso v3.4 package	8
	2.1 Parameter structure	8
	2.2 Main routines	11
3	Compilation and installation instructions	19
4	Input and output description	21
	4.1 Standard Model main program	21
	4.2 SLHA input file	23
	4.3 CMSSM inputs	25
	4.4 AMSB inputs	27
	4.5 HCAMSB inputs	27
	4.6 MMAMSB inputs	28
	4.7 GMSB inputs	28
	4.8 NUHM inputs	28
	4.9 CNMSSM inputs	29
	4.10 NGMSB inputs	30
	4.11 NNUHM inputs	30
	4.12 2HDM inputs	31
5	Results	31
6	Conclusion	33
$\mathbf{A}_{]}$	ppendix A: QCD coupling	34
$\mathbf{A}_{\mathbf{j}}$	ppendix B: Evolution of quark masses	34
$\mathbf{A}_{\mathbf{j}}$	ppendix C: Wilson coefficients at matching scale	36

C.1	Wilson coefficients $C_1 - C_8$	36
	C.1.1 Standard Model contributions	37
	C.1.2 Charged Higgs contributions	42
	C.1.3 Supersymmetric contributions	49
C.2	Wilson coefficients $C_9 - C_{10} \dots \dots$	55
	C.2.1 Standard Model contributions	55
	C.2.2 Charged Higgs contributions	59
	C.2.3 Supersymmetric contributions	60
C.3	Wilson coefficients $C_{Q_1} - C_{Q_2}$	63
	C.3.1 2HDM contributions	63
	C.3.2 MSSM contributions	64
	C.3.3 NMSSM contributions	67
C.4	Prime Wilson coefficients	70
	C.4.1 Prime Wilson coefficients $C'_{7,8}$	70
	C.4.2 Prime Wilson coefficients $C'_{9,10}$	71
	C.4.3 Prime Wilson coefficients C'_{Q_1,Q_2}	72
C.5	Auxiliary functions	73
		01
Appen	dix D: Renormalization group equations	81
D.1	RGE for the C_{110} Wilson coefficients in the standard operator basis	81
D.2	RGE the $C_{1\dots 8}$ Wilson coefficients in the traditional operator basis \ldots	87
D.3	Running group equations for C_{Q_1,Q_2}	89
D.4	Running group equations for the prime Wilson coefficients	89
Appen	dix E: Calculation of flavour observables	93
E.1	Branching ratio of $\bar{B} \to X_s \gamma$	93
E.2	Isospin asymmetry of $B \to K^* \gamma$	105
E 3	$B \to X_c \ell^+ \ell^-$	108
1.0	E.3.1 Main formulas	109
	E.3.2 Λ_{QCD}^2/m_t^2 and Λ_{QCD}^3/m_t^3 corrections	113
	E.3.3 Λ_{2CD}^2/m_*^2 correction	114
	E.3.4 Bremsstrahlung contributions	115
	E.3.5 Electromagnetic contributions	119

	E.3.6	Long distance contributions	121
E.4	$B \to \dot{P}$	$\bar{K}^*\ell^+\ell^-$	122
	E.4.1	Observables	123
	E.4.2	Transversity amplitudes at NLO	126
	E.4.3	Calculation of \mathcal{T}_a^{\pm}	128
	E.4.4	Light-cone-distribution amplitudes Φ	129
	E.4.5	Form factor correction C_a^{\pm}	130
	E.4.6	Spectator scattering $\ldots \ldots \ldots$	131
	E.4.7	Low recoil region	136
E.5	Branch	ning ratio of $B_{s,d} \to \mu^+ \mu^-$	138
	E.5.1	CP-averaged branching ratio	138
	E.5.2	Untagged Branching ratio	138
E.6	Branch	ning ratio of $B_u \to \tau \nu_{\tau}$	139
E.7	Branch	ning ratio of $B \to D \tau \nu_{\tau}$	140
E.8	Branch	ning ratio of $K \to \mu \nu_{\mu}$	141
E.9	Branch	ning ratio of $D_s \to \ell \nu_\ell$	142
E.10	Branch	ning ratio of $D \to \mu \nu_{\mu}$	143
Appen	dix F:	Muon anomalous magnetic moment	143
F.1	Supers	symmetry	143
F.2	2HDM	[148
Appen	dix G:	Useful parameters	149
Appen	dix H:	Suggested limits	149
Appen	dix I:]	LHA file format for 2HDM	149
Appen	dix J:	Sample FLHA output file	154
Refere	nces		156

List of Tables

1	$B \to K^* \mu^+ \mu^-$ observables	17
2	Yukawa couplings for the four types of 2HDM	42
3	Values of the RGE a_i numbers	81
4	$m_{kli}^{(00)}$ values	82
5	$m_{kli}^{(1j)}$ values	83
6	$m_{kli}^{(2j)}$ values	84
7	$m_{9li}^{(00)}$ and $m_{9li}^{(1j)}$ values	84
8	$m_{9li}^{(2j)}$ values	85
9	$a'_i, b_i, d^{(j)}_i$ and $e^{(j)}_i$ values for C_{10} electroweak corrections	87
10	$l_{kli}^{(00)}$ values	90
11	$l_{kli}^{(10)}$ values	91
12	$l_{kli}^{(11)}$ values	92
13	Useful numbers for $K_c^{(0)}$	105
14	Meson masses and decay properties	122
15	The $B \to K^*$ form factors from LCSR	128
16	Input parameters	150
17	Allowed intervals for the implemented observables	151
18	Experimental results and theoretical predictions for the $b\to s\ell\ell$ observables.	152
19	LEP and Tevatron Higgs and MSSM particle mass limits	153

1 Introduction

Along with the direct searches for new physics effects and particles, indirect searches appear as very important and complementary tools to explore physics beyond the Standard Model (SM). We investigate here the most popular extensions of the SM, such as the two-Higgs-doublet model (2HDM) and supersymmetry (SUSY). The presence of new particles as virtual states in processes involving only ordinary external particles provides us with the opportunities to study the indirect effects of new physics. This is the case for example of the rare B decays or the anomalous magnetic moment of the charged leptons.

Phenomenological interests of indirect searches are numerous. This includes tests of the SM predictions and the possibility to reveal indirect effects of new physics. The later can be complementary to direct searches or even used as guideline. The results of indirect searches can also be employed in order to check consistencies with the direct search results.

The main purpose of the **SuperIso** program is to offer the possibility to evaluate the most important indirect observables and constraints.

SuperIso [1] was in its first versions devoted to the calculation of the isospin symmetry breaking in $B \to K^* \gamma$ decays in the minimal supersymmetric extension of the Standard Model (MSSM) with minimal flavour violation. This observable imposes stringent constraints on supersymmetric models [2], which justifies a dedicated program. The calculation of the $b \to s\gamma$ branching ratio was also included in the first version and has been improved by adding NNLO contributions since version 2. Also, a broader set of flavour physics observables has been implemented. This includes the branching ratios of $B_{s,d} \to \mu^+\mu^-$, the branching ratio of $B_u \to \tau \nu_{\tau}$, the branching ratios of $B \to D^0 \tau \nu_{\tau}$ and $B \to D^0 e \nu_e$, the branching ratio of $K \to \mu \nu_{\mu}$, the branching ratio of $D \to \mu \nu_{\mu}$, and the branching ratios of $D_s \to \tau \nu_{\tau}$ and $D_s \to \mu \nu_{\mu}$, and several observables from the $B \to X_s \ell^+ \ell^-$ and $\bar{B} \to X_s \mu^+ \mu^$ decays. The calculation of the anomalous magnetic moment of the muon is also implemented in the program.

SuperIso has been extended to the general two-Higgs-doublet model since version 2.6 and to the next to minimal supersymmetric extension of the Standard Model (NMSSM) since version 3.0 [3]. Also, since version 2.8 an interface with the code HiggsBounds [4] is available¹ in order to obtain direct Higgs search constraints automatically in the output of SuperIso.

SuperIso uses a SUSY Les Houches Accord file (SLHA) [6,7] as input, which can be either generated automatically by the program via a call to SOFTSUSY [8], ISAJET [9], SPheno [10], SuSpect [11] and NMSSMTools [12], or provided by the user. SuperIso can also use the LHA inspired format for the 2HDM generated by 2HDMC [13], which will be described in Appendix I. The program is able to perform the calculations automatically for different types of 2HDM (I–IV), for different supersymmetric scenarios, such as the Constrained MSSM (CMSSM), the Non-Universal Higgs Mass model (NUHM), the Anomaly Mediated Supersymmetry Breaking scenario (AMSB), the Hypercharge Anomaly Mediated Supersymmetry Breaking

¹ FeynHiggs [5] is necessary to use HiggsBounds with SuperIso.

scenario (HCAMSB), the Mixed Modulus Anomaly Mediated Supersymmetry Breaking scenario (MMAMSB) and the Gauge Mediated Supersymmetry Breaking scenario (GMSB), and for the NMSSM scenarios namely CNMSSM, NGMSB and NNUHM. SuperIso is able to generate output files in the Flavour Les Houches Accord (FLHA) format [14].

In the following, we first discuss the content of the SuperIso package and give the list of the main routines. Then we describe the procedure to use SuperIso, and introduce the inputs and outputs of the program. Finally, we present some examples of results obtained with SuperIso. In the Appendices, a complete description of the formulas used to calculate the different observables in SuperIso is given for reference, as well as suggestions for the allowed intervals.

2 Content of the SuperIso v3.4 package

SuperIso is a C program respecting the C99 standard, devoted to the calculation of the most constraining flavour physics observables. Several main programs are provided in the package, but the users are also invited to write their own main programs. slha.c can scan files written following the SUSY Les Houches Accord formats, and calculates the corresponding observables. sm.c provides the values of the observables in the Standard Model while thdm.c computes the observables in 2HDM types I–IV and requires 2HDMC [13] for the generation of the input file containing the Higgs masses and couplings. The main programs cmssm.c, amsb.c, hcamsb.c, mmamsb.c, gmsb.c, and nuhm.c have to be linked to at least one of the SOFTSUSY [8], ISASUGRA/ISAJET [9], SPheno [10] and/or SuSpect [11] packages, in order to compute supersymmetric mass spectra and couplings within respectively the CMSSM, AMSB, HCAMSB, MMAMSB, GMSB or NUHM scenarios. The programs compute supersymmetric mass spectra and couplings within respectively the CNMSSM, NGMSB or NNUHM scenarios. For the general MSSM (or other supersymmetric scenarios) the user has to provide SLHA files containing all the needed masses and couplings.

The computation of the different observables in SuperIso proceeds following three main steps:

- Generation of the SLHA file with ISAJET, SOFTSUSY, SPheno, SuSpect or NMSSMTools (or supply of the SLHA file by the user),
- Scan of the SLHA file,
- Calculation of the observables.

The last point incorporates a complex procedure: to compute the inclusive branching ratio of $b \rightarrow s\gamma$ for example, **SuperIso** needs first to compute the Wilson coefficients at matching scale, and then to evolve them using the Renormalization Group Equations (RGE) to a lower scale, before using them to compute the branching ratio.

2.1 Parameter structure

The SuperIso package relies on the definition of a structure in src/include.h, supporting the SLHA1 and SLHA2 formats. This structure is defined as follows:

```
typedef struct parameters
/* structure containing all the scanned parameters from the SLHA file */
{
int SM;
int model; /* CMSSM=1, GMSB=2, AMSB=3 */
int generator; /* ISAJET=1, SOFTSUSY=3, SPHENO=4, SUSPECT=5, NMSSMTOOLS=6 */
double Q; /* Qmax ; default = M_EWSB = sqrt(m_stop1*mstop2) */
double m0,m12,tan_beta,sign_mu,A0; /* CMSSM parameters */
double Lambda,Mmess,N5,cgrav,m32; /* AMSB, GMSB parameters */
double mass_Z,mass_W,mass_b,mass_top_pole,mass_tau; /* SM parameters */
double inv_alpha_em,alphas_MZ,Gfermi,GAUGE_Q; /* SM parameters */
double charg_Umix[3][3], charg_Vmix[3][3], stop_mix[3][3], sbot_mix[3][3],
stau_mix[3][3],neut_mix[6][6],mass_neut[6],alpha; /* mass mixing matrices */
double Min,M1_Min,M2_Min,M3_Min,At_Min,Ab_Min,Atau_Min,M2H1_Min,M2H2_Min,
mu_Min,M2A_Min,tb_Min,mA_Min; /* optional input parameters at scale Min */
double MeL_Min,MmuL_Min,MtauL_Min,MeR_Min,MmuR_Min,MtauR_Min; /* optional
input parameters at scale Min */
double MqL1_Min,MqL2_Min,MqL3_Min,MuR_Min,McR_Min,MtR_Min,MdR_Min,MsR_Min,
MbR_Min; /* optional input parameters at scale Min */
double N51,N52,N53,M2H1_Q,M2H2_Q; /* optional input parameters (N51...3: GMSB) */
double mass_d,mass_u,mass_s,mass_c_pole,mass_b_pole,mass_e,mass_nue,mass_mu,
mass_num,mass_nut; /* SM masses */
double mass_gluon,mass_photon,mass_Z0; /* SM masses */
double mass_h0,mass_H0,mass_A0,mass_H,mass_dnl,mass_upl,mass_stl,mass_chl,
mass_b1,mass_t1; /* Higgs & superparticle masses */
double mass_el,mass_nuel,mass_mul,mass_numl,mass_tau1,mass_nutl,mass_gluino,
mass_cha1,mass_cha2; /* superparticle masses */
double mass_dnr,mass_upr,mass_str,mass_chr,mass_b2,mass_t2,mass_er,mass_mur,
mass_tau2; /* superparticle masses */
double mass_nuer,mass_numr,mass_nutr,mass_graviton,mass_gravitino; /* masses */
double gp,g2,gp_Q,g2_Q,g3_Q,YU_Q,yut[4],YD_Q,yub[4],YE_Q,yutau[4]; /* couplings */
double HMIX_Q,mu_Q,tanb_GUT,Higgs_VEV,mA2_Q,MSOFT_Q,M1_Q,M2_Q,M3_Q; /* parameters
at scale Q */
double MeL_Q,MmuL_Q,MtauL_Q,MeR_Q,MmuR_Q,MtauR_Q,MqL1_Q,MqL2_Q,MqL3_Q,MuR_Q,
McR_Q,MtR_Q,MdR_Q,MsR_Q,MbR_Q; /* masses at scale Q */
double AU_Q,A_u,A_c,A_t,AD_Q,A_d,A_s,A_b,AE_Q,A_e,A_mu,A_tau; /* trilinear
couplings */
/* SLHA2 */
int NMSSM, RV, CPV, FV;
double mass_nutau2,mass_e2,mass_nue2,mass_mu2,mass_numu2,mass_d2,mass_u2,
mass_s2,mass_c2;
double CKM_lambda,CKM_A,CKM_rhobar,CKM_etabar;
```

double PMNS_theta12,PMNS_theta23,PMNS_theta13,PMNS_delta13,PMNS_alpha1,

```
PMNS_alpha2;
double lambdaNMSSM_Min,kappaNMSSM_Min,AlambdaNMSSM_Min,AkappaNMSSM_Min,
lambdaSNMSSM_Min,xiFNMSSM_Min,xiSNMSSM_Min,mupNMSSM_Min,mSp2NMSSM_Min,
mS2NMSSM_Min,mass_H03,mass_A02,NMSSMRUN_Q,lambdaNMSSM,kappaNMSSM,
AlambdaNMSSM, AkappaNMSSM, lambdaSNMSSM, xiFNMSSM, xiSNMSSM, mupNMSSM,
mSp2NMSSM,mS2NMSSM; /* NMSSM parameters */
double PMNSU_Q,CKM_Q,IMCKM_Q,MSE2_Q,MSU2_Q,MSD2_Q,MSL2_Q,MSQ2_Q,
TU_Q,TD_Q,TE_Q;
double CKM[4][4], IMCKM[4][4]; /* CKM matrix */
double HO_mix[4][4], AO_mix[4][4]; /* Higgs mixing matrices */
double sU_mix[7][7], sD_mix[7][7], sE_mix[7][7], sNU_mix[4][4]; /* mixing
matrices */
double sCKM_msq2[4][4],sCKM_ms12[4][4],sCKM_msd2[4][4],sCKM_msu2[4][4],
sCKM_mse2[4][4]; /* super CKM matrices */
double PMNS_U[4][4]; /* PMNS mixing matrices */
double TU[4][4],TD[4][4],TE[4][4]; /* trilinear couplings */
/* non-SLHA*/
double mass_b_1S,mass_c,mass_top;
double Lambda5; /* Lambda QCD */
/* Flavour parameters */
double f_B,f_Bs,f_Ds,f_D,fK_fpi;
double f_K_par,f_K_perp;
double m_B,m_Bs,m_Bd,m_pi,m_Ds,m_K,m_Kstar,m_D0,m_D;
double life_pi,life_K,life_B,life_Bs,life_Bd,life_D,life_Ds;
double a1par,a2par,a1perp,a2perp;
double zeta3A,zeta3V,wA10,deltatp,deltatm;
double lambda_Bp,rho1,lambda2;
double BR_BXclnu_exp;
/* CKM matrix */
double complex Vud,Vus,Vub,Vcd,Vcs,Vcb,Vtd,Vts,Vtb;
/* 2HDM */
int THDM_model;
double lambda_u[4][4],lambda_d[4][4],lambda_1[4][4];
/* NMSSMTools */
int NMSSMcoll,NMSSMtheory,NMSSMups1S,NMSSMetab1S;
/* Decay widths */
double width_Z,width_W;
}
parameters;
```

This structure contains all the important parameters and is called by most of the main functions in the program.

2.2 Main routines

We now review the main routines of the code. The complete list of implemented routines can be found in src/include.h.

• void Init_param(struct parameters* param)

This function initializes the **param** structure, setting all the parameters to 0, apart from the SM masses and couplings, which receive the values given in the PDG [15].

• int Les_Houches_Reader(char name[], struct parameters* param)

This routine reads the SLHA file whose name is contained in name, and put all the read parameters in the structure param. This function has been updated to the SLHA2 format. This routine can also read the LHA inspired format for the 2HDM described in Appendix I. A negative value for param->model indicates a problem in reading the SLHA file, or a model not yet included in SuperIso (such as *R*-parity breaking models). In this case, Les_Houches_Reader returns 0, otherwise 1.

• int test_slha(char name[])

This routine checks if the SLHA file whose name is contained in name is valid, and if so return 1. If not, -1 means that in the SLHA generator the computation did not succeed (*e.g.* because of tachyonic particles), -2 means that the considered model is not currently implemented in SuperIso, and -3 that the file provided is either not in the SLHA format, or some important elements are missing.

- int isajet_cmssm(double m0, double m12, double tanb, double A0, double sgnmu, double mtop, char name[])
- int isajet_gmsb(double Lambda, double Mmess, double tanb, int N5, double cGrav, double sgnmu, double mtop, char name[])
- int isajet_amsb(double m0, double m32, double tanb, double sgnmu, double mtop, char name[])
- int isajet_mmamsb(double alpha, double m32, double tanb, double sgnmu, double mtop, char name[])
- int isajet_hcamsb(double alpha, double m32, double tanb, double sgnmu, double mtop, char name[])
- int isajet_nuhm(double m0, double m12, double tanb, double A0, double mu, double mA, double mtop, char name[])

The above routines call ISAJET to compute the mass spectrum corresponding to the input parameters (more details are given in the next sections), and return an SLHA file whose name has to be specified in the string name. It should however be noted isajet_gmsb, isajet_amsb, isajet_mmamsb, isajet_hcamsb and isajet_nuhm only work with ISAJET v7.80 or later versions.

- int softsusy_cmssm(double m0, double m12, double tanb, double A0, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int softsusy_gmsb(double Lambda, double Mmess, double tanb, int N5, double cGrav, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int softsusy_amsb(double m0, double m32, double tanb, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int softsusy_nuhm(double m0, double m12, double tanb, double A0, double mu, double mA, double mtop, double mbot, double alphas_mz, char name[])
- int softsusy_mssm(double m1, double m2, double m3, double tanb, double mA, double at, double ab, double atau, double mu, double mer, double mel, double mstaul, double mstaur, double mq1, double mq31, double mqur, double mqtr, double mqdr, double mqbr, double Q, double mtop, double mbot, double alphas_mz, char name[])

The above routines call SOFTSUSY to compute the mass spectrum corresponding to the input parameters (more details are given in the next sections), and return an SLHA file whose name has to be specified in the string name.

- int spheno_cmssm(double m0, double m12, double tanb, double A0, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int spheno_gmsb(double Lambda, double Mmess, double tanb, int N5, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int spheno_amsb(double m0, double m32, double tanb, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])

The above routines call SPheno to compute the mass spectrum corresponding to the input parameters (more details are given in the next sections), and return an SLHA file whose name has to be specified in the string name.

- int suspect_cmssm(double m0, double m12, double tanb, double A0, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int suspect_gmsb(double Lambda, double Mmess, double tanb, int N5, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int suspect_amsb(double m0, double m32, double tanb, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int suspect_nuhm(double m0, double m12, double tanb, double A0, double mu, double mA, double mtop, double mbot, double alphas_mz, char name[])
- int suspect_mssm(double m1, double m2, double m3, double tanb, double mA, double at, double ab, double atau, double mu, double mer, double mel, double mstaul, double mstaur, double mq1, double mq31, double mqur, double mqtr, double mqdr, double mqbr, double Q, double mtop, double mbot, double alphas_mz, char name[])

The above routines call **SuSpect** to compute the mass spectrum corresponding to the input parameters (more details are given in the next sections), and return an SLHA file whose name has to be specified in the string **name**.

• int thdmc_types(double 11, double 12, double 13, double 14, double 15, double 16, double 17, double m12_2, double tanb, int type, char name[])

This routine calls 2HDMC to compute the masses and couplings corresponding to the 2HDM input parameters, and returns a LHA inspired file whose name has to be specified in the string name.

- int nmssmtools_cnmssm(double m0, double m12, double tanb, double A0, double lambda, double AK, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int nmssmtools_nnuhm(double m0, double m12, double tanb, double A0, double MHDGUT, double MHUGUT, double lambda, double AK, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])
- int nmssmtools_ngmsb(double Lambda, double Mmess, double tanb, int N5, double lambda, double AK, double Del_h, double sgnmu, double mtop, double mbot, double alphas_mz, char name[])

The above routines call NMSSMTools to compute the mass spectrum corresponding to the input parameters (more details are given in the next sections) and return the SLHA2 file name.

• alphas_running(double Q, double mtop, double mbot, struct parameters* param)

This function computes the strong coupling constant at the energy scale Q using the parameters in param, provided the top quark mass mtop and bottom quark mass mbot used for the matching between the scales corresponding to different flavour numbers are specified. The main formula for calculating α_s is given in Appendix A.

 double running_mass(double quark_mass, double Qinit, double Qfin, double mtop, double mbot, struct parameters* param)

This function calculates the running quark mass at the scale Qfin, for a quark of mass quark_mass at the scale Qinit using the structure param, knowing the matching scales mtop and mbot. A description of the quark mass calculations can be found in Appendix B.

- void CW_calculator(double COw[], double C1w[], double C2w[], double mu_W, struct parameters* param)
- void C_calculator_base1(double COw[], double C1w[], double C2w[], double mu_W, double C0b[], double C1b[], double C2b[], double mu, struct parameters* param)
- void C_calculator_base2(double COw[], double C1w[], double mu_W, double COb[], double C1b[], double mu, struct parameters* param)

These three routines compute the Wilson coefficients $C_1 \cdots C_{10}$.

The procedure CW_calculator computes the LO contributions to the Wilson coefficients COw[], the NLO contributions C1w[] and the NNLO contributions C2w[] at the matching scale mu_W, using the parameters of param, as described in Appendix C.

C_calculator_base1 evolves the LO, NLO and NNLO Wilson coefficients COw[], C1w[], C2w[] initially at scale mu_W to COb[], C1b[], C2b[] at scale mu, in the standard operator basis described in Appendix D.1.

C_calculator_base2 evolves the LO and NLO Wilson coefficients COw[], C1w[] initially at scale mu_W to COb[], C1b[] at scale mu, in the traditional operator basis described in Appendix D.2.

• void CQ_calculator(double complex CQOb[], double complex CQ1b[], double mu_W, double mu, struct parameters* param)

This routine computes the Wilson coefficients corresponding to the scalar operators Q_1 and Q_2 as described in Appendix C.3.

• void Cprime_calculator(double Cpb[], double complex CQpb[], double mu_W, double mu, struct parameters* param)

This routine computes the primed Wilson coefficients (with flipped chirality) as described in Appendix C.4.

• int excluded_mass_calculator(char name[])

This routine, with the name of the SLHA file in the argument, checks whether the parameter space point is excluded by the LEP and Tevatron constraints on the particle masses and if so returns 1. The implemented mass limits are given in Appendix H, and can be updated by the users in src/excluded_masses.c. These limits are valid only in the MSSM.

- int NMSSM_collider_excluded(char name[])
- int NMSSM_theory_excluded(char name[])

These two routines only apply to the SLHA file name generated by NMSSMTools, as they need NMSSMTools specific outputs. They respectively check if a parameter space point is excluded by collider constraints [16] or by theoretical constraints (such as unphysical global minimum). The output 1 means that the point is excluded.

double higgsbounds_calculator(char name[])

The higgsbounds_calculator routine, with the name of the SLHA file in the argument, calls HiggsBounds to check the direct search constraints on the Higgs masses. If for a given point the result is larger than 1, the point is excluded.

• int charged_LSP_calculator(char name[])

This routine, with the name of the SLHA file in the argument, checks whether the LSP is charged or not. It returns 0 if the LSP is a neutralino, 1 if it is charged, 2 if the LSP is a sneutrino, and 3 if it is a gluino.

• void flha_generator(char name[], char name_output[])

This routine generates an output FLHA file using the input SLHA file. The first argument is the name of the SLHA file and the second of the FLHA file. An example of FLHA output is given in Appendix J.

The following routines encode the implemented observables:

• double bsgamma(double C0[], double C1[], double C2[], double Cp[], double mu, double mu_W, struct parameters* param)

This function has replaced the calculation of $b \to s\gamma$ in the first version, which was performed at NLO accuracy. Here, knowing the LO, NLO, NNLO and primed Wilson coefficients CO[], C1[], C2[], Cp[] at scale mu, and given the matching scale mu_W this procedure computes the inclusive branching ratio of $b \to s\gamma$ at NNLO, as described in Appendix E.1.

The container routine bsgamma_calculator, in which name contains the name of the SLHA file, automatizes the whole calculation, as it first calls Init_param and Les_Houches_Reader, then CW_calculator, C_calculator_base1, Cprime_calculator, and finally bsgamma.

• double delta0(double C0[],double C0_spec[],double C1[],double C1_spec[], double Cp[], struct parameters* param,double mu_b,double mu_f)

This function computes the isospin asymmetry in $B \to K^* \gamma$ as described in Appendix E.2, using the LO, NLO and primed Wilson coefficients at scale mu_b (CO[], C1[] and Cp[]), and at the spectator scale mu_f (CO_spec[] and C1_spec[]). Compared to the first version, the calculation has been improved, and all the involved integrals have been coded in separate routines. Again, an automatic container routine which only needs the name of the SLHA file is provided: delta0_calculator.

• double Bsmumu(double COb[], double C1b[], double C2b[], double complex CQOb[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

double Bdmumu(double COb[], double C1b[], double C2b[], double complex CQOb[], double complex CQ1b[], struct parameters* param, double mu_b)

These functions compute the CP-averaged branching ratios of the rare decays $B_s \rightarrow \mu^+\mu^-$ and $B_d \rightarrow \mu^+\mu^-$ using two loop electroweak and three loop QCD corrections as described in Appendix E.5. The container routines Bsmumu_calculator(char name[]) and Bdmumu_calculator (char name[]), in which name contains the name of the SLHA file, automatize the whole calculation, and first call Init_param and Les_Houches_Reader, then CW_calculator, C_calculator_base1, Cprime_calculator, CQ_calculator, and finally Bsmumu and Bdmumu.

• double Bsmumu_untag(double COb[], double C1b[], double C2b[], double complex CQOb[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

This functions compute the untagged branching ratio of the rare decay $B_s \to \mu^+ \mu^$ as described in Appendix E.5.2. The container routine Bsmumu_untag_calculator automatize the calculation. The resulting value can be directly compared to the experimental limits.

• dBR_BXsmumu_dshat(double shat, double COb[], double C1b[], double C2b[], double complex CQ0b[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

double A_BXsmumu(double shat, double COb[], double C1b[], double C2b[], double complex CQOb[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

These functions compute the differential branching fraction and forward-backward asymmetry of $B \to X_s \mu^+ \mu^-$ for $\hat{s} =$ shat using the LO, NLO, NNLO and primed Wilson coefficients COb/CQOb, C1b/CQ1b, C2b and Cpb/CQpb, at scale mu_b, as described in Appendix E.3. They are called for the calculation of all the $B \to X_s \mu^+ \mu^-$ observables.

• BRBXsmumu_lowq2(double COb[], double C1b[], double C2b[], double complex CQ0b[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

BRBXsmumu_highq2(double COb[], double C1b[], double C2b[], double complex CQOb[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

double A_BXsmumu_zero(double COb[], double C1b[], double C2b[], double complex CQOb[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

These functions compute the branching fractions in the low q^2 region $(1 < q^2 < 6 \text{ GeV}^2)$, in the high q^2 region $(q^2 > 14.4 \text{ GeV}^2)$, and the zero-crossing of the forward-backward asymmetry of $B \to X_s \mu^+ \mu^-$ using the LO, NLO, NNLO and primed Wilson coefficients COb/CQOb, C1b/CQ1b, C2b and Cpb/CQpb, at scale mu_b, as described in Appendix E.3. Automatic container routines which only need the name of the SLHA file are provided: BRBXsmumu_lowq2_calculator, BRBXsmumu_highq2_calculator and A_BXsmumu_zero_calculator.

• BRBXstautau_highq2(double COb[], double C1b[], double C2b[], double complex CQ0b[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

This function computes the branching fraction in the high q^2 region $(q^2 > 14.4 \text{ GeV}^2)$ of $B \to X_s \tau^+ \tau^-$ using the LO, NLO, NNLO and primed Wilson coefficients COb/CQOb, C1b/CQ1b, C2b and Cpb/CQpb at scale mu_b, as described in Appendix E.3. An automatic container routine which only needs the name of the SLHA file is provided: BRBXstautau_highq2_calculator.

• double dGamma_BKstarmumu_dq2(double q2, double obs[][3], double C0b[], double C1b[], double C2b[], double complex CQ0b[], double complex CQ1b[],

	Observable		Observable
obs[0]	$q_0^2(A_{FB})$	obs[11]	$H_{T}^{(3)}$
obs[1]	A_{FB}	obs[12]	$lpha_{K^*}$
obs[2]	F_L	obs[13]	A_{Im}
obs[3]	F_T	obs[14]	P_2
obs[4]	$A_T^{(1)}$	obs[15]	P_3
obs[5]	$A_T^{(2)} = P_1$	obs[16]	P_6
obs[6]	$A_T^{(3)}$	obs[17]	P'_4
obs[7]	$A_T^{(4)}$	obs[18]	P_5'
obs[8]	$A_T^{(5)}$	obs[19]	P_6'
obs[9]	$H_T^{(1)} = P_4$	obs[20]	P_8
obs[10]	$H_T^{(2)} = P_5$	obs[21]	P_8'

Table 1: $B \to K^* \mu^+ \mu^-$ observables contained in the array obs[]. The definitions are given in Appendix E.4.

double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)
double dAI_BKstarmumu_dq2(double q2, double C0b[], double C1b[],
double C2b[], struct parameters* param, double mu_b)

These functions compute the differential decay rate and isospin asymmetry of $B \to K^* \mu^+ \mu^-$ for $q^2 = q^2$ using the LO, NLO and NNLO Wilson coefficients COb/CQOb, C1b/CQ1b, C2b and the primed Wilson coefficients Cpb and CQpb at scale mu_b, as described in Appendix E.4. They are called for the calculation of all the $B \to K^* \mu^+ \mu^-$ observables. The array obs contains the values of the observables given in Table 1.

double BRBKstarmumu_lowq2(double obs[], double C0b[], double C1b[], double C2b[], double complex CQ0b[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b) double BRBKstarmumu_highq2(double obs[], double C0b[], double C1b[], double C2b[], double complex CQ0b[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b)

These functions compute branching fraction of $B \to K^* \mu^+ \mu^-$ as well of all the observables given in Table 1, in the low q^2 ($1 < q^2 < 6 \text{ GeV}^2$) and high q^2 ($14.18 < q^2 < 16 \text{ GeV}^2$) regions respectively, using the LO, NLO and NNLO Wilson coefficients C0b/CQ0b, C1b/CQ1b, C2b and the primed Wilson coefficients Cpb and CQpb at scale mu_b. The array obs contains the values of the observables in the corresponding q^2 region.

The minimum and maximum q^2 values for the averages can be modified using the function:

double BRBKstarmumu(double smin, double smax, double obs[], double C0b[], double C1b[], double C2b[], double complex CQ0b[], double complex CQ1b[], double Cpb[], double complex CQpb[], struct parameters* param, double mu_b) Automatic container routines which need the name of the SLHA file and an array obs[] to get the other functions are provided:

 ${\tt BRobs_BKstarmumu_lowq2_calculator} \ {\tt and} \ {\tt BRobs_BKstarmumu_highq2_calculator} \ {\tt and} \ {\tt and} \ {\tt BRobs_BKstarmumu_highq2_calculator} \ {\tt and} \ {\tt and}$

Specific functions for the observables of Table 1 can be found in src/include.h.

double AI_BKstarmumu_lowq2(double COb[], double C1b[], double C2b[], struct parameters* param, double mu_b) double AI_BKstarmumu_highq2(double COb[], double C1b[], double C2b[], struct parameters* param, double mu_b) double AI_BKstarmumu_zero(double COb[], double C1b[], double C2b[], struct parameters* param, double mu_b)

These functions compute the averaged isospin asymmetries in the low q^2 $(1 < q^2 < 6 \text{ GeV}^2)$ and high q^2 $(14.18 < q^2 < 16 \text{ GeV}^2)$ regions and the isospin asymmetry zero-crossing of $B \to K^*\mu^+\mu^-$ respectively, using the LO, NLO and NNLO Wilson coefficients COb, C1b, C2b at scale mu_b, as described in Appendix E.4. Automatic container routines which need the name of the SLHA file are provided: AI_BKstarmumu_lowq2_calculator, AI_BKstarmumu_highq2_calculator and

AI_BKstarmumu_zero_calculator

 double Btaunu(struct parameters* param) double RBtaunu(struct parameters* param) double Btaunu_calculator(char name[]) double RBtaunu_calculator(char name[])

These routines compute the branching ratio of the leptonic decay $B_u \to \tau \nu_{\tau}$ and the ratio $\text{BR}(B_u \to \tau \nu_{\tau})/\text{BR}(B_u \to \tau \nu_{\tau})^{\text{SM}}$ as described in Appendix E.6. These leptonic decays occur at tree level, and we consider also higher order SUSY corrections to the Yukawa coupling.

 double BDtaunu(struct parameters* param) double BDtaunu_BDenu(struct parameters* param) double BDtaunu_calculator(char name[]) double BDtaunu_BDenu_calculator(char name[])

These routines compute the branching ratio of the semileptonic decay $B \to D^0 \tau \nu_{\tau}$ and the ratio $BR(B \to D^0 \tau \nu_{\tau})/BR(B \to D^0 e \nu_e)$ as described in Appendix E.7. These semileptonic decays occur at tree level, and we consider also higher order SUSY corrections to the Yukawa coupling.

 double Kmunu_pimunu(struct parameters* param) double Rmu23(struct parameters* param) double Kmunu_pimunu_calculator(char name[]) double Rmu23_calculator(char name[])

These functions compute the ratio $BR(K \to \mu\nu_{\mu})/BR(\pi \to \mu\nu_{\mu})$ and the observable $R_{\mu 23}$ as described in Appendix E.8. These leptonic decays occur at tree level, and we consider also higher order SUSY corrections to the Yukawa coupling.

 double Dstaunu(struct parameters* param) double Dsmunu(struct parameters* param) double Dstaunu_pimunu_calculator(char name[]) double Dsmunu_calculator(char name[])

These routines compute the branching ratios of the leptonic decays $D_s \to \tau \nu_{\tau}$ and $D_s \to \mu \nu_{\mu}$ as described in Appendix E.9. These leptonic decays occur at tree level, and we consider also higher order SUSY corrections to the Yukawa coupling.

- double Dmunu(struct parameters* param) double Dmunu_calculator(char name[])
 These routines compute the branching ratio of the leptonic decay D → μν_μ as described in Appendix E.10.
- double muon_gm2(struct parameters* param) double muon_gm2_calculator(char name[])

These routines compute the muon anomalous magnetic moment (δa_{μ}) at two loop, as described in Appendix F.

3 Compilation and installation instructions

The main structure of the SuperIso package is unchanged since the first version, and the spirit of the program relies on the idea of simplicity of use.

The SuperIso $package^2$ can be downloaded from:

http://superiso.in2p3.fr

The following main directory is created after unpacking:

superiso_vX.X

It contains the src/ directory, in which all the source files can be found. The main directory contains also a Makefile, a README, twelve sample main programs (sm.c, thdm.c, cmssm.c, amsb.c, hcamsb.c, mmamsb.c, gmsb.c, nuhm.c, cnmssm.c, ngmsb.c, nnuhm.c and slha.c) and one example of input file in the SLHA format (example.lha).

In the Makefile the user has to specify the following items:

- The compiler name and the compilation options.
- Optionally, the path to the external programs:
 - path to isasugra.x for ISAJET,
 - path to softpoint.x for SOFTSUSY,

²An alternative package including the calculation of the relic density, SuperIso Relic [17], is also available at: http://superiso.in2p3.fr/relic.

- path to the suspect2 executable file for SuSpect,
- path to the SPheno executable file for SPheno,
- path to the 2HDMC directory,
- path to the NMSSMTools main directory,
- path to the HBwithFH executable file for HiggsBounds.

To use the limits from HiggsBounds, HBwithFH is used which needs FeynHiggs to be installed and linked to HiggsBounds. More information about how to compile HBwithFH can be found in the HiggsBounds manual or in the README file of SuperIso.

If the above optional programs are not used, the corresponding lines have to be commented or removed from the main programs (*e.g.* "#define USE_ISAJET" in cmssm.c).

SuperIso is written for a C compiler respecting the C99 standard. In particular, it has been tested successfully with the GNU C Compiler and the Intel C Compiler on Linux and Mac 32-bits or 64-bits machines, and with the latest versions of ISAJET, SOFTSUSY, SPheno, SuSpect, NMSSMTools, 2HDMC, and HiggsBounds.

Additional information can be found in the **README** file.

To compile the library, type

make

This creates libisospin.a in src/. Then, to compile one of the provided main programs, type

make name or make name.c

where name can be sm, thdm, cmssm, amsb, hcamsb, mmamsb, gmsb, nuhm, cnmssm, ngmsb, nnuhm or slha. This generates an executable program with the .x extension. Note that sm and slha do not need any additional program, but cmssm, amsb, gmsb need ISAJET or SOFTSUSY or SPheno or SuSpect, nuhm needs either ISAJET or SOFTSUSY, hcamsb and mmamsb need ISAJET, cnmssm, ngmsb and nnuhm require NMSSMTools and 2HDMC is necessary for thdm.

The main programs are further detailed in the following:

- sm.x calculates the different observables described in the Appendices in the Standard Model, using the parameters of Table 16.
- slha.x calculates the different observables using the parameters contained in the SLHA file whose name has to be passed as input parameter.
- thdm.x calculates the observables in 2HDM (general model or types I–IV), starting first by calculating the mass spectrum and couplings thanks to 2HDMC.
- amsb.x, hcamsb.x, mmamsb.x, gmsb.x, cmssm.x and nuhm.x compute the observables, first by calculating the mass spectrum and couplings thanks to ISAJET (amsb.x,

hcamsb.x, mmamsb.x, gmsb.x and nuhm.x only work with ISAJET v7.80 or later versions) and/or SOFTSUSY and/or SPheno and/or SuSpect, within respectively the AMSB, HCAMSB, MMAMSB, GMSB, CMSSM or NUHM parameter spaces.

• cnmssm.x, ngmsb.x or nnuhm.x compute the observables, after calculating the mass spectrum and couplings thanks to NMSSMTools within respectively the CNMSSM, NGMSB or NNUHM parameter spaces.

For all these programs (except sm.c), arguments referring to the usual input parameters have to be passed to the program. If not, a message will describe which parameters have to be specified.

4 Input and output description

The input and output of the main programs provided in SuperIso are detailed in the following. Using the main programs as examples, the user is encouraged to write his/her own programs in order to, for example, perform scans in a given scenario. The full output is reproduced for sm.x, slha.x and cmssm.x as examples.

4.1 Standard Model main program

The program sm.x is a standalone program which computes the different observables in the Standard Model. No argument is necessary for this program, and the input parameters are given in Appendix G. The command

./sm.x

returns

Observable	Value
BR(b->s gamma)	3.174e-04
delta0(B->K* gamma)	5.856e-02
BR(Bs->mu mu)	3.227e-09
BR(Bs->mu mu)_untag	3.538e-09
BR(Bd->mu mu)	1.067e-10
BR(B->K* mu mu)_low	2.487e-07
AFB(B->K* mu mu)_low	-4.054e-02
FL(B->K* mu mu)_low	7.073e-01
P1=AT1(B->K* mu mu)_low	9.966e-01
AT2(B->K* mu mu)_low	-5.690e-02
AT3(B->K* mu mu)_low	6.384e-01
AT4(B->K* mu mu)_low	8.585e-01
AT5(B->K* mu mu)_low	3.651e-01
P4=HT1(B->K* mu mu)_low	4.864e-01
P5=HT2(B->K* mu mu)_low	-3.631e-01

HT3(B->K* mu mu)_low	1.974e-01
P2(B->K* mu mu)_low	9.856e-02
P3(B->K* mu mu)_low	-3.903e-04
P6(B->K* mu mu)_low	-6.135e-02
P4'(B->K* mu mu)_low	5.000e-01
P5'(B->K* mu mu) low	-3.534e-01
P6'(B->K* mu mu) low	-6.013e-02
P8(B ->K* m1 m1) low	4.936e-02
P8'(B->K* mi mi)]ow	4.793e-02
$AT(B \rightarrow K \ast m_1 m_1)$ low	-2.823e-02
(
BR(B->K* mu mu)_high	1.373e-07
AFB(B->K* mu mu)_high	4.454e-01
FL(B->K* mu mu)_high	3.108e-01
AT1(B->K* mu mu)_high	8.723e-01
P1=AT2(B->K* mu mu)_high	-4.875e-01
AT3(B->K* mu mu)_high	1.704e+00
AT4(B->K* mu mu)_high	5.810e-01
AT5(B->K* mu mu)_high	6.188e-02
P4=HT1(B->K* mu mu)_high	9.997e-01
P5=HT2(B->K* mu mu)_high	-9.896e-01
HT3(B->K* mu mu)_high	-9.904e-01
P2(B->K* mu mu)_high	-4.324e-01
P3(B->K* mu mu)_high	0.000e+00
P6(B->K* mu mu)_high	0.000e+00
P4'(B->K* mu mu)_high	1.219e+00
P5'(B->K* mu mu)_high	-7.095e-01
P6'(B->K* mu mu)_high	0.000e+00
P8(B->K* mu mu)_high	0.000e+00
P8'(B->K* mu mu)_high	0.000e+00
AI(B->K* mu mu)_high	-4.707e-04
$a0^{2}(AEB(B->K* mil mil))$	4 0240+00
$q_0^2(AT(B-X*mu mu)))$	1 707 <u>0</u> +00
qo z(ni(b) / n) mu mu)/	1.1010.00
BR(B->Xs mu mu) low	1.684e-06
BR(B->Xs mu mu)_high	2.125e-07
q0^2(AFB(B->Xs mu mu)	3.407e+00
BR(B->Xs tau tau)_high	1.564e-07
BR(B->tau nu)	8.093e-05
R(B->tau nu)	1.000e+00
BR(B->D tau nu)	6.859e-03
BR(B->D tau nu)/BR(B->D e nu)	2.975e-01
BR(Ds->tau nu)	5.127e-02
BR(Ds->mu nu)	5.261e-03

BR(D->mu nu)	4.101e-04
BR(K->mu nu)/BR(pi->mu nu)	6.355e-01
Rmu23(K->mu nu)	1.000e+00

where BR(b->s gamma) refers to the branching ratio of $\bar{B} \to X_s \gamma$, delta0(B->K* gamma) the isospin symmetry breaking in $B \to K^* \gamma$ decays, BR(Bs->mu mu) and BR(Bs->mu mu)_untag the CP-averaged and untagged branching ratios of $B_s \to \mu^+ \mu^-$ respectively, BR(Bd->mu mu) the branching ratio of $B_d \rightarrow \mu^+ \mu^-$. BR(B->K* mu mu)_low, AFB(B->K* mu mu)_low, FL(B->K* mu mu)_low and AI(B->K* mu mu)_low stand for the averaged branching fraction, forward-backward asymmetry, longitudinal fraction F_L and isospin asymmetry of $B \rightarrow$ $K^*\mu^+\mu^-$ in the low q^2 region $(1 < q^2 < 6 \text{ GeV}^2)$ respectively, and BR(B->K* mu mu)_high, AFB(B->K* mu mu)_high, FL(B->K* mu mu)_high and AI(B->K* mu mu)_high for the averaged branching fraction, forward-backward asymmetry, longitudinal fraction F_L and isospin asymmetry of $B \to K^* \mu^+ \mu^-$ in the high q^2 region (14.18 < q^2 < 16 GeV²) respectively. The other $B \to K^* \mu^+ \mu^-$ observables are described in section E.4. q0^2(AFB(B->K* mu mu)) and q0^2(AI(B->K* mu mu)) correspond to the zero-crossing of the forward-backward and isospin asymmetries of $B \to K^* \mu^+ \mu^-$. Also, BR(B->Xs mu mu)_low, BR(B->Xs mu mu)_high and q0^2(AFB(B->Xs mu mu) are respectively the branching fractions in the low q^2 region $(1 < q^2 < 6 \text{ GeV}^2)$, in the high q^2 region $(q^2 > 14.4 \text{ GeV}^2)$, and the zero-crossing of the forward asymmetry of $B \to X_s \mu^+ \mu^-$. BR(B->Xs tau tau)_high is the branching ratio of $B \to X_s \tau^+ \tau^-$ in the high q^2 region ($q^2 > 14.4 \text{ GeV}^2$). BR(B->tau nu) refers to the branching ratio of $B_u \to \tau \nu_{\tau}$, R(B->tau nu) the normalized ratio to the SM value, BR(B->D tau nu) the branching ratio of $B \to D^0 \tau \nu_{\tau}$, BR(B->D tau nu)/BR(B->D e nu) the ratio BR $(B \to D^0 \tau \nu_{\tau})/BR(B \to D^0 e \nu_e)$, BR(Ds->tau nu) and BR(Ds->mu nu) the branching ratios of $D_s \to \tau \nu_{\tau}$ and $D_s \to \mu \nu_{\mu}$ respectively, BR(D->mu nu) the branching ratio of $D \to \mu \nu_{\mu}$, BR(K->mu nu)/BR(pi->mu nu) the ratio BR($K \to \mu \nu_{\mu}$)/BR($\pi \to \mu \nu_{\mu}$), Rmu23(K->mu nu) the ratio $R_{\mu 23}$, a_muon the deviation in the anomalous magnetic moment of the muon. More details on the definitions and calculations of these observables are given in the appendices.

4.2 SLHA input file

The program slha.x reads the needed parameters in the input SLHA file and calculates the observables. For example, the command

./slha.x example.lha

returns

Observable	Value
BR(b->s gamma)	3.112e-04
delta0(B->K* gamma)	5.770e-02
BR(Bs->mu mu)	3.156e-09
BR(Bs->mu mu)_untag	3.461e-09
BR(Bd->mu mu)	1.043e-10

BR(B->K* mu mu)_low	2.445e-07
AFB(B->K* mu mu)_low	-3.544e-02
FL(B->K* mu mu)_low	7.108e-01
P1(B->K* mu mu)_low	-5.877e-02
P2(B->K* mu mu)_low	8.726e-02
P4'(B->K* mu mu)_low	5.041e-01
P5'(B->K* mu mu)_low	-3.707e-01
P6'(B->K* mu mu)_low	-6.003e-02
P8'(B->K* mu mu)_low	4.912e-02
AI(B->K* mu mu)_low	-2.941e-02
BR(B->K* mu mu)_high	1.361e-07
AFB(B->K* mu mu)_high	4.460e-01
FL(B->K* mu mu)_high	3.108e-01
P1(B->K* mu mu)_high	-4.875e-01
P2(B->K* mu mu)_high	-4.330e-01
P4'(B->K* mu mu)_high	1.219e+00
P5'(B->K* mu mu)_high	-7.106e-01
P6'(B->K* mu mu)_high	-4.355e-09
P8'(B->K* mu mu)_high	0.000e+00
AI(B->K* mu mu)_high	-4.570e-04
q0^2(AFB(B->K* mu mu))	3.966e+00
q0^2(AI(B->K* mu mu))	1.671e+00
BR(B->Xs mu mu)_low	1.665e-06
BR(B->Xs mu mu)_high	2.174e-07
q0^2(AFB(B->Xs mu mu)	3.361e+00
BR(B->Xs tau tau)_high	1.600e-07
BR(B->tau nu)	8.058e-05
R(B->tau nu)	9.966e-01
BR(B->D tau nu)	6.845e-03
BR(B->D tau nu)/BR(B->D e nu)	2.972e-01
BR(Ds->tau nu)	5.113e-02
BR(Ds->mu nu)	5.254e-03
BR(D->mu nu)	4.096e-04
BR(K->mu nu)/BR(pi->mu nu)	6.355e-01
Rmu23(K->mu nu)	1.000e+00
a_muon	2.029e-10
excluded_LEP/Tevatron_mass	0
charged_LSP	0

output.flha generated

corresponding to the observables described in the previous section. In addition, excluded_LEP/ Tevatron_mass, if equal to 1, indicates that the point is excluded by the mass limits from LEP and Tevatron, as given in Appendix H, otherwise 0. Finally, charged_LSP, if equal to 1, shows that the lightest supersymmetric particle (LSP) is charged, which is generally disfavoured by cosmological data, 0 otherwise. If HiggsBounds is available, this line is replaced by excluded_Higgsbounds which gives 1 if the point is excluded by the HiggsBounds constraints, 0 otherwise. The program also provides an FLHA output (reproduced in Appendix J) containing more information on the flavour observables.

If the SLHA file provided to slha.x is inconsistent, a message will be displayed:

- Invalid point means that the SLHA generator had not succeeded in generating the mass spectrum (*e.g.* due to the presence of tachyonic particles).
- Model not yet implemented means that the SLHA file is intended for a model not implemented in SuperIso, such as *R*-parity violating models.
- Invalid SLHA file means that the SLHA file is broken and important parameters are missing.

4.3 CMSSM inputs

The program cmssm.x computes the observables in the CMSSM parameter space, using ISAJET and/or SOFTSUSY and/or SPheno and/or SuSpect, to generate the mass spectra. If a generator is unavailable, the corresponding #define in cmssm.c has to be commented. The necessary arguments to this program are:

- m_0 : universal scalar mass at GUT scale,
- $m_{1/2}$: universal gaugino mass at GUT scale,
- A_0 : trilinear soft breaking parameter at GUT scale,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values.

Optional arguments can also be given:

- $sign(\mu)$: sign of Higgsino mass term, positive by default,
- m_t^{pole} : top quark pole mass, by default 173.34 GeV,
- $\overline{m}_b(\overline{m}_b)$: scale independent b-quark mass, by default 4.19 GeV (option unavailable for ISAJET),
- $\alpha_s(M_Z)$: strong coupling constant at the Z-boson mass, by default 0.1184 (option unavailable for ISAJET).

If the arguments are not specified, a message will describe the needed parameters in a correct order.

With SOFTSUSY 3.5.1, running the program with:

./cmssm.x 500 500 -500 50

returns

CMSSM - SLHA file generated by SOFTSUSY

Observable	Value
BR(b->s gamma)	2.217e-04
delta0(B->K* gamma)	6.742e-02
BR(Bs->mu mu)	2.890e-08
BR(Bs->mu mu)_untag	3.042e-08
BR(Bd->mu mu)	9.237e-10
BR(B->K* mu mu)_low	2.484e-07
AFB(B->K* mu mu)_low	2.993e-02
FL(B->K* mu mu)_low	7.345e-01
P1(B->K* mu mu)_low	-7.894e-02
P2(B->K* mu mu)_low	-8.153e-02
P4'(B->K* mu mu)_low	6.684e-01
P5'(B->K* mu mu)_low	-5.629e-01
P6'(B->K* mu mu)_low	-6.058e-02
P8'(B->K* mu mu)_low	5.037e-02
AI(B->K* mu mu)_low	-4.058e-02
BR(B->K* mu mu)_high	1.447e-07
AFB(B->K* mu mu)_high	4.472e-01
FL(B->K* mu mu)_high	3.102e-01
P1(B->K* mu mu)_high	-4.875e-01
P2(B->K* mu mu)_high	-4.350e-01
P4'(B->K* mu mu)_high	1.219e+00
P5'(B->K* mu mu)_high	-7.153e-01
P6'(B->K* mu mu)_high	5.148e-05
P8'(B->K* mu mu)_high	0.000e+00
AI(B->K* mu mu)_high	-4.695e-04
q0^2(AFB(B->K* mu mu))	3.251e+00
q0^2(AI(B->K* mu mu))	1.379e+00
BR(B->Xs mu mu)_low	1.717e-06
BR(B->Xs mu mu)_high	2.186e-07
q0^2(AFB(B->Xs mu mu)	2.762e+00
BR(B->Xs tau tau)_high	1.674e-07
BR(B->tau nu)	5.424e-05
R(B->tau nu)	6.701e-01
BR(B->D tau nu)	6.374e-03
BR(B->D tau nu)/BR(B->D e nu)	2.765e-01
BR(Ds->tau nu)	5.097e-02

BR(Ds->mu nu)	5.239e-03
BR(D->mu nu)	4.100e-04
BR(K->mu nu)/BR(pi->mu nu)	6.334e-01
Rmu23(K->mu nu)	9.984e-01
a_muon	1.956e-09
a_muon	1.956e-09
a_muon excluded_LEP/Tevatron_mass	1.956e-09 0
a_muon excluded_LEP/Tevatron_mass charged_LSP	1.956e-09 0 0

output1.flha generated

corresponding to the observables described in section 4.1.

4.4 AMSB inputs

The program amsb.x computes the observables using the corresponding parameters generated by ISAJET and/or SOFTSUSY and/or SPheno and/or SuSpect, in the AMSB scenario. The necessary arguments to this program are:

- m_0 : universal scalar mass at GUT scale,
- $m_{3/2}$: gravitino mass at GUT scale,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values.

Optional arguments are the same as for CMSSM. If the input parameters are absent, a message will ask for them.

Example:

./amsb.x 500 5000 5 -1

4.5 HCAMSB inputs

The program hcamsb.x computes the observables using the corresponding parameters generated by ISAJET in the HCAMSB scenario. The necessary arguments to this program are:

- α : hypercharge anomaly mixing parameter,
- $m_{3/2}$: gravitino mass at GUT scale,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values.

Optional arguments are the same as for CMSSM. If the input parameters are absent, a message will ask for them.

Example:

./hcamsb.x 0.2 10000 20

4.6 MMAMSB inputs

The program mmamsb.x computes the observables using the corresponding parameters generated by ISAJET in the MMAMSB scenario. The necessary arguments to this program are:

- α : modulus anomaly mixing parameter,
- $m_{3/2}$: gravitino mass at GUT scale,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values.

Optional arguments are the same as for CMSSM. If the input parameters are absent, a message will ask for them.

Example:

./mmamsb.x 5 10000 10

4.7 GMSB inputs

The program gmsb.x computes the observables using the GMSB parameters generated by ISAJET and/or SOFTSUSY and/or SPheno and/or SuSpect. The necessary arguments to this program are:

- A: scale of the SUSY breaking in GeV (usually 10000-100000 GeV),
- M_{mess} : messenger mass scale (> Λ),
- N_5 : equivalent number of $5 + \overline{5}$ messenger fields,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values.

Optional arguments are the same as for CMSSM, with an additional one:

• $c_{Grav} (\geq 1)$: ratio of the gravitino mass to its value for a breaking scale Λ , 1 by default.

Again, in the case of lack of arguments, a message will be displayed.

Example:

./gmsb.x 1e5 1e8 1 10

4.8 NUHM inputs

The program nuhm.x computes the observables using the NUHM parameters generated by ISAJET and/or SOFTSUSY and/or SuSpect. The necessary arguments to this program are the same as for CMSSM, with two additional ones, the values of μ and m_A :

- m_0 : universal scalar mass at GUT scale,
- $m_{1/2}$: universal gaugino mass at GUT scale,
- A_0 : trilinear soft breaking parameter at GUT scale,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values,

- μ : μ parameter,
- m_A : CP-odd Higgs mass.

Optional arguments can also be given:

- m_t^{pole} : top quark pole mass, by default 173.34 GeV,
- $\overline{m}_b(\overline{m}_b)$: scale independent b-quark mass, by default 4.19 GeV (option unavailable for ISAJET),
- $\alpha_s(M_Z)$: strong coupling constant at the Z-boson mass, by default 0.1184 (option unavailable for ISAJET).

In the absence of arguments, a message will be shown.

Example:

./nuhm.x 500 500 0 50 500 500

4.9 CNMSSM inputs

The program cnmssm.x computes the observables using the CNMSSM parameters generated by NMSSMTools³. The necessary arguments to this program are:

- m_0 : universal scalar mass at GUT scale,
- $m_{1/2}$: universal gaugino mass at GUT scale,
- A_0 : trilinear soft breaking parameter at GUT scale,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values,
- λ : cubic Higgs coupling.

Optional arguments can also be given:

- $sign(\mu)$: sign of Higgsino mass term, positive by default,
- A_{κ} : trilinear soft breaking parameter at GUT scale, by default $A_{\kappa} = A_0$,
- m_t^{pole} : top quark pole mass, by default 173.34 GeV,
- $\overline{m}_b(\overline{m}_b)$: scale independent b-quark mass, by default 4.19 GeV,
- $\alpha_s(M_Z)$: strong coupling constant at the Z-boson mass, by default 0.1184.

In the absence of arguments, a message will be shown.

Example:

./cnmssm.x 500 500 0 50 0.01

³As the soft singlet mass m_S^2 and the singlet self coupling κ are both determined in terms of the other parameters through the minimization equations of the Higgs potential in NMSSMTools, what we call CNMSSM here is a partially constrained NMSSM scenario.

4.10 NGMSB inputs

The program ngmsb.x computes the observables using the NGMSB parameters generated by NMSSMTools. The necessary arguments to this program are:

- A: scale of the SUSY breaking in GeV (usually 10000-100000 GeV),
- M_{mess} : messenger mass scale (> Λ),
- N_5 : equivalent number of $5 + \overline{5}$ messenger fields,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values,
- λ : cubic Higgs coupling.

Optional arguments are the same as for CNMSSM, with an additional one:

• Δ_H : 0 by default.

NMSSMTools allows also for other optional parameters such as μ' , B', ξ_S and ξ_F .

Example:

./ngmsb.x 1e5 2e10 5 20 0.1 1 -1000

4.11 NNUHM inputs

The program nnuhm.x computes the observables using the NNUHM parameters generated by NMSSMTools. The necessary arguments to this program are the same as for CNMSSM, with two additional ones:

- m_0 : universal scalar mass at GUT scale,
- $m_{1/2}$: universal gaugino mass at GUT scale,
- A_0 : trilinear soft breaking parameter at GUT scale,
- $\tan \beta$: ratio of the two Higgs vacuum expectation values,
- λ : cubic Higgs coupling,
- M_{H_D} : down Higgs mass parameter at GUT scale,
- M_{H_U} : up Higgs mass parameter at GUT scale.

Optional arguments are the same as for CNMSSM. In the absence of arguments, a message will be shown.

Example:

./nnuhm.x 500 500 0 50 0.1 500 500

4.12 2HDM inputs

The program thdm.x computes the observables using the 2HDM parameters generated by 2HDMC. The necessary arguments to this program are:

- *type*: Yukawa type (1-4),
- $\tan \beta$: ratio of the two Higgs vacuum expectation values,
- m_A : CP-odd Higgs mass.

Optional arguments can also be given:

- $\lambda_1, \cdots, \lambda_7$: Higgs potential parameters,
- m_{12}^2 : Higgs potential parameter alternative to m_A .

By specifying the Higgs potential parameters, it is possible to do the calculations in general 2HDM. If not specified, the optional arguments are set to the default tree level MSSM-like values:

$$\lambda_1 = \lambda_2 = \frac{g^2 + g'^2}{4} , \qquad \lambda_3 = \frac{g^2 - g'^2}{4} , \qquad \lambda_4 = -\frac{g^2}{2} , \qquad \lambda_5 = \lambda_6 = \lambda_7 = 0 ,$$
$$m_{12}^2 = m_A^2 \cos\beta \sin\beta .$$

In the absence of the necessary arguments, a message will be displayed.

Example:

./thdm.x 4 10 300

5 Results

We illustrate in this section the constraints on the SUSY parameter space that can be obtained using observables calculated with SuperIso. For more extended discussions about the constraints obtained using SuperIso, see for example [18–24]. In Figures 1 and 2, two examples of the obtained constraints in the CMSSM and NUHM scenarios using SuperIso v2.3 are displayed. The different areas in the figures correspond to the following observables:

- red region: excluded by the isospin asymmetry,
- blue region: excluded by the inclusive branching ratio of $b \rightarrow s\gamma$,
- black hatched region: excluded by the collider mass limits,
- violet region: excluded by the branching ratio of $B_s \to \mu^+ \mu^-$,
- gray hatched region: favoured by the anomalous magnetic moment of the muon,
- yellow hatched region: the LSP is charged, therefore disfavoured by cosmology,
- green region: excluded by the branching ratio of $B_u \to \tau \nu_{\tau}$,
- orange region: excluded by the branching ratio of $B \to D^0 \tau \nu_{\tau}$,
- cyan region: excluded by the branching ratio of $K \to \mu \nu_{\mu}$.

Figure 1: Constraints in CMSSM $(m_{1/2} - m_0)$ parameter plane. For the description of the various coloured zones see the text. The contours are superimposed in the order given in the legend.

Figure 2: Constraints in NUHM $(m_A - \tan \beta)$ parameter plane. For the description of the various coloured zones see the text. The contours are superimposed in the order given in the legend.

The allowed interval for each observable is given in Appendix H.

In Figure 1, the exclusion regions in the CMSSM parameter plane $(m_{1/2}-m_0)$ for tan $\beta = 50$, $A_0 = 0$ and $\mu > 0$ are displayed. One can notice that small values of m_0 and $m_{1/2}$ are disfavoured by the observables. The unfilled region in the bottom left corner corresponds to points with tachyonic particles.

In Figure 2, the exclusion zones are displayed in the NUHM parameter plane $(m_A - \tan \beta)$ for $m_0 = 500$ GeV, $m_{1/2} = 500$ GeV, $A_0 = 0$ and $\mu = 500$ GeV. Most observables tend to disfavour the high $\tan \beta$ region in this plane. The white top right triangle corresponds to a region where tachyonic particles are encountered.

6 Conclusion

SuperIso v3.4 features many new additions and improvements as compared to the first versions of the program. It is now able to compute numerous flavour physics observables – as well as the muon anomalous magnetic moment – which have already proved to be very useful in the exploration of the MSSM and NMSSM parameter spaces. Investigating the indirect constraints has many interesting phenomenological impacts, and can provide us with important information. They can also be used as guidelines for the LHC direct searches, and will be very valuable for the consistency checks.

In spite of the numerous changes, the spirit of the program is still based on the simplicity of use. The code will continue to incorporate other flavour physics observables. Also, the extension of the program to beyond minimal flavour violation is under development.

Appendix A QCD coupling

The α_s evolution is expressed as [15]:

$$\alpha_{s}(\mu) = \frac{4\pi}{\beta_{0}\ln(\mu^{2}/\Lambda_{n_{f}}^{2})} \left\{ 1 - \frac{\beta_{1}}{\beta_{0}^{2}} \frac{\ln\left(\ln(\mu^{2}/\Lambda_{n_{f}}^{2})\right)}{\ln(\mu^{2}/\Lambda_{n_{f}}^{2})} + \frac{\beta_{1}^{2}}{\beta_{0}^{4}\ln^{2}(\mu^{2}/\Lambda_{n_{f}}^{2})} \right.$$
(1)
$$\times \left[\left(\ln\left(\ln(\mu^{2}/\Lambda_{n_{f}}^{2})\right) - \frac{1}{2}\right)^{2} + \frac{\beta_{2}\beta_{0}}{2\beta_{1}^{2}} - \frac{5}{4} \right] \right\},$$

with

$$\beta_0 = 11 - \frac{2}{3}n_f$$
, $\beta_1 = 102 - \frac{38}{3}n_f$, $\beta_2 = 2857 - \frac{5033}{9}n_f + \frac{325}{27}n_f^2$. (2)

 n_f denotes the number of active flavours (*i.e.* 4 for energies between the charm and the bottom masses, 5 between the bottom and the top masses, and 6 beyond the top mass). We compute the associated Λ_{n_f} by requiring continuity of α_s . In particular in SuperIso, Λ_5 is calculated so that $\alpha_s(M_Z)$ matches the value given in the input SLHA file, and then Λ_4 and Λ_6 are calculated if needed by imposing the continuity at the bottom and top mass scales respectively, which are also input parameters.

Appendix B Evolution of quark masses

We use the following two loop formula⁴ to compute the pole mass of quarks [15]:

$$m_q^{\text{pole}} = \overline{m}_q(\overline{m}_q) \left\{ 1 + \frac{4\alpha_s(\overline{m}_q)}{3\pi} + \left[-1.0414 \sum_{k=1}^{n_{f_l}} \left(1 - \frac{4}{3} \frac{\overline{m}_{q_k}}{\overline{m}_q} \right) + 13.4434 \right] \left(\frac{\alpha_s(\overline{m}_q)}{\pi} \right)^2 \right\},$$
(3)

where n_{f_l} is the number of flavours q_k lighter than q.

For the \overline{MS} top mass, we use [15]

$$\overline{m}_t(\overline{m}_t) = m_t^{\text{pole}} \left(1 - \frac{4}{3} \frac{\alpha_s(m_t^{\text{pole}})}{\pi} \right) \,. \tag{4}$$

The running mass of the quarks is given by [25]

$$\overline{m}_q(\mu_1) = \frac{R(\alpha_s(\mu_1))}{R(\alpha_s(\mu_2))} \overline{m}_q(\mu_2) , \qquad (5)$$

⁴The two and three loop corrections are comparable in size and have the same sign as the one loop term. Since this is a signal of the asymptotic nature of the perturbation series, we leave the three loop corrections [15].

where

$$R(\alpha_{s}) = \left(\frac{\beta_{0}}{2}\frac{\alpha_{s}}{\pi}\right)^{2\gamma_{0}/\beta_{0}} \left\{ 1 + \left(2\frac{\gamma_{1}}{\beta_{0}} - \frac{\beta_{1}\gamma_{0}}{\beta_{0}^{2}}\right)\frac{\alpha_{s}}{\pi} + \frac{1}{2}\left[\left(2\frac{\gamma_{1}}{\beta_{0}} - \frac{\beta_{1}\gamma_{0}}{\beta_{0}^{2}}\right)^{2} + 2\frac{\gamma_{2}}{\beta_{0}} - \frac{\beta_{1}\gamma_{1}}{\beta_{0}^{2}} - \frac{\beta_{2}\gamma_{0}}{16\beta_{0}^{2}} + \frac{\beta_{1}^{2}\gamma_{0}}{2\beta_{0}^{3}}\right] \left(\frac{\alpha_{s}}{\pi}\right)^{2} + O(\alpha_{s}^{3})\right\},$$
(6)

with

$$\gamma_0 = 2 , \qquad (7)$$

$$\gamma_1 = \frac{101}{12} - \frac{5}{18} n_f , \qquad (8)$$

$$\gamma_2 = \frac{1}{32} \left[1249 - \left(\frac{2216}{27} + \frac{160}{3} \zeta(3) \right) n_f - \frac{140}{81} n_f^2 \right] , \qquad (9)$$

with n_f the number of active flavours, and β 's given in Eq. (2).

The 1S bottom quark mass is given by [26]:

$$m_b^{1S} = m_b^{\text{pole}} \left[1 - \Delta^{\text{LO}} - \Delta^{\text{NLO}} - \Delta^{\text{NNLO}} \right], \qquad (10)$$

where

$$\Delta^{\text{LO}} = \frac{C_F^2 \alpha_s^2(\mu_b)}{8} , \qquad (11)$$

$$\Delta^{\text{NLO}} = \frac{C_F^2 \alpha_s^2(\mu_b)}{8} \left(\frac{\alpha_s(\mu_b)}{\pi}\right) \left[\beta_0' \left(L_0 + 1\right) + \frac{a_1}{2}\right], \qquad (12)$$

$$\Delta^{\text{NNLO}} = \frac{C_F^2 \,\alpha_s^2(\mu_b)}{8} \left(\frac{\alpha_s(\mu_b)}{\pi}\right)^2 \left[\beta_0^{\prime 2} \left(\frac{3}{4}L_0^2 + L_0 + \frac{\zeta(3)}{2} + \frac{\pi^2}{24} + \frac{1}{4}\right)\right]$$
(13)

$$+\beta_0' \frac{a_1}{2} \left(\frac{3}{2} L_0 + 1\right) + \frac{\beta_1'}{4} \left(L_0 + 1\right) + \frac{a_1^2}{16} + \frac{a_2}{8} + \left(C_A - \frac{C_F}{48}\right) C_F \pi^2 \right],$$

with

$$L_0 \equiv \ln\left(\frac{\mu_b}{C_F \,\alpha_s(\mu_b) \,m_b^{\text{pole}}}\right) \,, \tag{14}$$

$$\zeta(3) \approx 1.2020569 ,$$
 (15)

and $\mu_b = O(m_b)$.

Also,

$$\beta'_{0} = \frac{11}{3} C_{A} - \frac{4}{3} T n_{f_{l}},$$

$$\beta'_{1} = \frac{34}{3} C_{A}^{2} - \frac{20}{3} C_{A} T n_{f_{l}} - 4 C_{F} T n_{f_{l}},$$

$$a_{1} = \frac{31}{9} C_{A} - \frac{20}{9} T n_{f_{l}},$$

$$a_{2} = \left(\frac{4343}{162} + 4 \pi^{2} - \frac{\pi^{4}}{4} + \frac{22}{3} \zeta(3)\right) C_{A}^{2} - \left(\frac{1798}{81} + \frac{56}{3} \zeta(3)\right) C_{A} T n_{f_{l}}$$

$$- \left(\frac{55}{3} - 16 \zeta(3)\right) C_{F} T n_{f_{l}} + \left(\frac{20}{9} T n_{f_{l}}\right)^{2}.$$
(16)

In the above equations $C_A = 3$, T = 1/2, $n_{f_l} = 4$ and $C_F = 4/3$.

Appendix C Wilson coefficients at matching scale

The Wilson coefficients at different orders are calculated separately and the following convention for the perturbative expansion is used:

$$C_{i}(\mu) = C_{i}^{(0)}(\mu) + \frac{\alpha_{s}(\mu)}{4\pi} C_{i,s}^{(1)}(\mu) + \left(\frac{\alpha_{s}(\mu)}{4\pi}\right)^{2} C_{i,s}^{(2)}(\mu) + \frac{\alpha(\mu)}{4\pi} C_{i,e}^{(1)}(\mu) + \frac{\alpha(\mu)}{4\pi} \frac{\alpha_{s}(\mu)}{4\pi} C_{i,es}^{(2)}(\mu) + \cdots,$$
(17)

where $C_{i,j}^{(k)}$ is the Wilson coefficient at order k in the perturbative expansion in $\alpha(\mu)$ (j = e) or $\alpha_s(\mu)$ (j = s). In the following, the indices s and e are omitted for simplicity.

C.1 Wilson coefficients $C_1 - C_8$

The effective Hamiltonian describing the $b\to s\gamma$ transitions has the following generic structure:

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} \sum_{p=u,c} V_{ps}^* V_{pb} \sum_{i=1}^8 C_i(\mu) O_i , \qquad (18)$$

where G_F is the Fermi coupling constant, V_{ij} are elements of the CKM matrix, $O_i(\mu)$ are the relevant operators and $C_i(\mu)$ are the corresponding Wilson coefficients evaluated at the scale μ .
The Wilson coefficients are given in the standard operator basis [27]:

$$\begin{aligned}
O_{1} &= (\bar{s}\gamma_{\mu}T^{a}P_{L}c)(\bar{c}\gamma^{\mu}T^{a}P_{L}b) ,\\
O_{2} &= (\bar{s}\gamma_{\mu}P_{L}c)(\bar{c}\gamma^{\mu}P_{L}b) ,\\
O_{3} &= (\bar{s}\gamma_{\mu}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu}q) ,\\
O_{4} &= (\bar{s}\gamma_{\mu}T^{a}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu}T^{a}q) ,\\
O_{5} &= (\bar{s}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}q) ,\\
O_{6} &= (\bar{s}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}T^{a}P_{L}b)\sum_{q}(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}T^{a}q) ,\\
O_{7} &= \frac{e}{16\pi^{2}} \Big[\bar{s}\sigma^{\mu\nu}(m_{s}P_{L}+m_{b}P_{R})b \Big] F_{\mu\nu} ,\\
O_{8} &= \frac{g}{16\pi^{2}} \Big[\bar{s}\sigma^{\mu\nu}(m_{s}P_{L}+m_{b}P_{R})T^{a}b \Big] G^{a}_{\mu\nu} ,
\end{aligned}$$
(19)

where $P_{L,R} = (1 \mp \gamma_5)/2$.

C.1.1 Standard Model contributions

We express here the SM contributions to the Wilson coefficients following [28, 29].

The LO coefficients are:

$$C_{2}^{c(0)}(\mu_{W}) = -1,$$

$$C_{7}^{c(0)}(\mu_{W}) = \frac{23}{36},$$

$$C_{7}^{t(0)}(\mu_{W}) = -\frac{1}{2}A_{0}^{t}(x_{tW}),$$

$$C_{8}^{c(0)}(\mu_{W}) = -\frac{1}{3}F_{0}^{t}(x_{tW}),$$
(20)
$$C_{8}^{t(0)}(\mu_{W}) = -\frac{1}{2}F_{0}^{t}(x_{tW}),$$

the NLO coefficients are:

$$C_{1}^{c(1)}(\mu_{W}) = -15 - 6L,$$

$$C_{2}^{c(1)}(\mu_{W}) = 0,$$

$$C_{3}^{c(1)}(\mu_{W}) = 0,$$

$$C_{4}^{c(1)}(\mu_{W}) = \frac{7}{9} - \frac{2}{3}L,$$

$$C_{4}^{c(1)}(\mu_{W}) = 0,$$

$$C_{5}^{c(1)}(\mu_{W}) = 0,$$

$$C_{6}^{c(1)}(\mu_{W}) = 0,$$

$$C_{6}^{c(1)}(\mu_{W}) = -\frac{713}{243} - \frac{4}{81}L,$$

$$C_{8}^{c(1)}(\mu_{W}) = -\frac{91}{324} + \frac{4}{27}L,$$

$$C_{8}^{c(1)}(\mu_{W}) = -\frac{1}{2}F_{1}^{t}(x_{tW}),$$

$$C_{8}^{c(1)}(\mu_{W}) = -\frac{1}{2}F_{1}^{t}(x_{tW}),$$

$$C_{8}^{c(1)}(\mu_{W}) = -\frac{1}{2}F_{1}^{t}(x_{tW}),$$

$$C_{8}^{c(1)}(\mu_{W}) = -\frac{1}{2}F_{1}^{t}(x_{tW}),$$

and the NNLO coefficients are:

$$C_{1}^{c(2)}(\mu_{W}) = T(x_{tW}) - \frac{7987}{72} - \frac{17}{3}\pi^{2} - \frac{475}{6}L - 17L^{2},$$

$$C_{2}^{c(2)}(\mu_{W}) = -\frac{127}{18} - \frac{4}{3}\pi^{2} - \frac{46}{3}L - 4L^{2},$$

$$C_{3}^{c(2)}(\mu_{W}) = \frac{680}{243} + \frac{20}{81}\pi^{2} + \frac{68}{81}L + \frac{20}{27}L^{2},$$

$$C_{4}^{c(2)}(\mu_{W}) = -\frac{950}{243} - \frac{10}{81}\pi^{2} - \frac{124}{27}L - \frac{10}{27}L^{2},$$

$$C_{5}^{c(2)}(\mu_{W}) = -\frac{68}{243} - \frac{2}{81}\pi^{2} - \frac{14}{81}L - \frac{2}{27}L^{2},$$

$$C_{6}^{c(2)}(\mu_{W}) = -\frac{85}{162} - \frac{5}{108}\pi^{2} - \frac{35}{108}L - \frac{5}{36}L^{2},$$

$$C_{4}^{t(2)}(\mu_{W}) = G_{1}^{t}(x_{tW}),$$

$$C_{4}^{t(2)}(\mu_{W}) = E_{1}^{t}(x_{tW}),$$

$$C_{5}^{t(2)}(\mu_{W}) = -\frac{1}{10}G_{1}^{t}(x_{tW}) + \frac{2}{15}E_{0}^{t}(x_{tW}),$$

$$C_{6}^{t(2)}(\mu_{W}) = -\frac{3}{16}G_{1}^{t}(x_{tW}) + \frac{1}{4}E_{0}^{t}(x_{tW}),$$

where

$$x_{tW} = \left(\frac{\overline{m}_t(\mu_W)}{M_W}\right)^2 , \qquad (23)$$

$$L = \ln\left(\frac{\mu_W^2}{M_W^2}\right) , \qquad (24)$$

and $\mu_W = O(M_W)$. The necessary functions in Eqs. (20-22) are:

$$A_0^t(x) = \frac{-3x^3 + 2x^2}{2(1-x)^4} \ln x + \frac{22x^3 - 153x^2 + 159x - 46}{36(1-x)^3}, \qquad (25)$$

$$E_0^t(x) = \frac{-9x^2 + 16x - 4}{6(1-x)^4} \ln x + \frac{-7x^3 - 21x^2 + 42x + 4}{36(1-x)^3}, \qquad (26)$$

$$F_0^t(x) = \frac{3x^2}{2(1-x)^4} \ln x + \frac{5x^3 - 9x^2 + 30x - 8}{12(1-x)^3}, \qquad (27)$$

$$A_{1}^{t}(x) = \frac{32x^{4} + 244x^{3} - 160x^{2} + 16x}{9(1-x)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$$

$$+ \frac{-774x^{4} - 2826x^{3} + 1994x^{2} - 130x + 8}{81(1-x)^{5}} \ln x$$

$$+ \frac{-94x^{4} - 18665x^{3} + 20682x^{2} - 9113x + 2006}{243(1-x)^{4}}$$

$$+ \left[\frac{-12x^{4} - 92x^{3} + 56x^{2}}{3(1-x)^{5}} \ln x + \frac{-68x^{4} - 202x^{3} - 804x^{2} + 794x - 152}{27(1-x)^{4}}\right] \ln \left(\frac{\mu_{W}^{2}}{m_{t}^{2}}\right) ,$$

$$E_{1}^{t}(x) = \frac{515x^{4} - 614x^{3} - 81x^{2} - 190x + 40}{510} \operatorname{Li}_{2}\left(1 - \frac{1}{2}\right)$$
(28)

$$E_{1}^{t}(x) = \frac{515x^{4} - 614x^{3} - 81x^{2} - 190x + 40}{54(1-x)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$$

$$+ \frac{-1030x^{4} + 435x^{3} + 1373x^{2} + 1950x - 424}{108(1-x)^{5}} \ln x$$

$$+ \frac{-29467x^{4} + 45604x^{3} - 30237x^{2} + 66532x - 10960}{1944(1-x)^{4}}$$

$$+ \left[\frac{133x^{4} - 2758x^{3} - 2061x^{2} + 11522x - 1652}{324(1-x)^{4}} + \frac{-1125x^{3} + 1685x^{2} + 380x - 76}{54(1-x)^{5}} \ln x\right] \ln \left(\frac{\mu_{W}^{2}}{m_{t}^{2}}\right) ,$$
(29)

as well as:

$$F_{1}^{t}(x) = \frac{4x^{4} - 40x^{3} - 41x^{2} - x}{3(1-x)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$$
(30)
+ $\frac{-144x^{4} + 3177x^{3} + 3661x^{2} + 250x - 32}{108(1-x)^{5}} \ln x$
+ $\frac{-247x^{4} + 11890x^{3} + 31779x^{2} - 2966x + 1016}{648(1-x)^{4}}$
+ $\left[\frac{17x^{3} + 31x^{2}}{(1-x)^{5}} \ln x + \frac{-35x^{4} + 170x^{3} + 447x^{2} + 338x - 56}{18(1-x)^{4}}\right] \ln\left(\frac{\mu_{W}^{2}}{m_{t}^{2}}\right),$
 $G_{1}^{t}(x) = \frac{10x^{4} - 100x^{3} + 30x^{2} + 160x - 40}{27(1-x)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$ (31)
+ $\frac{30x^{3} - 42x^{2} - 332x + 68}{81(1-x)^{4}} \ln x + \frac{-6x^{3} - 293x^{2} + 161x + 42}{81(1-x)^{3}}$
+ $\left[\frac{90x^{2} - 160x + 40}{27(1-x)^{4}} \ln x + \frac{35x^{3} + 105x^{2} - 210x - 20}{81(1-x)^{3}}\right] \ln\left(\frac{\mu_{W}^{2}}{m_{t}^{2}}\right),$
 $T(x) = -(16x + 8)\sqrt{4x - 1} \operatorname{Cl}_{2}\left(2\arcsin\frac{1}{2\sqrt{x}}\right) + \left(16x + \frac{20}{3}\right) \ln x + 32x + \frac{112}{9}.$

The integral representations for the functions Li_2 and Cl_2 are as follows:

$$\text{Li}_{2}(z) = -\int_{0}^{z} dt \, \frac{\ln(1-t)}{t} , \qquad (32)$$

$$\operatorname{Cl}_{2}(x) = \operatorname{Im}\left[\operatorname{Li}_{2}(e^{ix})\right] = -\int_{0}^{x} d\theta \ln |2\sin(\theta/2)| .$$
(33)

The remaining NNLO coefficients take the form:

$$C_7^{c(2)}(\mu_W) = C_7^{c(2)}(\mu_W = M_W) + \frac{13763}{2187} \ln\left(\frac{\mu_W^2}{M_W^2}\right) + \frac{814}{729} \ln^2\left(\frac{\mu_W^2}{M_W^2}\right) , \qquad (34)$$

$$C_8^{c(2)}(\mu_W) = C_8^{c(2)}(\mu_W = M_W) + \frac{16607}{5832} \ln\left(\frac{\mu_W^2}{M_W^2}\right) + \frac{397}{486} \ln^2\left(\frac{\mu_W^2}{M_W^2}\right) , \qquad (35)$$

$$C_{7}^{t(2)}(\mu_{W}) = C_{7}^{t(2)}(\mu_{W} = m_{t})$$

$$+ \ln\left(\frac{\mu_{W}^{2}}{m_{t}^{2}}\right) \left[\frac{-592x^{5} - 22x^{4} + 12814x^{3} - 6376x^{2} + 512x}{27(x-1)^{5}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right) \right]$$

$$+ \frac{-26838x^{5} + 25938x^{4} + 627367x^{3} - 331956x^{2} + 16989x - 460}{729(x-1)^{6}} \ln x$$

$$+ \frac{34400x^{5} + 276644x^{4} - 2668324x^{3} + 1694437x^{2} - 323354x + 53077}{2187(x-1)^{5}} \right]$$

$$+ \ln^{2}\left(\frac{\mu_{W}^{2}}{m_{t}^{2}}\right) \left[\frac{-63x^{5} + 532x^{4} + 2089x^{3} - 1118x^{2}}{9(x-1)^{6}} \ln x \right]$$

$$+ \frac{1186x^{5} - 2705x^{4} - 24791x^{3} - 16099x^{2} + 19229x - 2740}{162(x-1)^{5}} ,$$

$$(36)$$

$$C_8^{t(2)}(\mu_W) = C_8^{t(2)}(\mu_W = m_t)$$

$$+ \ln\left(\frac{\mu_W^2}{m_t^2}\right) \left[\frac{-148x^5 + 1052x^4 - 4811x^3 - 3520x^2 - 61x}{18(x-1)^5} \operatorname{Li}_2\left(1 - \frac{1}{x}\right) + \frac{-15984x^5 + 152379x^4 - 1358060x^3 - 1201653x^2 - 74190x + 9188}{1944(x-1)^6} \ln x + \frac{109669x^5 - 1112675x^4 + 6239377x^3 + 8967623x^2 + 768722x - 42796}{11664(x-1)^5}\right] + \ln^2\left(\frac{\mu_W^2}{m_t^2}\right) \left[\frac{-139x^4 - 2938x^3 - 2683x^2}{12(x-1)^6} \ln x + \frac{1295x^5 - 7009x^4 + 29495x^3 + 64513x^2 + 17458x - 2072}{216(x-1)^5}\right].$$
(37)

As regard to the three-loop quantities $C_7^{c(2)}(\mu_W = M_W)$, $C_8^{c(2)}(\mu_W = M_W)$, $C_7^{t(2)}(\mu_W = m_t)$ and $C_8^{t(2)}(\mu_W = m_t)$, we have access to their expansions at $x \to 1$ and $x \to \infty$. Denoting z = 1/x and w = 1 - z, the coefficients become:

$$C_7^{c(2)}(\mu_W = M_W) \simeq_{x \to \infty} 1.525 - 0.1165z + 0.01975z \ln z + 0.06283z^2 + 0.005349z^2 \ln z \qquad (38)$$
$$+ 0.01005z^2 \ln^2 z - 0.04202z^3 + 0.01535z^3 \ln z - 0.00329z^3 \ln^2 z$$
$$+ 0.002372z^4 - 0.0007910z^4 \ln z + \mathcal{O}(z^5) ,$$

$$C_7^{c(2)}(\mu_W = M_W) \simeq_{x \to 1} 1.432 + 0.06709w + 0.01257w^2 + 0.004710w^3 + 0.002373w^4 \qquad (39)$$
$$+ 0.001406w^5 + 0.0009216w^6 + 0.00064730w^7 + 0.0004779w^8 + \mathcal{O}(w^9) ,$$

$$C_8^{c(2)}(\mu_W = M_W) \simeq_{x \to \infty} -1.870 + 0.1010z - 0.1218z \ln z + 0.1045z^2 - 0.03748z^2 \ln z \qquad (40)$$
$$+ 0.01151z^2 \ln^2 z - 0.01023z^3 + 0.004342z^3 \ln z + 0.0003031z^3 \ln^2 z$$
$$- 0.001537z^4 + 0.0007532z^4 \ln z + \mathcal{O}(z^5) ,$$

$$C_8^{c(2)}(\mu_W = M_W) \simeq -1.676 - 0.1179w - 0.02926w^2 - 0.01297w^3 - 0.007296w^4 \qquad (41)$$
$$-0.004672w^5 - 0.003248w^6 - 0.002389w^7 - 0.001831w^8 + \mathcal{O}(w^9) ,$$

$$C_7^{t(2)}(\mu_W = m_t) \simeq 12.06 + 12.93z + 3.013z \ln z + 96.71z^2 + 52.73z^2 \ln z + 147.9z^3 \qquad (42)$$
$$+187.7z^3 \ln z - 144.9z^4 + 236.1z^4 \ln z + \mathcal{O}(z^5) ,$$

$$C_7^{t(2)}(\mu_W = m_t) \simeq_{x \to 1} \quad 11.74 + 0.3642w + 0.1155w^2 - 0.003145w^3 - 0.03263w^4 \qquad (43)$$
$$-0.03528w^5 - 0.03076w^6 - 0.02504w^7 - 0.01985w^8 + \mathcal{O}(w^9) ,$$

$$C_8^{t(2)}(\mu_W = m_t) \simeq -0.8954 - 7.043z - 98.34z^2 - 46.21z^2 \ln z - 127.1z^3$$

$$-181.6z^3 \ln z + 535.8z^4 - 76.76z^4 \ln z + \mathcal{O}(z^5) ,$$
(44)

$$C_8^{t(2)}(\mu_W = m_t) \simeq -0.6141 - 0.8975w - 0.03492w^2 + 0.06791w^3 + 0.07966w^4 \qquad (45)$$
$$+ 0.07226w^5 + 0.06132w^6 + 0.05096w^7 + 0.04216w^8 + \mathcal{O}(w^9) .$$

Type	λ_{UU}	λ_{DD}	λ_{LL}	—
Ι	\coteta	\coteta	\coteta	
II	\coteta	$-\tan\beta$	$-\tan\beta$	
III	\coteta	$-\tan\beta$	\coteta	
IV	\coteta	\coteta	$-\tan\beta$	

Table 2: Yukawa couplings for the four types of 2HDM. U, D and L stand respectively for the up-type quarks, the down-type quarks and the leptons.

For n = 0, 1, 2 and $i = 1, \dots, 8$, the Wilson coefficients read:

$$C_i^{(n)} = C_i^{t(n)} - C_i^{c(n)} . (46)$$

C.1.2 Charged Higgs contributions

At the Leading Order, the relevant charged Higgs contributions to the Wilson coefficients are given by [30]:

$$\delta C_{7,8}^{H(0)}(\mu_W) = \frac{\lambda_{tt}^2}{3} F_{7,8}^{(1)}(x_{tH^{\pm}}) - \lambda_{tt} \lambda_{bb} F_{7,8}^{(2)}(x_{tH^{\pm}}) , \qquad (47)$$

where

$$x_{tH^{\pm}} = \frac{\overline{m}_{t}^{2}(\mu_{W})}{M_{H^{\pm}}^{2}} , \qquad (48)$$

and

$$F_{7}^{(1)}(x) = \frac{x(7-5x-8x^{2})}{24(x-1)^{3}} + \frac{x^{2}(3x-2)}{4(x-1)^{4}} \ln x ,$$

$$F_{8}^{(1)}(x) = \frac{x(2+5x-x^{2})}{8(x-1)^{3}} - \frac{3x^{2}}{4(x-1)^{4}} \ln x ,$$

$$F_{7}^{(2)}(x) = \frac{x(3-5x)}{12(x-1)^{2}} + \frac{x(3x-2)}{6(x-1)^{3}} \ln x ,$$

$$F_{8}^{(2)}(x) = \frac{x(3-x)}{4(x-1)^{2}} - \frac{x}{2(x-1)^{3}} \ln x .$$
(49)

 $\lambda_{tt}, \lambda_{bb}$ are the Yukawa couplings. In Supersymmetry, they read:

$$\lambda_{tt} = -\frac{1}{\lambda_{bb}} = \frac{1}{\tan\beta} \ . \tag{50}$$

For the different types of 2HDM, the Yukawa couplings are summarized in Table 2.

At the NLO, the charged Higgs contributions can be written in the form [30]:

$$\delta C_4^{H(1)}(\mu_W) = E_4^H(x_{tH^{\pm}}), \qquad (51)$$

$$\delta C_7^{H(1)}(\mu_W) = G_7^H(x_{tH^{\pm}}) + \Delta_7^H(x_{tH^{\pm}}) \ln\left(\frac{\mu_W^2}{M_{H^{\pm}}^2}\right) - \frac{4}{9} E_4^H(x_{tH^{\pm}}) , \qquad (52)$$

$$\delta C_8^{H(1)}(\mu_W) = G_8^H(x_{tH^{\pm}}) + \Delta_8^H(x_{tH^{\pm}}) \ln\left(\frac{\mu_W^2}{M_{H^{\pm}}^2}\right) - \frac{1}{6} E_4^H(x_{tH^{\pm}}) , \qquad (53)$$

The NNLO contributions for C_{3-6} read [31]:

$$\delta C_3^{H(2)}(\mu_W) = G_3^H(x_{tH^{\pm}}), \qquad (54)$$

$$\delta C_4^{H(2)}(\mu_W) = E_4^{H(2)}(x_{tH^{\pm}}) , \qquad (55)$$

$$\delta C_5^{H(2)}(\mu_W) = -\frac{1}{10} G_3^H(x_{tH^{\pm}}) + \frac{2}{15} E_4^H(x_{tH^{\pm}}) , \qquad (56)$$

$$\delta C_6^{H(2)}(\mu_W) = -\frac{3}{16} G_3^H(x_{tH^{\pm}}) + \frac{1}{4} E_4^H(x_{tH^{\pm}}) , \qquad (57)$$

with

$$G_{3}^{H}(x) = \frac{1}{27} \lambda_{tt}^{2} x \left\{ \frac{-20 + 30x + 10x^{3}}{(x-1)^{4}} \operatorname{Li}_{2} \left(1 - \frac{1}{x} \right) + \frac{-56 - 66x + 30x^{2}}{3(x-1)^{4}} \ln x \right.$$
(58)
$$\left. + \frac{213 - 187x + 6x^{2}}{3(x-1)^{3}} + \left[\frac{20 - 30x}{(x-1)^{4}} \ln x + \frac{-80 + 145x - 35x^{2}}{3(x-1)^{3}} \right] \ln \left(\frac{\mu_{W}^{2}}{M_{H^{\pm}}^{2}} \right) \right\},$$

$$G_{7}^{H}(x) = \frac{4}{3}\lambda_{tt}\lambda_{bb}x \left[\frac{4(-3+7x-2x^{2})}{3(x-1)^{3}}\operatorname{Li}_{2}\left(1-\frac{1}{x}\right) + \frac{8-14x-3x^{2}}{3(x-1)^{4}}\ln^{2}x\right] \\ + \frac{7-13x+2x^{2}}{(x-1)^{3}} + \frac{2(-3-x+12x^{2}-2x^{3})}{3(x-1)^{4}}\ln x\right] \\ + \frac{2}{9}\lambda_{tt}^{2}x \left[\frac{x(18-37x+8x^{2})}{(x-1)^{4}}\operatorname{Li}_{2}\left(1-\frac{1}{x}\right) + \frac{x(-14+23x+3x^{2})}{(x-1)^{5}}\ln^{2}x\right] \\ + \frac{-50+251x-174x^{2}-192x^{3}+21x^{4}}{9(x-1)^{5}}\ln x + \frac{797-5436x+7569x^{2}-1202x^{3}}{108(x-1)^{4}}\right],$$

$$\begin{aligned} \Delta_7^H(x) &= \frac{2}{9} \lambda_{tt} \lambda_{bb} x \left[\frac{21 - 47x + 8x^2}{(x - 1)^3} + \frac{2(-8 + 14x + 3x^2)}{(x - 1)^4} \ln x \right] \\ &+ \frac{2}{9} \lambda_{tt}^2 x \left[\frac{-31 - 18x + 135x^2 - 14x^3}{6(x - 1)^4} + \frac{x(14 - 23x - 3x^2)}{(x - 1)^5} \ln x \right] , \end{aligned}$$
(60)
$$\begin{aligned} &+ \frac{2}{9} \lambda_{tt} \lambda_{bb} x \left[\frac{-36 + 25x - 17x^2}{2(x - 1)^3} \operatorname{Li}_2 \left(1 - \frac{1}{x} \right) + \frac{19 + 17x}{(x - 1)^4} \ln^2 x \\ &+ \frac{-3 - 187x + 12x^2 - 14x^3}{4(x - 1)^4} \ln x + \frac{3(143 - 44x + 29x^2)}{8(x - 1)^3} \right] \\ &+ \frac{1}{6} \lambda_{tt}^2 x \left[\frac{x(30 - 17x + 13x^2)}{(x - 1)^4} \operatorname{Li}_2 \left(1 - \frac{1}{x} \right) - \frac{x(31 + 17x)}{(x - 1)^5} \ln^2 x \\ &+ \frac{-226 + 817x + 1353x^2 + 318x^3 + 42x^4}{36(x - 1)^5} \ln x + \frac{1130 - 18153x + 7650x^2 - 4451x^3}{216(x - 1)^4} \right] , \end{aligned}$$

$$\Delta_8^H(x) = \frac{1}{3} \lambda_{tt} \lambda_{bb} x \left[\frac{81 - 16x + 7x^2}{2(x-1)^3} - \frac{19 + 17x}{(x-1)^4} \ln x \right] + \frac{1}{6} \lambda_{tt}^2 x \left[\frac{-38 - 261x + 18x^2 - 7x^3}{6(x-1)^4} + \frac{x(31+17x)}{(x-1)^5} \ln x \right] ,$$
(62)

$$E_4^H(x) = \frac{1}{6}\lambda_{tt}^2 x \left[\frac{16 - 29x + 7x^2}{6(x-1)^3} + \frac{3x-2}{(x-1)^4} \ln x \right] , \qquad (63)$$

$$E_4^{H(2)}(x) = \frac{1}{54} \lambda_{tt}^2 x \left\{ \frac{182 + 99x - 906x^2 + 515x^3}{(x-1)^4} \operatorname{Li}_2\left(1 - \frac{1}{x}\right) \right\}$$
(64)

$$\left. + \frac{980 - 15x - 2763x^2 + 1030x^3}{2(x-1)^5} \ln x + \frac{-18134 - 6717x + 68142x^2 - 29467x^3}{36(x-1)^4} \right. \\ \left. + \left[\frac{182 - 95x - 375x^2}{(x-1)^5} \ln x + \frac{-2320 + 4023x - 108x^2 + 133x^3}{6(x-1)^4} \right] \ln \left(\frac{\mu_W^2}{M_{H^{\pm}}^2} \right) \right\}.$$

The NNLO contributions to C_7 and C_8 are given by [32]:

$$\begin{split} \delta C_7^{H(2)}(\mu_W) &= \lambda_{tt}^2 \left\{ \delta C_{7tt}^{H(2)}(\mu_W = m_t) \right. (65) \\ &+ \ln \left(\frac{\mu_W^2}{m_t^2} \right) \left[-\frac{x \left(67930x^4 - 470095x^3 + 1358478x^2 - 700243x + 54970 \right)}{2187(x-1)^5} \\ &+ \frac{x \left(10422x^4 - 84390x^3 + 322801x^2 - 146588x + 1435 \right)}{729(x-1)^6} \ln x \\ &+ \frac{2x^2 \left(260x^3 - 1515x^2 + 3757x - 1446 \right)}{27(x-1)^5} \text{Li}_2 \left(1 - \frac{1}{x} \right) \right] \\ &+ \ln^2 \left(\frac{\mu_W^2}{m_t^2} \right) \left[\frac{x \left(-518x^4 + 3665x^3 - 17397x^2 + 3767x + 1843 \right)}{162(x-1)^5} \\ &+ \frac{x^2 \left(-63x^3 + 532x^2 + 2089x - 1118 \right)}{162(x-1)^6} \ln x \right] \right\} \\ &+ \lambda_{tt} \lambda_{bb} \left\{ \delta C_{7tb}^{H(2)}(\mu_W = m_t) \\ &+ \ln \left(\frac{\mu_W^2}{m_t^2} \right) \left[\frac{x \left(3790x^3 - 22511x^2 + 53614x - 21069 \right)}{81(x-1)^4} \\ &+ \frac{2x \left(-1266x^3 + 7642x^2 - 21467x + 8179 \right)}{81(x-1)^5} \ln x \\ &- \frac{8x \left(139x^3 - 612x^2 + 1103x - 342 \right)}{27(x-1)^4} \text{Li}_2 \left(1 - \frac{1}{x} \right) \right] \\ &+ \ln^2 \left(\frac{\mu_W^2}{m_t^2} \right) \left[\frac{x \left(284x^3 - 1435x^2 + 4304x - 1425 \right)}{27(x-1)^4} \\ &+ \frac{2x \left(63x^3 - 397x^2 - 970x + 440 \right)}{27(x-1)^5} \ln x \right] \right\}, \end{split}$$

$$\begin{split} \delta C_8^{H(2)}(\mu_W) &= \lambda_{tt}^2 \left\{ \delta C_{8tt}^{H(2)}(\mu_W = m_t) \right. \end{split} \tag{66} \\ &+ \ln \left(\frac{\mu_W^2}{m_t^2} \right) \left[\frac{x \left(51948x^4 - 233781x^3 + 48634x^2 - 698693x + 2452 \right)}{1944(x-1)^6} \ln r \right. \\ &- \frac{x \left(522347x^4 - 2423255x^3 + 2706021x^2 - 5930609x + 148856 \right)}{11664(x-1)^5} \\ &+ \frac{x^2 \left(481x^3 - 1950x^2 + 1523x - 2550 \right)}{18(x-1)^5} \operatorname{Li}_2 \left(1 - \frac{1}{x} \right) \right] \\ &+ \ln^2 \left(\frac{\mu_W^2}{m_t^2} \right) \left[\frac{x \left(-259x^4 + 1117x^3 + 2925x^2 + 28411x + 2366 \right)}{216(x-1)^5} \\ &- \frac{x^2 \left(139x^2 + 2938x + 2683 \right)}{36(x-1)^6} \ln x \right] \\ &+ \lambda_{tt} \lambda_{bb} \left\{ \delta C_{8tb}^{H(2)}(\mu_W = m_t) + \ln \left(\frac{\mu_W^2}{m_t^2} \right) \left[\frac{x \left(1463x^3 - 5794x^2 + 5543x - 15036 \right)}{27(x-1)^4} \\ &+ \frac{x \left(-1887x^3 + 7115x^2 + 2519x + 19901 \right)}{54(x-1)^5} \ln x \\ &+ \frac{x \left(-629x^3 + 2178x^2 - 1729x + 2196 \right)}{18(x-1)^4} \operatorname{Li}_2 \left(1 - \frac{1}{x} \right) \right] \\ &+ \ln^2 \left(\frac{\mu_W^2}{m_t^2} \right) \left[\frac{x \left(259x^3 - 947x^2 - 251x - 5973 \right)}{36(x-1)^4} \\ &+ \frac{x \left(139x^2 + 2134x + 1183 \right)}{18(x-1)^5} \ln x \right], \end{split}$$

where the three loop quantities $\delta C_{7tt}^{H(2)}(\mu_W = m_t)$, $\delta C_{7tb}^{H(2)}(\mu_W = m_t)$, $\delta C_{8tt}^{H(2)}(\mu_W = m_t)$ and $\delta C_{8tb}^{H(2)}(\mu_W = m_t)$ are given by:

$$\delta C_{7tt}^{H(2)}(\mu_W = m_t) \simeq 0.9225 r \ln^2 r + 4.317 r \ln r - 8.278 r \qquad (67)$$

$$-20.73 r^2 \ln^3 r - 112.4 r^2 \ln^2 r - 396.1 r^2 \ln r - 480.9 r^2$$

$$-34.50 r^3 \ln^3 r - 348.2 r^3 \ln^2 r - 1292 r^3 \ln r - 1158 r^3$$

$$-23.26 r^4 \ln^3 r - 541.4 r^4 \ln^2 r - 2540 r^4 \ln r - 1492 r^4$$

$$+42.30 r^5 \ln^3 r - 412.4 r^5 \ln^2 r - 3362 r^5 \ln r - 823.0 r^5 + \mathcal{O}(r^6) ,$$

$$\delta C_{7tt}^{H(2)}(\mu_W = m_t) \simeq 1.283 - 0.7158 \,\bar{u} - 0.3039 \,\bar{u}^2 - 0.1549 \,\bar{u}^3 - 0.08625 \,\bar{u}^4 \qquad (68)$$

$$-0.05020 \,\bar{u}^5 - 0.02970 \,\bar{u}^6 - 0.01740 \,\bar{u}^7 - 0.009752 \,\bar{u}^8 - 0.004877 \,\bar{u}^9$$

$$-0.001721 \,\bar{u}^{10} + 0.0003378 \,\bar{u}^{11} + 0.001679 \,\bar{u}^{12} + 0.002542 \,\bar{u}^{13}$$

$$+0.003083 \,\bar{u}^{14} + 0.003404 \,\bar{u}^{15} + 0.003574 \,\bar{u}^{16} + \mathcal{O}\left(\bar{u}^{17}\right) ,$$

$$\delta C_{7tt}^{H(2)}(\mu_W = m_t) \simeq 1.283 + 0.7158 \, u + 0.4119 \, u^2 + 0.2629 \, u^3 + 0.1825 \, u^4 + 0.1347 \, u^5 \tag{69}$$

$$+ 0.1040 \, u^6 + 0.08306 \, u^7 + 0.06804 \, u^8 + 0.05688 \, u^9 + 0.04833 \, u^{10}$$

$$+ 0.04163 \, u^{11} + 0.03625 \, u^{12} + 0.03188 \, u^{13} + 0.02827 \, u^{14} + 0.02525 \, u^{15}$$

$$+ 0.02269 \, u^{16} + \mathcal{O} \left(u^{17} \right) ,$$

$$\delta C_{7tt}^{H(2)}(\mu_W = m_t) \simeq 3.970 - 8.753 \frac{\ln r}{r} + 15.35 \frac{1}{r} - 38.12 \frac{\ln r}{r^2} + 47.09 \frac{1}{r^2} - 103.8 \frac{\ln r}{r^3} \quad (70)$$
$$+ 79.15 \frac{1}{r^3} - 168.3 \frac{\ln r}{r^4} + 24.41 \frac{1}{r^4} - 72.13 \frac{\ln r}{r^5} - 274.2 \frac{1}{r^5} + \mathcal{O}\left(\frac{1}{r^6}\right) ,$$

$$\delta C_{7tb}^{H(2)}(\mu_W = m_t) \simeq -20.94 r \ln^3 r - 123.5 r \ln^2 r - 453.5 r \ln r - 572.2 r$$

$$-8.889 r^2 \ln^3 r - 195.7 r^2 \ln^2 r - 870.3 r^2 \ln r - 524.1 r^2$$

$$+19.73 r^3 \ln^3 r - 46.61 r^3 \ln^2 r - 826.2 r^3 \ln r + 166.7 r^3$$

$$+36.08 r^4 \ln^3 r + 323.2 r^4 \ln^2 r + 169.9 r^4 \ln r + 1480 r^4$$

$$-66.63 r^5 \ln^3 r + 469.4 r^5 \ln^2 r + 1986 r^5 \ln r + 2828 r^5 + \mathcal{O}(r^6) ,$$
(71)

$$\delta C_{7tb}^{H(2)}(\mu_W = m_t) \simeq_{r \to 1^-} 12.82 + 1.663 \,\bar{u} + 0.7780 \,\bar{u}^2 + 0.3755 \,\bar{u}^3 + 0.1581 \,\bar{u}^4 \qquad (72)$$

$$+ 0.03021 \,\bar{u}^5 - 0.04868 \,\bar{u}^6 - 0.09864 \,\bar{u}^7 - 0.1306 \,\bar{u}^8$$

$$- 0.1510 \,\bar{u}^9 - 0.1637 \,\bar{u}^{10} - 0.1712 \,\bar{u}^{11} - 0.1751 \,\bar{u}^{12}$$

$$- 0.1766 \,\bar{u}^{13} - 0.1763 \,\bar{u}^{14} - 0.1748 \,\bar{u}^{15} - 0.1724 \,\bar{u}^{16} + \mathcal{O}\left(\bar{u}^{17}\right) ,$$

$$\delta C_{7tb}^{H(2)}(\mu_W = m_t) \simeq_{r \to 1^+} 12.82 - 1.663 \, u - 0.8852 \, u^2 - 0.4827 \, u^3 - 0.2976 \, u^4 - 0.2021 \, u^5 \quad (73)$$
$$-0.1470 \, u^6 - 0.1125 \, u^7 - 0.08931 \, u^8 - 0.07291 \, u^9 - 0.06083 \, u^{10}$$
$$-0.05164 \, u^{11} - 0.04446 \, u^{12} - 0.03873 \, u^{13} - 0.03407 \, u^{14} - 0.03023 \, u^{15}$$
$$-0.02702 \, u^{16} + \mathcal{O} \left(u^{17} \right) ,$$

$$\delta C_{7tb}^{H(2)}(\mu_W = m_t) \simeq 8.088 + 9.757 \frac{\ln r}{r} - 12.91 \frac{1}{r} + 38.43 \frac{\ln r}{r^2} - 49.32 \frac{1}{r^2} + 106.2 \frac{\ln r}{r^3} \quad (74)$$
$$-78.90 \frac{1}{r^3} + 168.4 \frac{\ln r}{r^4} - 24.97 \frac{1}{r^4} + 101.1 \frac{\ln r}{r^5} + 194.3 \frac{1}{r^5} + \mathcal{O}\left(\frac{1}{r^6}\right) ,$$

$$\delta C_{8tt}^{H(2)}(\mu_W = m_t) \simeq 0.6908 r \ln^2 r + 3.238 r \ln r + 0.7437 r \qquad (75)$$

$$-22.98 r^2 \ln^3 r - 169.1 r^2 \ln^2 r - 602.7 r^2 \ln r - 805.5 r^2$$

$$-66.32 r^3 \ln^3 r - 779.6 r^3 \ln^2 r - 3077 r^3 \ln r - 3357 r^3$$

$$-143.4 r^4 \ln^3 r - 2244 r^4 \ln^2 r - 10102 r^4 \ln r - 9016 r^4$$

$$-226.7 r^5 \ln^3 r - 5251 r^5 \ln^2 r - 26090 r^5 \ln r - 19606 r^5 + \mathcal{O}(r^6) ,$$

$$\delta C_{8tt}^{H(2)}(\mu_W = m_t) \simeq 1.188 - 0.4078 \,\bar{u} - 0.2076 \,\bar{u}^2 - 0.1265 \,\bar{u}^3 - 0.08570 \,\bar{u}^4 \qquad (76)$$
$$-0.06204 \,\bar{u}^5 - 0.04689 \,\bar{u}^6 - 0.03652 \,\bar{u}^7 - 0.02907 \,\bar{u}^8 - 0.02354 \,\bar{u}^9$$

$$-0.01933 \,\bar{u}^{10} - 0.01605 \,\bar{u}^{11} - 0.01345 \,\bar{u}^{12} - 0.01137 \,\bar{u}^{13} \\ -0.009678 \,\bar{u}^{14} - 0.008293 \,\bar{u}^{15} - 0.007148 \,\bar{u}^{16} + \mathcal{O}\left(\bar{u}^{17}\right) ,$$

$$\delta C_{8tt}^{H(2)}(\mu_W = m_t) \simeq 1.188 + 0.4078 \, u + 0.2002 \, u^2 + 0.1190 \, u^3 + 0.07861 \, u^4 \tag{77}$$

$$\begin{split} &+ 0.05531\,u^5 + 0.04061\,u^6 + 0.03075\,u^7 + 0.02386\,u^8 + 0.01888\,u^9 \\ &+ 0.01520\,u^{10} + 0.01241\,u^{11} + 0.01026\,u^{12} + 0.008575\,u^{13} \\ &+ 0.007238\,u^{14} + 0.006164\,u^{15} + 0.005290\,u^{16} + \mathcal{O}\left(u^{17}\right) \;, \end{split}$$

$$\delta C_{8tt}^{H(2)}(\mu_W = m_t) \simeq 2.278 - 5.214 \frac{1}{r} + 20.02 \frac{\ln r}{r^2} - 39.76 \frac{1}{r^2} + 78.58 \frac{\ln r}{r^3} - 66.39 \frac{1}{r^3} \qquad (78)$$
$$+91.89 \frac{\ln r}{r^4} + 96.35 \frac{1}{r^4} - 300.7 \frac{\ln r}{r^5} + 826.2 \frac{1}{r^5} + \mathcal{O}\left(\frac{1}{r^6}\right) ,$$

$$\delta C_{8tb}^{H(2)}(\mu_W = m_t) \simeq -19.80 r \ln^3 r - 174.7 r \ln^2 r - 658.4 r \ln r - 929.8 r$$
(79)
-31.83 r² ln³ r - 612.6 r² ln² r - 2770 r² ln r - 2943 r²
-40.68 r³ ln³ r - 1439 r³ ln² r - 7906 r³ ln r - 6481 r³
+54.66 r⁴ ln³ r - 2777 r⁴ ln² r - 17770 r⁴ ln r - 11684 r⁴
+1003 r⁵ ln³ r - 2627 r⁵ ln² r - 29962 r⁵ ln r - 15962 r⁵ + O(r⁶) ,

$$\delta C_{8tb}^{H(2)}(\mu_W = m_t) \simeq_{r \to 1^-} -0.6110 + 1.095 \,\bar{u} + 0.6492 \,\bar{u}^2 + 0.4596 \,\bar{u}^3 + 0.3569 \,\bar{u}^4 \tag{80}$$

$$+ 0.2910 \,\bar{u}^5 + 0.2438 \,\bar{u}^6 + 0.2075 \,\bar{u}^7 + 0.1785 \,\bar{u}^8$$

$$+ 0.1546 \,\bar{u}^9 + 0.1347 \,\bar{u}^{10} + 0.1177 \,\bar{u}^{11} + 0.1032 \,\bar{u}^{12}$$

$$+ 0.09073 \,\bar{u}^{13} + 0.07987 \,\bar{u}^{14} + 0.07040 \,\bar{u}^{15} + 0.06210 \,\bar{u}^{16} + \mathcal{O}\left(\bar{u}^{17}\right) ,$$

$$\delta C_{8tb}^{H(2)}(\mu_W = m_t) \simeq_{r \to 1^+} -0.6110 - 1.095 \, u - 0.4463 \, u^2 - 0.2568 \, u^3 - 0.1698 \, u^4 \tag{81}$$
$$-0.1197 \, u^5 - 0.08761 \, u^6 - 0.06595 \, u^7 - 0.05079 \, u^8 - 0.03987 \, u^9$$
$$-0.03182 \, u^{10} - 0.02577 \, u^{11} - 0.02114 \, u^{12} - 0.01754 \, u^{13} - 0.01471 \, u^{14}$$
$$-0.01244 \, u^{15} - 0.01062 \, u^{16} + \mathcal{O}\left(u^{17}\right) ,$$

$$\delta C_{8tb}^{H(2)}(\mu_W = m_t) \simeq -3.174 + 10.89\frac{1}{r} - 35.42\frac{\ln r}{r^2} + 63.74\frac{1}{r^2} - 110.7\frac{\ln r}{r^3}$$

$$+ 62.26\frac{1}{r^3} - 71.62\frac{\ln r}{r^4} - 205.7\frac{1}{r^4} + 476.9\frac{\ln r}{r^5} - 1003\frac{1}{r^5} + \mathcal{O}\left(\frac{1}{r^6}\right) .$$

$$(82)$$

C.1.3 Supersymmetric contributions

At leading order, the chargino contributions to the Wilson coefficients are given by [31]:

$$\delta C_7^{\chi(0)}(\mu) = -\frac{1}{2} A_7^{\chi(0)} , \qquad (83)$$

$$\delta C_8^{\chi(0)}(\mu) = -\frac{1}{2} F_8^{\chi(0)} , \qquad (84)$$

with

$$A_{7}^{\chi(0)}(\mu) = \kappa \sum_{i=1}^{2} \sum_{a=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} \times \left\{ [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{a3} h_{1}^{(0)}(y_{ai}) + \frac{m_{\chi_{i}^{\pm}}}{m_{b}} [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{R}}]_{a3} h_{2}^{(0)}(y_{ai}) \right\},$$

$$F_{8}^{\chi(0)}(\mu) = \kappa \sum_{i=1}^{2} \sum_{a=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} \times \left\{ [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{a3} h_{5}^{(0)}(y_{ai}) + \frac{m_{\chi_{i}^{\pm}}}{m_{b}} [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{R}}]_{a3} h_{6}^{(0)}(y_{ai}) \right\},$$

$$(86)$$

where the h_i functions are given in section C.5, and

$$\kappa = \frac{1}{g_2^2 V_{tb} V_{ts}^*} , \qquad \qquad y_{ai} = \frac{m_{\tilde{u}_a}^2}{m_{\chi_i^\pm}^2} , \qquad (87)$$

$$X_{i}^{U_{L}} = -g_{2} \left[a_{g} V_{i1}^{*} \Gamma^{U_{L}} - a_{Y} V_{i2}^{*} \Gamma^{U_{R}} \frac{M_{U}}{\sqrt{2}M_{W} \sin\beta} \right] V_{\text{CKM}} , \qquad (88)$$

$$X_{i}^{U_{R}} = g_{2} a_{Y} U_{i2} \Gamma^{U_{L}} V_{\text{CKM}} \frac{M_{D}}{\sqrt{2}M_{W} \cos \beta} , \qquad (89)$$

with $M_U = \text{diag}(m_u, m_c, m_t), M_D = \text{diag}(m_d, m_s, m_b)$ and

$$a_{g} = 1 - \frac{\alpha_{s}(\mu_{\tilde{g}})}{4\pi} \left[\frac{7}{3} + 2\ln\left(\frac{\mu_{\tilde{g}}^{2}}{M_{\tilde{g}}^{2}}\right) \right] , \quad a_{Y} = 1 + \frac{\alpha_{s}(\mu_{\tilde{g}})}{4\pi} \left[1 + 2\ln\left(\frac{\mu_{\tilde{g}}^{2}}{M_{\tilde{g}}^{2}}\right) \right] . \tag{90}$$

In this framework, the mixing matrices Γ^{U_L} and Γ^{U_R} take the simple form

$$(\Gamma^{U_L})^T = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \cos\theta_{\tilde{t}} & 0 & 0 & -\sin\theta_{\tilde{t}} \end{pmatrix}, \quad (\Gamma^{U_R})^T = \begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & \sin\theta_{\tilde{t}} & 0 & 0 & \cos\theta_{\tilde{t}} \end{pmatrix}.$$
(91)

One defines also Γ^U as

$$(\Gamma^U)_{ai} = (\Gamma^{U_L})_{ai} , \qquad (\Gamma^U)_{a(i+3)} = (\Gamma^{U_R})_{ai} , \qquad (92)$$

and

$$P^{U} = \Gamma^{U} \mathbb{1}_{6 \times 6}^{\mathrm{LR}} \Gamma^{U\dagger} , \qquad \qquad \mathbb{1}_{6 \times 6}^{\mathrm{LR}} = \mathrm{diag}(1, 1, 1, -1, -1, -1) , \qquad (93)$$

The leading $\tan \beta$ corrections are contained in the following expressions for ϵ_b , ϵ'_b and ϵ'_0 [33], which are evaluated at a typical SUSY scale, μ_s . ϵ_b can be split into two parts:

$$\epsilon_b = \epsilon_0 + \epsilon_2 , \qquad (94)$$

with

$$\epsilon_{0} = \frac{2 \alpha_{s}(\mu_{s})}{3 \pi} \frac{A_{b} / \tan \beta - \mu}{m_{\tilde{g}}} H_{2}(x_{\tilde{b}_{1}\tilde{g}}, x_{\tilde{b}_{2}\tilde{g}})$$

$$+ \frac{\alpha(M_{Z}) \mu M_{2}}{4 \pi s_{W}^{2}} \left[\frac{c_{\tilde{b}}^{2}}{2m_{\tilde{b}_{1}}^{2}} H_{2}\left(\frac{M_{2}^{2}}{m_{\tilde{b}_{1}}^{2}}, \frac{\mu^{2}}{m_{\tilde{b}_{1}}^{2}}\right) + \frac{s_{\tilde{b}}^{2}}{2m_{\tilde{b}_{2}}^{2}} H_{2}\left(\frac{M_{2}^{2}}{m_{\tilde{b}_{2}}^{2}}, \frac{\mu^{2}}{m_{\tilde{b}_{2}}^{2}}\right) \right] ,$$
(95)

and

$$\epsilon_{2} = \frac{\tilde{y}_{t}^{2}(\mu_{s})}{16 \pi^{2}} \sum_{i=1}^{2} U_{i2} \frac{\mu/\tan\beta - A_{t}}{m_{\chi_{i}^{\pm}}} H_{2}(x_{\tilde{t}_{1}\chi_{i}^{\pm}}, x_{\tilde{t}_{2}\chi_{i}^{\pm}}) V_{i2} \qquad (96)$$
$$+ \frac{\alpha(M_{Z})\mu M_{2}}{4\pi s_{W}^{2}} \left[\frac{c_{\tilde{t}}^{2}}{m_{\tilde{t}_{1}}^{2}} H_{2}\left(\frac{M_{2}^{2}}{m_{\tilde{t}_{1}}^{2}}, \frac{\mu^{2}}{m_{\tilde{t}_{1}}^{2}}\right) + \frac{s_{\tilde{t}}^{2}}{m_{\tilde{t}_{2}}^{2}} H_{2}\left(\frac{M_{2}^{2}}{m_{\tilde{t}_{2}}^{2}}, \frac{\mu^{2}}{m_{\tilde{t}_{2}}^{2}}\right) \right] ,$$

where $s_W = \sin \theta_W$, $c_{\tilde{q}} = \cos \theta_{\tilde{q}}$, $s_{\tilde{q}} = \sin \theta_{\tilde{q}}$, $x_{ab} = m_a^2/m_b^2$, and A_q is the trilinear coupling

of the quark q. y_q and \tilde{y}_q are the ordinary and supersymmetric Yukawa couplings of the quark q respectively. The function H_2 is defined as:

$$H_2(x,y) = \frac{x \ln x}{(1-x)(x-y)} + \frac{y \ln y}{(1-y)(y-x)} .$$
(97)

We neglect the neutralino mixing matrices and we assume that the chargino masses are given by μ and M_2 .

$$\begin{aligned} \epsilon_{b}'(t) &= \frac{2 \alpha_{s}(\mu_{s})}{3 \pi} \frac{A_{b}/\tan\beta - \mu}{m_{\tilde{g}}} \left[c_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\tilde{g}}, x_{\tilde{b}_{2}\tilde{g}}) \right] \\ &+ c_{\tilde{t}}^{2} s_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\tilde{g}}, x_{\tilde{b}_{1}\tilde{g}}) + s_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\tilde{g}}, x_{\tilde{b}_{2}\tilde{g}}) + s_{\tilde{t}}^{2} s_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\tilde{g}}, x_{\tilde{b}_{1}\tilde{g}}) \right] \\ &+ \frac{y_{t}^{2}(\mu_{s})}{16 \pi^{2}} \sum_{i=1}^{n_{\chi^{0}}} N_{i4}^{*} \frac{A_{t} - \mu/\tan\beta}{m_{\chi_{i}^{0}}} \left[c_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\chi_{i}^{0}}, x_{\tilde{b}_{1}\chi_{i}^{0}}) \right] \\ &+ c_{\tilde{t}}^{2} s_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\chi_{i}^{0}}, x_{\tilde{b}_{2}\chi_{i}^{0}}) + s_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\chi_{i}^{0}}, x_{\tilde{b}_{1}\chi_{i}^{0}}) \\ &+ c_{\tilde{t}}^{2} s_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\chi_{i}^{0}}, x_{\tilde{b}_{2}\chi_{i}^{0}}) + s_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\chi_{i}^{0}}, x_{\tilde{b}_{1}\chi_{i}^{0}}) \\ &+ c_{\tilde{t}}^{2} s_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\chi_{i}^{0}}, x_{\tilde{b}_{2}\chi_{i}^{0}}) + s_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\chi_{i}^{0}}, x_{\tilde{b}_{1}\chi_{i}^{0}}) \\ &+ c_{\tilde{t}}^{2} s_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\chi_{i}^{0}}, x_{\tilde{b}_{2}\chi_{i}^{0}}) + s_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\chi_{i}^{0}}, x_{\tilde{b}_{2}\chi_{i}^{0}}) \right] N_{i3} \\ &+ \frac{\alpha(M_{Z})\mu M_{2}}{4\pi s_{W}^{2}} \left[\frac{c_{\tilde{b}}^{2}}{m_{\tilde{b}_{1}}^{2}} H_{2}\left(\frac{M_{2}^{2}}{m_{\tilde{b}_{1}}^{2}}, \frac{\mu^{2}}{m_{\tilde{b}_{1}}^{2}} \right) + \frac{s_{\tilde{b}}^{2}}{2m_{\tilde{b}_{1}}^{2}} H_{2}\left(\frac{M_{2}^{2}}{m_{\tilde{b}_{2}}^{2}}, \frac{\mu^{2}}{m_{\tilde{b}_{2}}^{2}} \right) \right] . \end{aligned}$$

In the above equation, N represents the neutralino mixing matrix and n_{χ^0} the number of neutralinos, *i.e.* four in the MSSM and five in the NMSSM. The last ϵ correction reads:

$$\epsilon_{0}^{\prime} = -\frac{2\alpha_{s}(\mu_{s})}{3\pi} \frac{\mu + A_{t}/\tan\beta}{m_{\tilde{g}}} \left[c_{\tilde{t}}^{2} H_{2}(x_{\tilde{t}_{2}\tilde{g}}, x_{\tilde{s}\tilde{g}}) + s_{\tilde{t}}^{2} H_{2}(x_{\tilde{t}_{1}\tilde{g}}, x_{\tilde{s}\tilde{g}}) \right]$$
(99)
$$+ \frac{y_{b}^{2}(\mu_{s})}{16\pi^{2}} \sum_{i=1}^{n_{\chi^{0}}} N_{i4}^{*} \frac{\mu/\tan\beta}{m_{\chi^{0}_{i}}} \left[c_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\chi^{0}_{i}}, x_{\tilde{b}_{2}\chi^{0}_{i}}) + c_{\tilde{t}}^{2} s_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{1}\chi^{0}_{i}}, x_{\tilde{b}_{1}\chi^{0}_{i}}) + s_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\chi^{0}_{i}}, x_{\tilde{b}_{1}\chi^{0}_{i}}) + s_{\tilde{t}}^{2} c_{\tilde{b}}^{2} H_{2}(x_{\tilde{t}_{2}\chi^{0}_{i}}, x_{\tilde{b}_{1}\chi^{0}_{i}}) \right] N_{i3} .$$

The SM and charged Higgs contributions at the μ_W scale are affected by ϵ_b , ϵ'_b and ϵ'_0 as the following:

$$\delta C_{7,8}^{(SM,\tan\beta)}(\mu_W) = \frac{(\epsilon_b - \epsilon'_b(t)) \tan\beta}{1 + \epsilon_b \tan\beta} F_{7,8}^{(2)}(x_{tW}) , \qquad (100)$$

$$\delta C_{7,8}^{(H,\tan\beta)}(\mu_W) = -\frac{(\epsilon'_0 + \epsilon_b) \tan\beta}{1 + \epsilon_b \tan\beta} F_{7,8}^{(2)}(x_{tH^{\pm}}) .$$
(101)

Higher order charged Higgs contributions are expressed as [34]:

$$\delta C_{7,8}^{(H,\tan^2\beta)}(\mu_W) = -\frac{\epsilon_2 \epsilon_1' \tan^2 \beta}{(1+\epsilon_0 \tan \beta)(1+\epsilon_b \tan \beta)} F_{7,8}^{(2)}(x_{tH^{\pm}}) , \qquad (102)$$

where $F_{7,8}^{(2)}(x)$ are given in Eq. (49) and ϵ'_1 reads [35]:

$$\epsilon_1' = \frac{1}{16\pi^2} \left[\frac{A_b y_b^2}{\mu} H_2 \left(\frac{m_{\tilde{t}_L}^2}{\mu^2}, \frac{m_{\tilde{b}_R}^2}{\mu^2} \right) - g^2 \frac{M_2}{\mu} H_2 \left(\frac{m_{\tilde{t}_L}^2}{\mu^2}, \frac{M_2^2}{\mu^2} \right) \right] .$$
(103)

Finally, we add the neutral Higgs contributions [36, 37]. In the MSSM, they are expressed as

$$\delta C_{7(8)}^{H^{0}(0)}(\mu_{W}) = \frac{a_{7(8)}}{72} \frac{\epsilon_{2}}{\cos^{2}\beta(1+\epsilon_{0}\tan\beta)(1+\epsilon_{b}\tan\beta)^{2}}$$

$$\times \sum_{S=h^{0},H^{0},A^{0}} \frac{\overline{m}_{b}^{2}}{M_{S}^{2}} (x_{u}^{S*} - x_{d}^{S*}\tan\beta)(x_{d}^{S} + x_{u}^{S}\epsilon_{b}) ,$$
(104)

where $a_7 = 1$, $a_8 = -3$ and, for $S = (h^0, H^0, A^0)$,

$$x_d^S = (-\sin\alpha, \cos\alpha, i\sin\beta), \qquad x_u^S = (\cos\alpha, \sin\alpha, -i\cos\beta).$$
 (105)

In the NMSSM, they are generalized to

$$\delta C_{7(8)}^{H^{0}(0)}(\mu_{W}) = \frac{a_{7(8)}}{72} \frac{\epsilon_{2}}{\cos^{2}\beta(1+\epsilon_{0}\tan\beta)(1+\epsilon_{b}\tan\beta)^{2}}$$
(106)

$$\times \sum_{i=1}^{3} \frac{\overline{m}_{b}^{2}}{m_{i}^{2}} (U_{i1}^{H*} + U_{i2}^{H*}\tan\beta)(U_{i2}^{H} + U_{i1}^{H}\epsilon_{b}) ,$$

$$\delta C_{7(8)}^{A^{0}(0)}(\mu_{W}) = \frac{a_{7(8)}}{72} \frac{\epsilon_{2}}{\cos^{2}\beta(1+\epsilon_{0}\tan\beta)(1+\epsilon_{b}\tan\beta)^{2}}$$
(107)

$$\times \sum_{j=1}^{2} \frac{\overline{m}_{b}^{2}}{m_{j}^{2}} (U_{j1}^{A*} + U_{j2}^{A*}\tan\beta)(U_{j2}^{A} + U_{j1}^{A}\epsilon_{b}) ,$$

where $i = (h^0, H^0, H^0_3)$ and $j = (A_1^0, A_2^0)$.

The CP-even and CP-odd Higgs mixing matrices are respectively [38]

$$U^{H} = \begin{pmatrix} (\cos \theta_{H} - \sin \theta_{H} v \delta_{+}/s)/\tan \beta & \cos \theta_{H} & -\sin \theta_{H} \\ (\sin \theta_{H} + \cos \theta_{H} v \delta_{+}/s) & \sin \theta_{H} & \cos \theta_{H} \\ 1 & -1/\tan \beta & -v \delta_{+}/s \tan \beta \end{pmatrix},$$
(108)

and

$$U^{A} = \begin{pmatrix} \cos\theta_{A}\sin\beta & \cos\theta_{A}\cos\beta & \sin\theta_{A} \\ -\sin\theta_{A}\sin\beta & -\sin\theta_{A}\cos\beta & \cos\theta_{A} \\ -\cos\beta & \sin\beta & 0 \end{pmatrix} .$$
(109)

where θ_H and θ_A are the mixing angles, s is the scalar VEV, $v \approx 246$ GeV and

$$\delta_{\pm} = \frac{\sqrt{2}A_{\lambda} \pm 2\kappa s}{\sqrt{2}A_{\lambda} + \kappa s} \,. \tag{110}$$

At the NLO, the chargino contributions to the Wilson coefficients can be written in the form [31]:

$$\delta C_4^{\chi(1)}(\mu_W) = E_4^{\chi(1)} , \qquad (111)$$

$$\delta C_7^{\chi(1)}(\mu_W) = -\frac{1}{2} A_7^{\chi(1)} , \qquad (112)$$

$$\delta C_8^{\chi(1)}(\mu_W) = -\frac{1}{2} F_8^{\chi(1)} , \qquad (113)$$

with

$$E_4^{\chi(1)}(\mu_W) = \kappa \sum_{i=1}^2 \sum_{a=1}^6 \frac{M_W^2}{m_{\chi_i^{\pm}}^2} [X_i^{U_L}^{\dagger}]_{2a} [X_i^{U_L}]_{a3} h_4^{(0)}(y_{ai}) , \qquad (114)$$

$$A_7^{\chi(1)}(\mu_W) = \kappa \sum_{i=1}^2 \sum_{a=1}^6 \frac{M_W^2}{m_{\chi_i^\pm}^2} \left\{ [X_i^{U_L}]_{2a} [X_i^{U_L}]_{a3} h_1^{(1)}(y_{ai}, L_{\tilde{u}_a}) \right\}$$
(115)

$$\left. + \frac{m_{\chi_i^{\pm}}}{m_b} [X_i^{U_L}^{\dagger}]_{2a} [X_i^{U_R}]_{a3} h_2^{(1)}(y_{ai}, L_{\tilde{u}_a}) \right\},$$

$$F_8^{\chi(1)}(\mu_W) = \kappa \sum_{i=1}^2 \sum_{a=1}^6 \frac{M_W^2}{m_{\chi_i^\pm}^2} \left\{ [X_i^{U_L}]_{2a} [X_i^{U_L}]_{a3} h_5^{(1)}(y_{ai}, L_{\tilde{u}_a}) + \frac{m_{\chi_i^\pm}}{m_b} [X_i^{U_L}]_{2a} [X_i^{U_R}]_{a3} h_6^{(1)}(y_{ai}, L_{\tilde{u}_a}) \right\},$$
(116)

and

$$L_{\tilde{u}_a} = \ln\left(\frac{\mu_W^2}{m_{\tilde{u}_a}^2}\right) , \qquad (117)$$

The quartic chargino-up squark contributions are given by [31]:

$$\delta C_7^{4(1)}(\mu_W) = -\frac{1}{2} A_7^{4(1)} , \qquad (118)$$

$$\delta C_8^{4(1)}(\mu_W) = -\frac{1}{2} F_8^{4(1)} , \qquad (119)$$

with

$$A_{7}^{4(1)}(\mu_{W}) = \kappa \sum_{i=1}^{2} \sum_{a,b,c=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} P_{ab}^{U} y_{bi} P_{bc}^{U} (1 + L_{\tilde{u}_{b}})$$

$$\times \left\{ [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{c3} \left[-q_{1}^{(1)}(y_{ai}, y_{ci}) + \frac{2}{3}q_{2}^{(1)}(y_{ai}, y_{ci}) \right] \right\}$$

$$+ \frac{m_{\chi_{i}^{\pm}}}{m_{b}} [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{R}}]_{c3} \left[-q_{3}^{(1)}(y_{ai}, y_{ci}) + \frac{2}{3}q_{4}^{(1)}(y_{ai}, y_{ci}) \right] \right\} ,$$

$$F_{8}^{4(1)}(\mu_{W}) = \kappa \sum_{i=1}^{2} \sum_{a,b,c=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} P_{ab}^{U} y_{bi} P_{bc}^{U} (1 + L_{\tilde{u}_{b}})$$

$$(120)$$

$$\times \left\{ [X_i^{U_L}]_{2a} [X_i^{U_L}]_{c3} q_2^{(1)}(y_{ai}, y_{ci}) + \frac{m_{\chi_i^{\pm}}}{m_b} [X_i^{U_L}]_{2a} [X_i^{U_R}]_{c3} q_4^{(1)}(y_{ai}, y_{ci}) \right\},$$

where P^U is given in Eq. (93) and the q_i functions are given in Appendix C.5.

At the NNLO, the following contributions are considered [31]:

$$\delta C_3^{\chi(2)}(\mu_W) = G_3^{\chi(2)} , \qquad (122)$$

$$\delta C_4^{\chi(2)}(\mu_W) = E_4^{\chi(2)} , \qquad (123)$$

$$\delta C_5^{\chi(2)}(\mu_W) = -\frac{1}{10} G_3^{\chi(2)} + \frac{2}{15} E_4^{\chi(1)} , \qquad (124)$$

$$\delta C_6^{\chi(2)}(\mu_W) = -\frac{3}{16} G_3^{\chi(2)} + \frac{1}{4} E_4^{\chi(1)} , \qquad (125)$$

and

$$\delta C_4^{4(2)}(\mu_W) = E_4^{4(2)} , \qquad (126)$$

where

$$E_4^{\chi(2)} = \kappa \sum_{i=1}^2 \sum_{a=1}^6 \frac{M_W^2}{m_{\chi_i^{\pm}}^2} [X_i^{U_L}]_{2a} [X_i^{U_L}]_{a3} h_4^{(1)}(y_{ai}, L_{\tilde{u}_a}) , \qquad (127)$$

$$G_3^{\chi(2)} = \kappa \sum_{i=1}^2 \sum_{a=1}^6 \frac{M_W^2}{m_{\chi_i^\pm}^2} [X_i^{U_L}]_{2a} [X_i^{U_L}]_{a3} h_7^{(1)}(y_{ai}, L_{\tilde{u}_a}) , \qquad (128)$$

$$E_4^{4(2)} = \kappa \sum_{i=1}^2 \sum_{a,b,c=1}^6 \frac{M_W^2}{m_{\chi_i^{\pm}}^2} P_{ab}^U y_{bi} P_{bc}^U \left(1 + L_{\tilde{u}_b}\right) [X_i^{U_L^{\dagger}}]_{2a} [X_i^{U_L}]_{c3} q_6^{(1)}(y_{ai}, y_{ci}) , \quad (129)$$

and $E_4^{\chi(1)}$ is given in Eq. (114). In the charm sector, the NNLO contribution from the squarks is embedded in:

$$\delta C_1^{\tilde{q}(2)} = -\sum_{a=1}^6 \sum_{q=u,d} \left\{ 2(4x_{\tilde{q}_a} - 1)^{\frac{3}{2}} \operatorname{Cl}_2\left(2 \operatorname{arcsin} \frac{1}{2\sqrt{x_{\tilde{q}_a}}}\right) - 8\left(x_{\tilde{q}_a} - \frac{1}{3}\right) \ln x_{\tilde{q}_a} - 16x_{\tilde{q}_a} \right\} - \frac{208}{3} , \qquad (130)$$

where $x_{\tilde{q}_a} = \frac{m_{\tilde{q}_a}^2}{M_W^2}$ and Cl₂ is given in Eq. (33).

The complete Wilson coefficients $C_i^{(n)}$ at a given order are obtained by adding the different contributions given in this appendix.

C.2Wilson coefficients $C_9 - C_{10}$

The effective Hamiltonian describing the $b \to s \ell^+ \ell^-$ transitions has the following generic structure [39]:

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1}^{10} C_i(\mu) O_i(\mu) + \sum_{i=1}^{10} C_{Q_i}(\mu) Q_i(\mu) \right).$$
(131)

where $O_1 - O_8$ are given in Eq. (19) and

$$O_9 = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{l}\gamma_{\mu} l) , \qquad (132)$$

$$O_{10} = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^{\mu} b_L) (\bar{l}\gamma_{\mu}\gamma_5 l) , \qquad (133)$$

and the relevant Q_i 's are given in the next section.

C.2.1 **Standard Model contributions**

The one and two loop SM Wilson coefficients are given below [28]:

$$C_9^{c(0)} = -\frac{1}{4s_W^2} - \frac{38}{27} + \frac{4}{9}L , \qquad (134)$$

$$C_{10}^{c(0)} = \frac{1}{4s_W^2} , \qquad (135)$$

$$C_9^{t(0)} = \frac{1 - 4s_W^2}{s_W^2} \, \mathcal{C}^{t(0)}(x_{tW}) - \frac{1}{s_W^2} \, \mathcal{B}^{t(0)}(x_{tW}) - \mathcal{D}^{t(0)}(x_{tW}) \,, \tag{136}$$

$$C_{10}^{t(0)} = \frac{1}{s_W^2} \Big[\mathcal{B}^{t(0)}(x_{tW}) - \mathcal{C}^{t(0)}(x_{tW}) \Big] , \qquad (137)$$

$$C_9^{c(1)} = -\frac{1}{s_W^2} - \frac{524}{729} + \frac{128}{243}\pi^2 + \frac{16}{3}L + \frac{128}{81}L^2 , \qquad (138)$$

$$C_{10}^{c(1)} = \frac{1}{s_W^2}, (139)$$

$$C_9^{t(1)} = \frac{1 - 4s_W^2}{s_W^2} \mathcal{C}^{t(1)}(x_{tW}) - \frac{1}{s_W^2} \mathcal{B}^{t(1)}(x_{tW}, -\frac{1}{2}) - \mathcal{D}^{t(1)}(x_{tW}) , \qquad (140)$$

$$C_{10}^{t(1)} = \frac{1}{s_W^2} \left[\mathcal{B}^{t(1)}(x_{tW}, -\frac{1}{2}) - \mathcal{C}^{t(1)}(x_{tW}) \right], \qquad (141)$$

where x_{tW} and L are given in Eqs. (23) and (24), and $s_W = \sin \theta_W$. The involved Green functions for the W-boson box $(\mathcal{B}^{t,c})$ and Z-boson penguin $(\mathcal{C}^{t,c})$ diagrams are given by:

$$\mathcal{B}^{t(0)}(x) = \frac{x}{4(1-x)^2} \ln x + \frac{1}{4(1-x)}, \qquad (142)$$

$$\mathcal{C}^{t(0)}(x) = \frac{3x^2 + 2x}{8(1-x)^2} \ln x + \frac{-x^2 + 6x}{8(1-x)}, \qquad (143)$$

$$\mathcal{D}^{t(0)}(x) = \frac{-3x^4 + 30x^3 - 54x^2 + 32x - 8}{18(1-x)^4} \ln x + \frac{-47x^3 + 237x^2 - 312x + 104}{108(1-x)^3}, (144)$$

and

$$\mathcal{B}^{t(1)}(x, -\frac{1}{2}) = \frac{-2x}{(1-x)^2} \operatorname{Li}_2\left(1-\frac{1}{x}\right) + \frac{-x^2+17x}{3(1-x)^3} \ln x \qquad (145)$$

$$+ \frac{13x+3}{3(1-x)^2} + \left[\frac{2x^2+2x}{(1-x)^3} \ln x + \frac{4x}{(1-x)^2}\right] \ln \frac{\mu_W^2}{m_t^2} ,$$

$$\mathcal{C}^{t(1)}(x) = \frac{-x^3-4x}{(1-x)^2} \operatorname{Li}_2\left(1-\frac{1}{x}\right) + \frac{3x^3+14x^2+23x}{3(1-x)^3} \ln x \qquad (146)$$

$$+ \frac{4x^3+7x^2+29x}{3(1-x)^2} + \left[\frac{8x^2+2x}{(1-x)^3} \ln x + \frac{x^3+x^2+8x}{(1-x)^2}\right] \ln \frac{\mu_W^2}{m_t^2} ,$$

$$\mathcal{D}^{t(1)}(x) = \frac{380x^4-1352x^3+1656x^2-784x+256}{81(1-x)^4} \operatorname{Li}_2\left(1-\frac{1}{x}\right) \qquad (147)$$

$$+ \frac{304x^4+1716x^3-4644x^2+2768x-720}{81(1-x)^5} \ln x + \frac{-6175x^4+41608x^3-66723x^2+33106x-7000}{729(1-x)^4}$$

$$+ \left[\frac{648x^4-720x^3-232x^2-160x+32}{81(1-x)^5} \ln x + \frac{-352x^4+4912x^3-8280x^2+3304x-880}{243(1-x)^4}\right] \ln \frac{\mu_W^2}{m_t^2} .$$

The three loop QCD corrections to the C_{10} SM Wilson coefficient are given below [40]

$$C_{10}^{(2)}(\mu_W) = -\frac{2}{s_W^2} \Big[C_{10}^{W,t,(2)}(x_{tW},\mu_W) + C_{10}^{Z,t,(2)}(x_{tW},\mu_W) + C_{10}^{Z,t,\mathrm{tri}}(x_{tW}) - C_{10}^{W,c,(2)}(x_{tW},\mu_W) - C_{10}^{Z,c,\mathrm{tri}}(x_{tW}) \Big],$$
(148)

where

$$C_{10}^{W,t,(2)}(x,\mu_W) = C_{10}^{W,t,(2)}(\mu_W = m_t) + \ln\left(\frac{\mu_W^2}{m_t^2}\right) \left[\frac{69 + 1292x - 209x^2}{18(x-1)^3} - \frac{521x + 105x^2 - 50x^3}{9(x-1)^4} \ln x - \frac{47x + x^2}{3(x-1)^3} \operatorname{Li}_2\left(1 - \frac{1}{x}\right)\right] + \ln^2\left(\frac{\mu_W^2}{m_t^2}\right) \left[\frac{61x + 11x^2}{3(x-1)^3} - \frac{49x + 96x^2 - x^3}{6(x-1)^4} \ln x\right],$$

$$C_{10}^{W,c,(2)}(x,\mu_W) = C_{10}^{W,c,(2)}(\mu_W = M_W) - \frac{23}{6}\ln\left(\frac{\mu_W^2}{M_W^2}\right),$$
(149)

$$C_{10}^{Z,t,(2)}(x,\mu_W) = C_{10}^{Z,t,(2)}(x,\mu_W = m_t) + \ln\left(\frac{\mu_W^2}{m_t^2}\right) \left[\frac{188x + 4x^2 + 95x^3 - 47x^4}{6(x-1)^3} \operatorname{Li}_2\left(1 - \frac{1}{x}\right) (150) + \frac{1468x + 1578x^2 - 25x^3 - 141x^4}{18(x-1)^4} \ln x - \frac{4622x + 1031x^2 + 582x^3 - 475x^4}{36(x-1)^3}\right] + \ln^2\left(\frac{\mu_W^2}{m_t^2}\right) \left[\frac{49x + 315x^2 - 4x^3}{6(x-1)^4} \ln x - \frac{440x + 257x^2 + 72x^3 - 49x^4}{12(x-1)^3}\right],$$

For the three-loop quantities $C_{10}^{W,t,(2)}(\mu_W = m_t)$, $C_{10}^{W,c,(2)}(\mu_W = M_W)$ and $C_{10}^{Z,t,(2)}(\mu_W = m_t)$, we have access to their expansions at $x \to 1$ and $x \to \infty$. Denoting z = 1/x, $y = \sqrt{z}$ and w = 1 - z, the coefficients become:

$$C_{10}^{W,t,(2)}(\mu_W = m_t) \simeq_{x \to \infty} 2.710 y^2 + 6.010 y^2 \ln y - 8.156 y^4 - 1.131 y^4 \ln y \qquad (151)$$

$$-0.5394 y^6 - 13.97 y^6 \ln y + 35.32 y^8 + 15.64 y^8 \ln y + 103.9 y^{10}$$

$$+149.2 y^{10} \ln y + 207.7 y^{12} + 454.8 y^{12} \ln y + \mathcal{O}(y^{14}) ,$$

$$C_{10}^{W,t,(2)}(\mu_W = m_t) \simeq_{x \to 1} -0.4495 - 0.5845 w + 0.1330 w^2 + 0.1563 w^3 + 0.1233 w^4 \qquad (152)$$

$$+0.09333 w^5 + 0.07134 w^6 + 0.05561 w^7 + 0.04425 w^8$$

$$+0.03589 w^9 + 0.02960 w^{10} + 0.02478 w^{11} + 0.02102 w^{12}$$

$$+0.01803 w^{13} + 0.01562 w^{14} + 0.01366 w^{15} + 0.01204 w^{16} + \mathcal{O}(w^{17}) ,$$

$$C_{10}^{W,c,(2)}(\mu_W = M_W) \simeq_{x \to \infty} -5.222 - 0.2215 y^2 + 0.1244 y^2 \ln y - 0.08889 y^2 \ln^2 y$$
(153)
+0.04146 y⁴ - 0.02955 y⁴ ln y + 0.009524 y⁴ ln² y - 0.001092 y⁶
+0.0006349 y⁶ ln y - 0.00004286 y⁸ + 0.00003207 y⁸ ln y
-3.109 \cdot 10⁻⁶ y¹⁰ + 2.643 \cdot 10⁻⁶ y¹⁰ ln y - 3.009 \cdot 10⁻⁷ y¹²
+2.775 \cdot 10⁻⁷ y¹² ln y + O (y¹⁴) ,
$$C_{10}^{W,c,(2)}(\mu_W = M_W) \simeq_{x \to 1} -5.403 + 0.09422 w + 0.02786 w^2 + 0.01355 w^3 + 0.008129 w^4$$
(154)
+0.005469 w⁵ + 0.003957 w⁶ + 0.003009 w⁷ + 0.002373 w⁸
+0.001925 w⁹ + 0.001596 w¹⁰ + 0.001346 w¹¹ + 0.001153 w¹²
+0.0009996 w¹³ + 0.0008757 w¹⁴ + 0.0007742 w¹⁵
+0.0006898 w¹⁶ + O (w¹⁷) .

$$C_{10}^{Z,t,(2)}(\mu_W = m_t) \simeq_{x \to \infty} \frac{0.1897}{y^2} + 2.139 + 28.59 y^2 + 33.85 y^2 \ln y + 28.01 y^4$$
(155)
+97.98 $y^4 \ln y - 31.41 y^6 + 106.2 y^6 \ln y - 167.0 y^8 - 78.59 y^8 \ln y$
-387.4 $y^{10} - 618.3 y^{10} \ln y - 697.9 y^{12} - 1688. y^{12} \ln y + \mathcal{O}(y^{14})$,
 $C_{10}^{Z,t,(2)}(\mu_W = m_t) \simeq_{x \to 1} -1.934 + 0.8966 w + 0.7399 w^2 + 0.6058 w^3 + 0.5113 w^4$ (156)
+0.4439 $w^5 + 0.3948 w^6 + 0.3582 w^7 + 0.3303 w^8 + 0.3087 w^9$
+0.2916 $w^{10} + 0.2778 w^{11} + 0.2667 w^{12} + 0.2575 w^{13} + 0.2498 w^{14}$
+0.2433 $w^{15} + 0.2379 w^{16} + \mathcal{O}(w^{17})$.

Similarly, the fermion triangle contributions are expanded as

$$C_{10}^{Z,t,\text{tri}} \simeq_{x \to \infty} -\frac{0.9871}{y^2} - 2.388 - 1.627 y^2 - 3.516 y^2 \ln y - 1.830 y^4 - 6.959 y^4 \ln y \qquad (157)$$

$$-2.038 y^6 - 10.83 y^6 \ln y - 2.210 y^8 - 15.09 y^8 \ln y - 2.353 y^{10} - 19.65 y^{10} \ln y$$

$$-2.473 y^{12} - 24.48 y^{12} \ln y + \mathcal{O} (y^{14}) ,$$

$$C_{10}^{Z,t,\text{tri}} \simeq_{x \to 1} -2.418 - 1.334 w - 1.147 w^2 - 1.080 w^3 - 1.048 w^4 - 1.030 w^5 \qquad (158)$$

$$-1.019 w^6 - 1.012 w^7 - 1.007 w^8 - 1.003 w^9 - 1.001 w^{10} - 0.9984 w^{11}$$

$$-0.9968 w^{12} - 0.9955 w^{13} - 0.9944 w^{14} - 0.9936 w^{15} - 0.9928 w^{16} + \mathcal{O} (w^{17}) ,$$

$$\begin{split} C_{10}^{Z,c,\text{tri}} &\simeq \\ x \to \infty & -1.250 + 1.500 \ln y - 0.5331 \, y^2 + 0.2778 \, y^2 \ln y - 0.2222 \, y^2 \ln^2 y \qquad (159) \\ &+ 0.1144 \, y^4 - 0.08194 \, y^4 \ln y + 0.02778 \, y^4 \ln^2 y - 0.003538 \, y^6 + 0.002143 \, y^6 \ln y \\ &- 0.0001573 \, y^8 + 0.0001235 \, y^8 \ln y - 0.00001283 \, y^{10} + 0.00001145 \, y^{10} \ln y \\ &- 1.383 \cdot 10^{-6} \, y^{12} + 1.338 \cdot 10^{-6} \, y^{12} \ln y + \mathcal{O}\left(y^{14}\right) \,, \\ C_{10}^{Z,c,\text{tri}} &\simeq \\ x \to 1 & -1.672 - 0.5336 \, w - 0.3100 \, w^2 - 0.2181 \, w^3 - 0.1683 \, w^4 - 0.1370 \, w^5 \qquad (160) \\ &- 0.1156 \, w^6 - 0.09997 \, w^7 - 0.08808 \, w^8 - 0.07873 \, w^9 - 0.07118 \, w^{10} \\ &- 0.06495 \, w^{11} - 0.05973 \, w^{12} - 0.05529 \, w^{13} - 0.05147 \, w^{14} - 0.04814 \, w^{15} \\ &- 0.04522 \, w^{16} + \mathcal{O}\left(w^{17}\right) \,. \end{split}$$

C.2.2 Charged Higgs contributions

The charged Higgs contributions to the Wilson coefficients are written in the form [31]:

$$\delta C_9^{H(0,1)} = \frac{1 - 4s_W^2}{s_W^2} \mathcal{C}^{H(0,1)}(x_{tH^{\pm}}) - \mathcal{D}^{H(0,1)}(x_{tH^{\pm}}) , \qquad (161)$$

$$\delta C_{10}^{H(0,1)} = -\frac{1}{s_W^2} \mathcal{C}^{H(0,1)}(x_{tH^{\pm}}) , \qquad (162)$$

with $x_{tH^{\pm}} = \frac{m_t^2}{M_{H^{\pm}}^2}$.

The involved Green functions are given in the following:

$$\mathcal{C}^{H(0)}(x) = \frac{M_{H^{\pm}}^2}{8M_W^2} \lambda_{tt}^2 x^2 \left\{ \frac{-1}{(x-1)^2} \ln x + \frac{1}{x-1} \right\} , \qquad (163)$$

$$\mathcal{D}^{H(0)}(x) = \frac{1}{18} \lambda_{tt}^2 x \left\{ \frac{-3x^3 + 6x - 4}{(x - 1)^4} \ln x + \frac{47x^2 - 79x + 38}{6(x - 1)^3} \right\} ,$$
(164)

$$\mathcal{C}^{H(1)}(x) = \frac{M_{H^{\pm}}^2}{8M_W^2} \lambda_{tt}^2 x^2 \left\{ \frac{-8x+16}{(x-1)^2} \operatorname{Li}_2 \left(1-\frac{1}{x}\right) + \frac{-24x+88}{3(x-1)^3} \ln x + \frac{32x-96}{3(x-1)^2} + \left[\frac{16}{(x-1)^3} \ln x + \frac{8x-24}{(x-1)^2}\right] \ln \frac{\mu_W^2}{M_{H^{\pm}}^2} \right\},$$
(165)

$$\mathcal{D}^{H(1)}(x) = \frac{1}{81} \lambda_{tt}^2 x \left\{ \frac{380x^3 - 528x^2 + 72x + 128}{(x-1)^4} \operatorname{Li}_2\left(1 - \frac{1}{x}\right) + \frac{596x^3 - 672x^2 + 64x + 204}{(x-1)^5} \ln x + \frac{-6175x^3 + 9138x^2 - 3927x - 764}{9(x-1)^4} + \left[\frac{432x^3 - 456x^2 + 40x + 128}{(x-1)^5} \ln x + \frac{-352x^3 - 972x^2 + 1944x - 1052}{3(x-1)^4} \right] \ln \frac{\mu_W^2}{M_{H^{\pm}}^2} \right\}.$$
(166)

C.2.3 Supersymmetric contributions

The chargino contributions to the Wilson coefficients read [31].

$$\delta C_9^{\chi(0,1)} = \frac{1 - 4s_W^2}{s_W^2} \, \mathcal{C}^{\chi(0,1)} - \frac{1}{s_W^2} \, \mathcal{B}_9^{\chi(0,1)} - \mathcal{D}^{\chi(0,1)} \,, \tag{167}$$

$$\delta C_{10}^{\chi(0,1)} = \frac{1}{s_W^2} \Big[\mathcal{B}_{10}^{\chi(0,1)} - \mathcal{C}^{\chi(0,1)} \Big] .$$
(168)

The contributing chargino-up squark loop Green functions are:

$$\mathcal{B}_{9,10}^{\chi(0)} = \mp \kappa \frac{M_W^2}{2g_2^2} \sum_{i,j=1}^2 \sum_{a=1}^6 \sum_{b=1}^3 \frac{[X_j^{U_L^{\dagger}}]_{2a}[X_i^{U_L}]_{a3}}{m_{\chi_i^{\pm}}^2}$$

$$\times \left\{ \frac{1}{2} [X_i^{N_L^{\dagger}}]_{lb} [X_j^{N_L}]_{bl} f_5^{(0)}(x_{ji}, y_{ai}, v_{bi}) \mp [X_i^{N_R^{\dagger}}]_{lb} [X_j^{N_R}]_{bl} \sqrt{x_{ji}} f_6^{(0)}(x_{ji}, y_{ai}, v_{bi}) \right\},$$
(169)

$$\mathcal{C}^{\chi(0)} = -\frac{\kappa}{8} \sum_{i,j=1}^{2} \sum_{a,b=1}^{6} [X_{j}^{U_{L}^{\dagger}}]_{2b} [X_{i}^{U_{L}}]_{a3}$$

$$\times \left\{ 2\sqrt{x_{ji}} f_{3}^{(0)}(x_{ji}, y_{ai}) U_{j1} U_{i1}^{*} \delta_{ab} - f_{4}^{(0)}(x_{ji}, y_{ai}) V_{j1}^{*} V_{i1} \delta_{ab} + f_{4}^{(0)}(y_{ai}, y_{bi}) (\Gamma^{U_{L}} \Gamma^{U_{L}^{\dagger}})_{ba} \delta_{ij} \right\},$$

$$(170)$$

$$\mathcal{D}^{\chi(0)} = \kappa \sum_{i=1}^{2} \sum_{a=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{a3} h_{3}^{(0)}(y_{ai}) , \qquad (171)$$

$$\mathcal{B}_{9,10}^{\chi(1)} = \mp \kappa \frac{M_W^2}{2g_2^2} \sum_{i,j=1}^2 \sum_{a=1}^6 \sum_{b=1}^3 \frac{[X_j^{U_L}^{\dagger}]_{2a}[X_i^{U_L}]_{a3}}{m_{\chi_i^{\pm}}^2}$$

$$\times \left\{ \frac{1}{2} [X_i^{N_L}^{\dagger}]_{lb} [X_j^{N_L}]_{bl} \left[f_8^{(1)}(x_{ji}, y_{ai}, v_{bi}) + 4 \left(1 + y_{ai} \frac{\partial}{\partial y_{ai}} \right) f_5^{(0)}(x_{ji}, y_{ai}, v_{bi}) L_{\tilde{u}_a} \right]$$

$$\mp [X_i^{N_R}^{\dagger}]_{lb} [X_j^{N_R}]_{bl} \sqrt{x_{ji}} \left[f_9^{(1)}(x_{ji}, y_{ai}, v_{bi}) + 4 \left(1 + y_{ai} \frac{\partial}{\partial y_{ai}} \right) f_6^{(0)}(x_{ji}, y_{ai}, v_{bi}) L_{\tilde{u}_a} \right] \right\},$$

$$(172)$$

$$\mathcal{C}^{\chi(1)} = -\frac{\kappa}{8} \sum_{i,j=1}^{2} \sum_{a,b=1}^{6} [X_{j}^{U_{L}^{\dagger}}]_{2b} [X_{i}^{U_{L}}]_{a3}$$

$$\times \left\{ 2\sqrt{x_{ji}} \left[f_{3}^{(1)}(x_{ji}, y_{ai}) + 4 \left(1 + y_{ai} \frac{\partial}{\partial y_{ai}} \right) f_{3}^{(0)}(x_{ji}, y_{ai}) L_{\tilde{u}_{a}} \right] U_{j1} U_{i1}^{*} \delta_{ab}$$

$$- \left[f_{4}^{(1)}(x_{ji}, y_{ai}) + 4 \left(1 + y_{ai} \frac{\partial}{\partial y_{ai}} \right) f_{4}^{(0)}(x_{ji}, y_{ai}) L_{\tilde{u}_{a}} \right] V_{j1}^{*} V_{i1} \delta_{ab}$$

$$+ \left[f_{5}^{(1)}(y_{ai}, y_{bi}) + 4 \left(1 + y_{ai} \frac{\partial}{\partial y_{ai}} + y_{bi} \frac{\partial}{\partial y_{bi}} \right) f_{4}^{(0)}(y_{ai}, y_{bi}) L_{\tilde{u}_{a}} \right] (\Gamma^{U_{L}} \Gamma^{U_{L}^{\dagger}})_{ba} \delta_{ij} \right\},$$

$$\mathcal{D}^{\chi(1)} = \kappa \sum_{i=1}^{2} \sum_{a=1}^{6} \frac{M_{W}^{2}}{x_{i}^{\pm}} [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{a3} h_{3}^{(1)}(y_{ai}, L_{\tilde{u}_{a}}),$$
(173)

where $C^{\chi(0)}$ and $C^{\chi(1)}$ are taken from [44].

The chargino-up squark contributions containing the quartic squark vertex are

$$\mathcal{B}_{9,10}^{4(1)} = \pm \frac{\kappa}{2g_2^2} \frac{4}{3} \sum_{i,j=1}^2 \sum_{f=1}^3 \sum_{a,b,c=1}^6 \frac{M_W^2}{m_{\chi_i^{\pm}}^2} P_{ab}^U y_{bi} P_{bc}^U \left(1 + L_{\tilde{u}_b}\right) [X_j^{U_L^{\dagger}}]_{2a} [X_i^{U_L}]_{c3} \quad (175)$$

$$\times \left\{ \frac{1}{2} f_9^{(0)}(x_{ji}, y_{ai}, y_{ci}, v_{fi}) [X_i^{N_L^{\dagger}}]_{lf} [X_j^{N_L}]_{fl} \right\}$$

$$\mp \sqrt{x_{ji}} f_{10}^{(0)}(x_{ji}, y_{ai}, y_{ci}, v_{fi}) [X_i^{N_R^{\dagger}}]_{lf} [X_j^{N_R}]_{fl} \right\},$$

$$\mathcal{C}^{4(1)} = \frac{\kappa}{6} \sum_{i,j=1}^{2} \sum_{a,\dots,e,g,k=1}^{0} P_{gk}^{U} y_{ki} P_{ke}^{U} (1 + L_{\tilde{u}_{k}}) [X_{j}^{U_{L}^{\dagger}}]_{2d} [X_{i}^{U_{L}}]_{a3} \qquad (176) \\
\times \left\{ 2\sqrt{x_{ji}} f_{6}^{(0)} (x_{ji}, y_{ai}, y_{di}) U_{j1} U_{i1}^{*} \delta_{ae} \delta_{gd} \delta_{b1} \delta_{c1} \\
- f_{5}^{(0)} (x_{ji}, y_{ai}, y_{di}) V_{j1}^{*} V_{i1} \delta_{ae} \delta_{gd} \delta_{b1} \delta_{c1} \\
+ f_{5}^{(0)} (y_{ai}, y_{bi}, y_{ci}) (\Gamma^{U_{L}} \Gamma^{U_{L}^{\dagger}})_{cb} \delta_{ij} \delta_{ae} \delta_{bg} \delta_{cd} \\
+ f_{5}^{(0)} (y_{ai}, y_{ci}, y_{di}) (\Gamma^{U_{L}} \Gamma^{U_{L}^{\dagger}})_{cb} \delta_{ij} \delta_{ab} \delta_{ce} \delta_{dg} \right\},$$

$$\mathcal{D}^{4(1)} = \kappa \sum_{i=1}^{2} \sum_{a,b,c=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} P_{ab}^{U} y_{bi} P_{bc}^{U} \left(1 + L_{\tilde{u}_{b}}\right) [X_{i}^{U_{L}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{c3} q_{5}^{(1)}(y_{ai}, y_{ci}) .$$
(177)

In the above equations:

$$\kappa = \frac{1}{g_2^2 V_{tb} V_{ts}^*}, \qquad L_{\tilde{u}_a} = \ln \frac{\mu_W^2}{m_{\tilde{u}_a}^2}, \qquad (178)$$

$$x_{ij} = \frac{m_{\chi_i^{\pm}}^2}{m_{\chi_j^{\pm}}^2}, \qquad y_{ai} = \frac{m_{\tilde{u}_a}^2}{m_{\chi_i^{\pm}}^2}, \qquad v_{fi} = \frac{m_{\tilde{\nu}_f}^2}{m_{\chi_i^{\pm}}^2}, \qquad (179)$$

and P^U is given in Eq. (93), and the auxiliary functions f_i , h_i and q_i are given in section C.5. $X_i^{U_L}$ and $X_i^{U_R}$ are defined in Eq. (88), and

$$X_i^{N_L} = -g_2 V_{i1}^* \Gamma^N , \qquad X_i^{N_R} = g_2 U_{i2} \Gamma^N \frac{M_E}{\sqrt{2}M_W \cos\beta} , \qquad (180)$$

where Γ^N is the sneutrino mixing matrix and $M_E = \text{diag}(m_e, m_\mu, m_\tau)$.

The NMSSM contributions to $C_{9,10}$ are the same as in the MSSM.

C.3 Wilson coefficients $C_{Q_1} - C_{Q_2}$

The scalar and pseudoscalar operators Q_1 and Q_2 read [45]:

$$Q_1 = \frac{e^2}{(4\pi)^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{l} \, l) , \qquad (181)$$

$$Q_2 = \frac{e^2}{(4\pi)^2} (\bar{s}_L^{\alpha} b_R^{\alpha}) (\bar{l}\gamma_5 l) , \qquad (182)$$

The used convention here is slightly different from the one with O_S and O_P operators in [44]. However the Wilson coefficients in the two bases are related by the simple relation:

$$C_{Q_1,Q_2} = m_b C_{S,P} \,. \tag{183}$$

There is no SM contribution to C_{Q_1} and C_{Q_2} . In the following we give the 2HDM, MSSM and NMSSM contributions separately.

C.3.1 2HDM contributions

We extend the results of [46] to general Yukawa couplings. The most important contributions (for large Yukawa couplings) are given in the following.

The first contribution to C_{Q_1} and C_{Q_2} is from box diagrams involving H^+ and W^+ :

$$C_{Q_1}^a = -C_{Q_2}^a = -\frac{m_\mu}{4M_W^2 s_W^2} \left(m_b \lambda_{bb} + m_s \lambda_{ss} - 2m_t \lambda_{tt} \right) \lambda_{\mu\mu} B_+(x_{H^{\pm}W}, x_{tW}) , \qquad (184)$$

where $x_{H^{\pm}W} = M_{H^{\pm}}^2/M_W^2$, $x_{tW} = \overline{m}_t^2/M_W^2$, and

$$B_{+}(x,y) = \frac{y}{x-y} \left(\frac{\ln y}{y-1} - \frac{\ln x}{x-1} \right) .$$
 (185)

The second contribution comes from penguin diagrams mediated by neutral Higgs bosons with H^+ and W^+ in the loop:

$$C_{Q_{1}}^{b} = -\frac{m_{\mu}}{4s_{W}^{2}} \left(\frac{\sin^{2}\alpha}{M_{h^{0}}^{2}} + \frac{\cos^{2}\alpha}{M_{H^{0}}^{2}} \right) \left(m_{b}\lambda_{bb} + m_{s}\lambda_{ss} - 2m_{t}\lambda_{tt} \right) \lambda_{\mu\mu} P_{+}(x_{H^{\pm}W}, x_{tW}) ,$$

$$C_{Q_{2}}^{b} = \frac{m_{\mu}}{4M_{A_{0}}^{2}s_{W}^{2}} \left(m_{b}\lambda_{bb} + m_{s}\lambda_{ss} - 2m_{t}\lambda_{tt} \right) \lambda_{\mu\mu} P_{+}(x_{H^{\pm}W}, x_{tW}) .$$
(186)

where α is the Higgs mixing angle and the loop function is given by:

$$P_{+}(x,y) = \frac{y}{x-y} \left(\frac{x \ln x}{x-1} - \frac{y \ln y}{y-1} \right) .$$
 (187)

The third contribution originates from penguin diagrams mediated by neutral Higgs bosons, involving H^+ and G^+ in the loops:

$$C_{Q_{1}}^{c} = \frac{m_{\mu}}{4s_{W}^{2}} \left[\frac{\sin^{2}\alpha}{M_{h^{0}}^{2}} \frac{(M_{H^{+}}^{2} - M_{h^{0}}^{2})}{M_{W}^{2}} + \frac{\cos^{2}\alpha}{M_{H^{0}}^{2}} \frac{(M_{H^{+}}^{2} - M_{H^{0}}^{2})}{M_{W}^{2}} \right] \times (m_{b}\lambda_{bb} + m_{s}\lambda_{ss} - 2m_{t}\lambda_{tt}) \lambda_{\mu\mu}P_{+}(x_{H^{\pm}W}, x_{tW}) , \qquad (188)$$

$$C_{Q_{2}}^{c} = -\frac{m_{\mu}}{4M_{A^{0}}^{2}s_{W}^{2}} \left(\frac{M_{H^{+}}^{2} - M_{A^{0}}^{2}}{M_{W}^{2}} \right) (m_{b}\lambda_{bb} + m_{s}\lambda_{ss} - 2m_{t}\lambda_{tt}) \lambda_{\mu\mu}P_{+}(x_{H^{\pm}W}, x_{tW}) .$$

The last contribution is from self-energy diagrams:

$$C_{Q_{1}}^{d} = -\frac{m_{\mu}}{4s_{W}^{2}} \left(\frac{\sin^{2}\alpha}{M_{h^{0}}^{2}} + \frac{\cos^{2}\alpha}{M_{H^{0}}^{2}}\right) \left(m_{b}\lambda_{bb} + m_{s}\lambda_{ss}\right)\lambda_{\mu\mu}$$

$$\times \left[x_{H^{\pm}W} + \left(\lambda_{bb} + \frac{m_{s}}{m_{b}}\lambda_{ss}\right)\lambda_{tt}\right] P_{+}(x_{H^{\pm}W}, x_{tW}), \qquad (189)$$

$$C_{Q_{2}}^{d} = \frac{m_{\mu}}{4M_{A^{0}}^{2}s_{W}^{2}} \left(m_{b}\lambda_{bb} + m_{s}\lambda_{ss}\right)\lambda_{\mu\mu} \left[x_{H^{\pm}W} + \left(\lambda_{bb} - \frac{m_{s}}{m_{b}}\lambda_{ss}\right)\lambda_{tt}\right] P_{+}(x_{H^{\pm}W}, x_{tW}).$$

The Yukawa couplings λ_{ii} are given in Table 2 for the four types of 2HDM Yukawa sectors. Adding the four contributions, the total 2HDM contribution to the Wilson coefficients can be obtained.

C.3.2 MSSM contributions

The Wilson coefficients can be written as [44]:

$$C_{Q_1,Q_2}^{(0,1)} = \frac{1}{(1+\epsilon_0 \tan\beta)(1+\epsilon_b \tan\beta)} \sum_{J=H,\tilde{\chi},4} \left[\mathcal{N}_{Q_1,Q_2}^{J(0,1)} + \mathcal{B}_{Q_1,Q_2}^{J(0,1)} \right] .$$
(190)

The charged Higgs contributions can be split into two parts:

Box-diagram contributions:

$$\mathcal{B}_{Q_{1},Q_{2}}^{H(0)} = \pm \frac{m_{l}m_{b}\tan^{2}\beta}{4M_{W}^{2}s_{W}^{2}}f_{7}^{(0)}(x_{tW}, x_{H^{\pm}W}), \qquad (191)$$

$$\mathcal{B}_{Q_{1},Q_{2}}^{H(1)} = \pm \frac{m_{l}m_{b}\tan^{2}\beta}{4M_{W}^{2}s_{W}^{2}}\left[f_{11}^{(1)}(x_{tW}, x_{H^{\pm}W}) + 8x_{tW}\frac{\partial}{\partial x_{tW}}f_{7}^{(0)}(x_{tW}, x_{H^{\pm}W})\ln\frac{\mu_{W}^{2}}{M_{H^{\pm}}^{2}}\right],$$

Neutral Higgs boson penguin diagrams:

$$\mathcal{N}_{Q_{1},Q_{2}}^{H(0)} = \mp \frac{m_{l}m_{b}\tan^{2}\beta}{4M_{W}^{2}s_{W}^{2}} x f_{3}^{(0)}(x_{tW}, x_{H^{\pm}W}) , \qquad (192)$$

$$\mathcal{N}_{Q_{1},Q_{2}}^{H(1)} = \mp \frac{m_{l}m_{b}\tan^{2}\beta}{4M_{W}^{2}s_{W}^{2}} \left\{ f_{14}^{(1)}(x_{tW}, x_{H^{\pm}W}) + 8x_{tW}\frac{\partial}{\partial x_{tW}} \left[x_{tW}f_{3}^{(0)}(x_{tW}, x_{H^{\pm}W}) \right] \ln \frac{\mu_{W}^{2}}{M_{H^{\pm}}^{2}} \right\} .$$

The SUSY contributions are also split into Box-diagram contributions and neutral Higgs boson penguin diagrams, and are provided in the following.

Box-diagram contributions:

$$\mathcal{B}_{Q_{1},Q_{2}}^{\chi(0)} = \pm \frac{\kappa M_{W}^{2}}{2g_{2}^{2}s_{W}^{2}} \sum_{i,j=1}^{2} \sum_{f=1}^{3} \sum_{a=1}^{6} \frac{[X_{j}^{U_{L}^{\dagger}}]_{2a}[X_{i}^{U_{R}}]_{a3}}{m_{\chi_{i}^{\pm}}^{2}}$$

$$\times \left[f_{5}^{(0)}(x_{ji}, y_{ai}, v_{fi})[X_{i}^{N_{R}^{\dagger}}]_{lf}[X_{j}^{N_{L}}]_{fl} \pm \sqrt{x_{ji}} f_{6}^{(0)}(x_{ji}, y_{ai}, v_{fi})[X_{i}^{N_{L}^{\dagger}}]_{lf}[X_{j}^{N_{R}}]_{fl} \right],$$
(193)

$$\mathcal{B}_{Q_{1},Q_{2}}^{\chi(1)} = \pm \frac{\kappa M_{W}^{2}}{2g_{2}^{2}s_{W}^{2}} \sum_{i,j=1}^{2} \sum_{f=1}^{3} \sum_{a=1}^{6} \frac{[X_{j}^{U_{L}^{\dagger}}]_{2a}[X_{i}^{U_{R}}]_{a3}}{m_{\chi_{i}^{\pm}}^{2}}$$

$$\times \left\{ \left[f_{12}^{(1)}(x_{ji}, y_{ai}, v_{fi}) + 4y_{ai} \frac{\partial}{\partial y_{ai}} f_{5}^{(0)}(x_{ji}, y_{ai}, v_{fi}) L_{\tilde{u}_{a}} \right] [X_{i}^{N_{R}^{\dagger}}]_{lf} [X_{j}^{N_{L}}]_{fl}$$

$$\pm \sqrt{x_{ji}} \left[f_{13}^{(1)}(x_{ji}, y_{ai}, v_{fi}) + 4y_{ai} \frac{\partial}{\partial y_{ai}} f_{6}^{(0)}(x_{ji}, y_{ai}, v_{fi}) L_{\tilde{u}_{a}} \right] [X_{i}^{N_{L}^{\dagger}}]_{lf} [X_{j}^{N_{L}}]_{fl} \right\}.$$

$$(194)$$

 $X_i^{U_L}$ and $X_i^{U_R}$ are given in Eq. (88), $X_i^{N_L}$ and $X_i^{N_R}$ in Eq. (180), κ , $L_{\tilde{u}_a}$, x_{ij} , y_{ai} , v_{fi} in Eqs. (178) and (179), P^U in Eq. (93), and the f_i functions are given in section C.5.

The contributions from the quartic couplings read:

$$\mathcal{B}_{Q_{1},Q_{2}}^{4(1)} = \mp \frac{2\kappa M_{W}^{2}}{3g_{2}^{2}s_{W}^{2}} \sum_{i,j=1}^{2} \sum_{f=1}^{3} \sum_{a,b,c=1}^{6} \frac{[X_{j}^{U_{L}^{\dagger}}]_{2b}[X_{i}^{U_{R}}]_{a3}}{m_{\chi_{i}^{\pm}}^{2}} \Big[P_{ac}^{U} y_{ci} P_{cb}^{U}(1+L_{\tilde{u}_{c}}) \Big]$$

$$\times \left\{ f_{9}^{(0)}(x_{ji}, y_{ai}, y_{bi}, v_{fi})[X_{i}^{N_{R}^{\dagger}}]_{lf}[X_{j}^{N_{L}}]_{fl} \pm \sqrt{x_{ji}} f_{10}^{(0)}(x_{ji}, y_{ai}, y_{bi}, v_{fi})[X_{i}^{N_{L}^{\dagger}}]_{lf}[X_{j}^{N_{R}}]_{fl} \right\}.$$

$$\left\{ f_{9}^{(0)}(x_{ji}, y_{ai}, y_{bi}, v_{fi})[X_{i}^{N_{R}^{\dagger}}]_{lf}[X_{j}^{N_{L}}]_{fl} \pm \sqrt{x_{ji}} f_{10}^{(0)}(x_{ji}, y_{ai}, y_{bi}, v_{fi})[X_{i}^{N_{L}^{\dagger}}]_{lf}[X_{j}^{N_{R}}]_{fl} \right\}.$$

$$\left\{ f_{9}^{(0)}(x_{ji}, y_{ai}, y_{bi}, v_{fi})[X_{i}^{N_{R}^{\dagger}}]_{lf}[X_{j}^{N_{L}^{\dagger}}]_{fl} \pm \sqrt{x_{ji}} f_{10}^{(0)}(x_{ji}, y_{ai}, y_{bi}, v_{fi})[X_{i}^{N_{L}^{\dagger}}]_{lf}[X_{j}^{N_{R}}]_{fl} \right\}.$$

Neutral Higgs boson penguin diagrams:

$$\mathcal{N}_{Q_{1},Q_{2}}^{\chi(0)} = \pm \frac{m_{l}m_{b}\tan^{2}\beta}{M_{W}s_{W}^{2}M_{A^{0}}^{2}} \sum_{i,j=1}^{2} \sum_{a,b=1}^{6} \sum_{m,n=1}^{3} \Gamma_{imn}^{a} (\Gamma^{U_{L}})_{bm} U_{j2} a_{Y} \qquad (196)$$
$$\times \left[a_{0,Q_{1},Q_{2}}^{(0)} + a_{1}^{(0)} \tan \beta \right],$$

$$\mathcal{N}_{Q_{1},Q_{2}}^{\chi(1)} = \pm \frac{m_{l}m_{b}\tan^{2}\beta}{M_{W}s_{W}^{2}M_{A^{0}}^{2}} \sum_{i,j=1}^{2} \sum_{a,b=1}^{6} \sum_{m,n=1}^{3} \Gamma_{imn}^{a} (\Gamma^{U_{L}})_{bm} U_{j2} a_{Y} \qquad (197)$$
$$\times \left[a_{0,Q_{1},Q_{2}}^{(1)} + a_{1}^{(1)}\tan\beta + a_{2}m_{s}^{2}\tan^{2}\beta \right],$$

with

$$\Gamma_{imn}^{a} \equiv \frac{1}{2\sqrt{2}} \Big[\sqrt{2} M_{W} V_{i1} (\Gamma^{U_{L}\dagger})_{na} a_{g} - (M_{U})_{nn} V_{i2} (\Gamma^{U_{R}\dagger})_{na} a_{Y} \Big] \lambda_{mn} , \qquad (198)$$

$$\lambda_{mn} \equiv \frac{V_{mb} V_{nq}^*}{V_{tb} V_{tq}^*} . \tag{199}$$

The coefficients a_{0,Q_1,Q_2}, a_1, a_2 are given by

$$a_{0,Q_{1},Q_{2}}^{(0)} = \mp \left[\sqrt{x_{ij}} f_{3}^{(0)}(x_{ij}, y_{aj}) U_{i2} V_{j1} \pm f_{4}^{(0)}(x_{ij}, y_{aj}) U_{j2}^{*} V_{i1}^{*} \right] \delta_{ab}$$
(200)

$$+ \frac{(\Delta_{i}^{\pm})_{ab}}{M_{W}} f_{3}^{(0)}(y_{ai}, y_{bi}) \delta_{ij} ,$$

$$a_{0,Q_{1},Q_{2}}^{(1)} = \mp \left\{ \sqrt{x_{ij}} \left[f_{18}^{(1)}(x_{ij}, y_{aj}) + 4y_{ai} \frac{\partial}{\partial y_{ai}} f_{3}^{(0)}(x_{ij}, y_{aj}) L_{\tilde{u}_{a}} \right] U_{i2} V_{j1}$$
(201)

$$\pm \left[f_{19}^{(1)}(x_{ij}, y_{aj}) + 4y_{ai} \frac{\partial}{\partial y_{ai}} f_{4}^{(0)}(x_{ij}, y_{aj}) L_{\tilde{u}_{a}} \right] U_{j2}^{*} V_{i1}^{*} \right\} \delta_{ab}$$

$$+ \frac{(\Delta_{i}^{\pm})_{ab}}{M_{W}} \left[f_{17}^{(1)}(y_{ai}, y_{bi}) + 4 \left(1 + y_{ai} \frac{\partial}{\partial y_{ai}} + y_{bi} \frac{\partial}{\partial y_{bi}} \right) f_{3}^{(0)}(y_{ai}, y_{bi}) L_{\tilde{u}_{a}} \right] \delta_{ij}$$

$$+ \frac{4\Gamma_{imn}^{am}}{M_{W} (\Gamma^{U_{L}})_{bm}} \lambda_{mn}^{*} U_{j2}^{*} f_{15}^{(1)}(y_{ai}) \delta_{ij} \delta_{ab} \delta_{mn} ,$$

$$a_1^{(0)} = \frac{m_{\chi_i^{\pm}}}{\sqrt{2}M_W} f_8^{(0)}(y_{ai}) \,\delta_{ij}\delta_{ab} \,, \tag{202}$$

$$a_1^{(1)} = \frac{m_{\chi_i^{\pm}}}{\sqrt{2}M_W} \Big[f_{16}^{(1)}(y_{ai}) + 4y_{ai} \frac{\partial}{\partial y_{ai}} f_8^{(0)}(y_{ai}) L_{\tilde{u}_a} \Big] \delta_{ij} \delta_{ab} , \qquad (203)$$

$$a_{2} = \frac{(\Gamma^{U_{L}\dagger})_{mb}\lambda_{mn}U_{j2}^{*}}{2M_{W}\Gamma_{imn}^{a}}f_{15}^{(1)}(y_{ai})\delta_{ij}\delta_{ab}\delta_{mn} , \qquad (204)$$

with

$$(\Delta_{i}^{\pm})_{ab} \equiv \sum_{f=1}^{3} \frac{(M_{U})_{f}}{\sqrt{2} \, m_{\chi_{i}^{\pm}}} \Big[\mu^{*} (\Gamma^{U_{R}})_{af} (\Gamma^{U_{L}\dagger})_{fb} \pm \mu (\Gamma^{U_{L}})_{af} (\Gamma^{U_{R}\dagger})_{fb} \Big] \,. \tag{205}$$

The contributions from the quartic couplings read:

$$\mathcal{N}_{Q_{1},Q_{2}}^{4} = \mp \frac{4m_{l}m_{b}\tan^{2}\beta}{3M_{W}^{2}s_{W}^{2}M_{A^{0}}^{2}} \sum_{i,j=1}^{2} \sum_{m,n=1}^{3} \sum_{a,\dots,e,g,k=1}^{6} \Gamma_{imn}^{a}(\Gamma^{U_{L}})_{dm}U_{j2}a_{Y}$$
(206)

$$\times \left\{ P_{ek}^{U}y_{kj}P_{kg}^{U}(1+L_{\tilde{u}_{k}}) \left\{ \tan\beta \frac{m_{\chi_{i}^{\pm}}}{\sqrt{2}} f_{3}^{(0)}(y_{ai},y_{di})\delta_{ij}\delta_{ae}\delta_{gd} \right. \right. \\ \left. + (\Delta_{i}^{\pm})_{bc} \left[\delta_{ae}\delta_{gb}\delta_{cd}f_{6}^{(0)}(y_{ai},y_{bi},y_{ci}) + \delta_{ab}\delta_{ce}\delta_{gd}f_{6}^{(0)}(y_{ai},y_{ci},y_{di}) \right] \delta_{ij} \right. \\ \left. \mp M_{W} \left[\sqrt{x_{ij}}f_{6}^{(0)}(x_{ij},y_{aj},y_{dj})U_{i2}V_{j1} \pm f_{5}^{(0)}(x_{ij},y_{aj},y_{dj})U_{j2}^{*}V_{i1}^{*} \right] \delta_{ae}\delta_{dg} \right\} \\ \left. - P_{ae}^{U} [1 + L_{\tilde{u}_{g}} - f_{11}^{(0)}(y_{ej},y_{gj})] P_{gd}^{U}(\Delta_{i}^{\pm})_{eg}\delta_{ij}f_{3}^{(0)}(y_{ai},y_{di}) \right\} .$$

The additional auxiliary functions are given in section C.5.

C.3.3 NMSSM contributions

In this section, we give the NMSSM specific contributions to C_{Q_1} and C_{Q_2} following [47]. The NMSSM results cannot explicitly reduce to the MSSM results by simply dropping out the singlet.

For a light A_1 ($M_{A_1} \ll M_W$), a new operator is introduced since in this case A_1 becomes an active field:

$$O_A = i \frac{g_2}{16\pi^2} m_b M_W \,\bar{s}^{\alpha}_L b^{\alpha}_R A_1 \;, \tag{207}$$

associated to the Wilson coefficient C_A , which is not changed by changing the scale from μ_W to M_{A_1} . At the M_{A_1} scale, C_{Q_2} receives a contribution from C_A :

$$\delta C_{Q_2}(M_{A_1}) = -\frac{\delta_-}{2} \frac{v}{s} \frac{m_b m_l}{m_{A_1}^2 s_W^2} C_A(M_{A_1}) , \qquad (208)$$

where δ_{-} is given in Eq. (110). For a very light A_1 ($M_{A_1} < m_b$), the effects of O_A are represented by a change in C_{Q_2} at the m_b scale:

$$\delta C_{Q_2}(m_b) = \frac{\delta_-}{2} \frac{v}{s} \frac{1}{s_W^2} \frac{m_b m_l}{\left(p^2 - M_{A_1}^2 + im_{A_1} \Gamma_{A_1}\right)} C_A(m_b) , \qquad (209)$$

where p is the momentum transfer and Γ_{A_1} is the total width of A_1 . Since A_1 can be on-shell in this case, the effects of A_1 can be sizeable even without $\tan \beta$ enhancement. The charged Higgs contributions read:

$$\delta C_A^H = -\frac{i\lambda A_\lambda}{g_2 M_W} \tan\beta f_3^{(0)}(x_{H^{\pm}t}, x_{Wt}) , \qquad (210)$$

$$\delta C_{Q_1}^H = -\sum_{a=1}^3 \frac{m_b m_l}{4M_{H_a}^2 s_W^2} \tan^2 \beta \left[\frac{M_{H^\pm}^2}{M_W^2} U_{a1}^H U_{a1}^H f_3^{(0)}(x_{H^\pm t}, x_{Wt}) \right]$$
(211)

$$+\frac{m_{t}^{2}M_{H_{a}}^{2}}{M_{W}^{2}M_{H^{\pm}}^{2}}f_{3}^{(0)}(x_{tH^{\pm}},x_{tW})\right],$$

$$\delta C_{Q_{2}}^{H} = \sum_{\alpha=1}^{2} \frac{m_{b}m_{l}}{4M_{A_{\alpha}}^{2}s_{W}^{2}} \tan^{2}\beta \left[\left(\frac{M_{H^{\pm}}^{2}}{M_{W}^{2}}U_{\alpha1}^{A}U_{\alpha1}^{A} + \delta_{\alpha2}U_{\alpha1}^{A} \right) f_{3}^{(0)}(x_{H^{\pm}t},x_{Wt}) + \frac{m_{t}^{2}M_{A_{\alpha}}^{2}}{M_{W}^{2}M_{H^{\pm}}^{2}}f_{3}^{(0)}(x_{tH^{\pm}},x_{tW}) \right].$$
(212)

The chargino contributions can be written as:

$$\delta C_{A}^{\chi} = i \frac{\tan \beta}{\sqrt{2}} \sum_{i=1}^{3} \sum_{j,l=1}^{2} \Gamma_{1}(i,i,j,l) \Biggl\{ \delta_{-} \delta_{lj} \frac{v}{s} \sqrt{x_{\chi_{j}^{\pm}W}} f_{8}^{(0)} \left(x_{\tilde{t}_{i-1}\chi_{j}^{\pm}} \right)$$

$$- \Biggl[R_{1jl} \sqrt{x_{\chi_{j}^{\pm}\chi_{l}^{\pm}}} f_{3}^{(0)} \left(x_{\tilde{t}_{i-1}\chi_{l}^{\pm}}, x_{\chi_{j}^{\pm}\chi_{l}^{\pm}} \right) - R_{1lj}^{*} f_{4}^{(0)} \left(x_{\tilde{t}_{i-1}\chi_{l}^{\pm}}, x_{\chi_{j}^{\pm}\chi_{l}^{\pm}} \right) \Biggr] \Biggr\},$$

$$C_{Q_{1}}^{\chi} = \sum_{a=1}^{3} \frac{m_{b}m_{l}}{4M_{H_{a}}^{2}s_{W}^{2}} \tan^{2} \beta \sum_{i,k=1}^{3} \sum_{j,l=1}^{2} \Gamma_{1}(i,k,j,l) \Biggl\{ \frac{\sqrt{2}U_{a1}^{H}U_{a1}^{H}m_{\chi_{j}^{\pm}}}{M_{W}\cos\beta} \delta_{ik} \delta_{lj} f_{8}^{(0)} \left(x_{\tilde{t}_{i-1}\chi_{j}^{\pm}} \right) \Biggr\}$$

$$(213)$$

$$-\frac{2\sqrt{2}U_{a1}^{H}}{g_{2}}\delta_{ik}\left[Q_{alj}^{*}f_{4}^{(0)}(x_{\tilde{t}_{i-1}\chi_{l}^{\pm}},x_{\chi_{j}^{\pm}\chi_{l}^{\pm}})+\frac{m_{\chi_{j}^{\pm}}}{m_{\chi_{l}^{\pm}}}Q_{ajl}f_{3}^{(0)}(x_{\tilde{t}_{i-1}\chi_{l}^{\pm}},x_{\chi_{j}^{\pm}\chi_{l}^{\pm}})\right]$$

$$+\frac{2\sqrt{2}U_{a1}^{H}T_{2}^{aik}m_{\chi_{j}^{\pm}}}{m_{\tilde{t}_{k-1}}^{2}}\delta_{lj}f_{3}^{(0)}(x_{\tilde{t}_{i-1}\tilde{t}_{k-1}},x_{\chi_{j}^{\pm}\tilde{t}_{k-1}})$$

$$+\frac{M_{H_{a}}^{2}}{m_{\chi_{j}^{\pm}}^{2}}\delta_{ik}\left[U^{2j}V^{1l}f_{5}^{(0)}(x_{\tilde{t}_{i-1}\chi_{j}^{\pm}},x_{\chi_{l}^{\pm}\chi_{j}^{\pm}},x_{\tilde{\nu}\chi_{l}^{\pm}})\right]$$

$$-\frac{m_{\chi_{l}^{\pm}}}{m_{\chi_{j}^{\pm}}}U^{2l^{*}}V^{1j^{*}}f_{6}^{(0)}(x_{\tilde{t}_{i-1}\chi_{j}^{\pm}},x_{\chi_{l}^{\pm}\chi_{j}^{\pm}},x_{\tilde{\nu}\chi_{l}^{\pm}})\right]\right\},$$

$$(214)$$

$$C_{Q_{2}}^{\chi} = -\sum_{\alpha=1}^{2} \frac{m_{b}m_{l}}{4M_{A_{\alpha}}^{2}s_{W}^{2}} \tan^{2}\beta \sum_{i,k=1}^{3} \sum_{j,l=1}^{2} \Gamma_{1}(i,k,j,l) \Biggl\{ \frac{\sqrt{2}U_{\alpha1}^{A}U_{\alpha1}^{A}m_{\chi_{j}^{\pm}}}{M_{W}\cos\beta} \delta_{ik}\delta_{lj}f_{8}^{(0)}(x_{\tilde{t}_{l-1}\chi_{j}^{\pm}}) - \frac{2\sqrt{2}U_{\alpha1}^{A}}{g_{2}} \delta_{ik} \Biggl[-R_{alj}^{*}f_{4}^{(0)}(x_{\tilde{t}_{l-1}\chi_{l}^{\pm}}, x_{\chi_{j}^{\pm}\chi_{l}^{\pm}}) + \frac{m_{\chi_{j}^{\pm}}}{m_{\chi_{l}^{\pm}}} R_{ajl}f_{3}^{(0)}(x_{\tilde{t}_{l-1}\chi_{l}^{\pm}}, x_{\chi_{j}^{\pm}\chi_{l}^{\pm}}) \Biggr] - \frac{\sqrt{2}U_{\alpha1}^{A}T_{1}^{\alpha ik}m_{t}m_{\chi_{j}^{\pm}}}{M_{W}m_{\tilde{t}_{k-1}}^{2}} \delta_{lj}f_{3}^{(0)}(x_{\tilde{t}_{l-1}\tilde{t}_{k-1}}, x_{\chi_{j}^{\pm}\tilde{t}_{k-1}}) + \frac{M_{A_{\alpha}}^{2}}{m_{\chi_{j}^{\pm}}^{2}} \delta_{ik} \Biggl[U^{2j}V^{1l}f_{5}^{(0)}(x_{\tilde{t}_{l-1}\chi_{j}^{\pm}}, x_{\chi_{l}^{\pm}\chi_{j}^{\pm}}, x_{\tilde{\nu}\chi_{l}^{\pm}}) + \frac{-\frac{m_{\chi_{l}^{\pm}}}{m_{\chi_{j}^{\pm}}} U^{2l^{*}}V^{1j^{*}}f_{6}^{(0)}(x_{\tilde{t}_{l-1}\chi_{j}^{\pm}}, x_{\chi_{l}^{\pm}\chi_{j}^{\pm}}, x_{\tilde{\nu}\chi_{l}^{\pm}}) \Biggr] \Biggr\},$$

$$(215)$$

with

$$R_{\alpha lj} = -\frac{g_2}{\sqrt{2}} \left(U^A_{\alpha 1} U^{2l} V^{1j} + U^A_{\alpha 2} U^{1l} V^{2j} \right) - \frac{\lambda}{\sqrt{2}} U^A_{\alpha 3} U^{2l} V^{2j} , \qquad (216)$$

$$Q_{alj} = \frac{g_2}{\sqrt{2}} \left(U_{a1}^H U^{2l} V^{1j} + U_{a2}^H U^{1l} V^{2j} \right) - \frac{\lambda}{\sqrt{2}} U_{a3}^H U^{2l} V^{2j} , \qquad (217)$$

$$\Gamma_1(i,k,j,l) = \left(T_U^{i2} T_U^{k2^*} - \delta_{i1} \delta_{k1} \right) V^{1l^*} U^{2j^*} - \frac{m_t}{\sqrt{2} M_W \sin\beta} T_U^{i3} T_U^{k2^*} V^{2l^*} U^{2j^*} , \quad (218)$$

$$T_1^{\alpha i k} = A_3 T_U^{i3^*} T_U^{k2} - A_3^* T_U^{i2^*} T_U^{k3} , \qquad (219)$$

$$T_{2}^{aik} = A_{5} \left(T_{U}^{i1*} T_{U}^{k1} + T_{U}^{i2*} T_{U}^{k2} \right) + A_{6} T_{U}^{i3*} T_{U}^{k3}$$

$$- \frac{m_{t}}{2M_{W}} \left[2m_{t} U_{a2}^{H} \left(T_{U}^{i2*} T_{U}^{k2} + T_{U}^{i3*} T_{U}^{k3} \right) + \left(A_{4} T_{U}^{i3*} T_{U}^{k2} + A_{4}^{*} T_{U}^{i2*} T_{U}^{k3} \right) \right],$$
(220)

and

$$A_3 = \frac{\lambda}{\sqrt{2}} \left(v_d U^A_{\alpha 3} + s U^A_{\alpha 1} \right) - A_U U^A_{\alpha 2} , \qquad (221)$$

$$A_4 = \frac{\lambda}{\sqrt{2}} \left(v_d U_{a3}^H + s U_{a1}^H \right) + A_U U_{a2}^H , \qquad (222)$$

$$A_5 = \frac{M_Z}{2\cos\theta_W} \left(1 - \frac{4}{3}\sin^2\theta_W\right) U_{a2}^H , \qquad (223)$$

$$A_6 = \frac{2}{3} M_W \tan^2 \theta_W U_{a2}^H .$$
 (224)

In the above equations, T_U is the stop mixing matrix, U^H and U^A are respectively the CP-even and CP-odd Higgs mixing matrices, U and V are the chargino mixing matrices, and $m_{\tilde{t}_0} \equiv m_{\tilde{u}_R}$. The f_i functions are given in section C.5.

C.4 Prime Wilson coefficients

In the following, we use the results obtained in [44]. However, the conventions are changed as follows:

$$C'_{Q_1,Q_2} = m_s C'_{S,P} \tag{225}$$

to be consistent with the previous sections.

C.4.1 Prime Wilson coefficients $C'_{7,8}$

The SM contributions are:

$$C_7^{\prime SM}(\mu_W) = \frac{m_s}{m_b} \left(-\frac{1}{2} A_0^t(x_{tW}) - \frac{23}{36} \right) , \qquad (226)$$

$$C_8^{\prime SM}(\mu_W) = \frac{m_s}{m_b} \left(-\frac{1}{2} F_0^t(x_{tW}) - \frac{1}{3} \right) .$$
 (227)

where

$$x_{tW^{\pm}} = \frac{\overline{m}_t^2(\mu_W)}{M_W^2} , \qquad (228)$$

and A_0^t and F_0^t are given in Eqs. (25) and (27).

The charged Higgs contributions are:

$$\delta C_{7,8}^{\prime H}(\mu_W) = \frac{1}{3} \frac{m_s m_b}{\overline{m}_t^2(\mu_W)} \tan^2 \beta \ F_{7,8}^{(1)}(x_{tH^{\pm}}) \ , \tag{229}$$

where

$$x_{tH^{\pm}} = \frac{\overline{m}_t^2(\mu_W)}{M_{H^{\pm}}^2} , \qquad (230)$$

and $F_{7,8}^{(1)}$ is given in Eq. (49).

The supersymmetric contributions are:

$$\delta C_7^{\prime\chi}(\mu_W) = -\frac{1}{2} A_7^{\prime\chi} , \qquad (231)$$

$$\delta C_8^{\prime\chi}(\mu_W) = -\frac{1}{2} F_8^{\prime\chi} , \qquad (232)$$

with

$$A_{7}^{\prime\chi}(\mu) = \kappa \sum_{i=1}^{2} \sum_{a=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} \times \left\{ [X_{i}^{U_{R}^{\dagger}}]_{2a} [X_{i}^{U_{R}}]_{a3} h_{1}^{(0)}(y_{ai}) + \frac{m_{\chi_{i}^{\pm}}}{m_{b}} [X_{i}^{U_{R}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{a3} h_{2}^{(0)}(y_{ai}) \right\},$$

$$F_{8}^{\prime\chi}(\mu) = \kappa \sum_{i=1}^{2} \sum_{a=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} \times \left\{ [X_{i}^{U_{R}^{\dagger}}]_{2a} [X_{i}^{U_{R}}]_{a3} h_{5}^{(0)}(y_{ai}) + \frac{m_{\chi_{i}^{\pm}}}{m_{b}} [X_{i}^{U_{R}^{\dagger}}]_{2a} [X_{i}^{U_{L}}]_{a3} h_{6}^{(0)}(y_{ai}) \right\},$$

$$(233)$$

where $X_i^{U_{L,R}}$ are defined in Eq. (88), the h_i functions are given in section C.5, and

$$\kappa = \frac{1}{g_2^2 V_{tb} V_{ts}^*} , \qquad \qquad y_{ai} = \frac{m_{\tilde{u}_a}^2}{m_{\chi_i^\pm}^2} . \tag{235}$$

C.4.2 Prime Wilson coefficients $C'_{9,10}$

 $C^\prime_{9,10}$ do not receive relevant SM contributions. The charged Higgs contributions are:

$$\delta C_9^{\prime H} = -\frac{1}{s_W^2} \mathcal{C}^{\prime H} , \qquad (236)$$

$$\delta C_{10}^{\prime H} = \frac{1 - s_W^2}{s_W^2} \mathcal{C}^{\prime H} - \mathcal{D}^{\prime H} , \qquad (237)$$

where

$$\mathcal{C}'^{H} = \frac{m_s m_b \tan^2 \beta}{8M_W^2} \left(1 + \frac{m_\ell^2 \tan^2 \beta}{2M_{H^{\pm}}^2} \right) f_2^{(0)}(x_{tH^{\pm}}) , \qquad (239)$$

$$\mathcal{D}^{\prime H} = \frac{1}{18} \tan^2 \beta \frac{m_s m_b \tan^2 \beta}{\overline{m}_t^2(\mu_W)} x_{tH^{\pm}}$$
(240)

$$\times \left\{ \frac{-3x_{tH^{\pm}}^3 + 6x_{tH^{\pm}} - 4}{(x_{tH^{\pm}} - 1)^4} \ln x_{tH^{\pm}} + \frac{47x_{tH^{\pm}}^2 - 79x_{tH^{\pm}} + 38}{6(x_{tH^{\pm}} - 1)^3} \right\} ,$$

with

$$x_{tH^{\pm}} = \frac{\overline{m}_t^2(\mu_W)}{M_{H^{\pm}}^2} .$$
 (241)

The supersymmetric contributions are:

$$\delta C_9^{\prime\chi(0)} = \frac{1 - 4s_W^2}{s_W^2} \,\mathcal{C}^{\chi(0)} - \frac{1}{s_W^2} \,\mathcal{B}_9^{\chi(0,1)} - \mathcal{D}^{\chi(0)} \,, \tag{242}$$

$$\delta C_{10}^{\prime\chi(0)} = \frac{1}{s_W^2} \left[\mathcal{B}_{10}^{\chi(0)} - \mathcal{C}^{\chi(0)} \right].$$
(243)

The contributing chargino-up squark loop Green functions are:

$$\mathcal{B}_{9,10}^{\prime\chi(0)} = \mp \kappa \frac{M_W^2}{2g_2^2} \sum_{i,j=1}^2 \sum_{a=1}^6 \sum_{b=1}^3 \frac{[X_j^{U_R}^{\dagger}]_{2a}[X_i^{U_R}]_{a3}}{m_{\chi_i^{\pm}}^2} \times \left\{ \frac{1}{2} [X_i^{N_R}^{\dagger}]_{lb} [X_j^{N_R}]_{bl} f_5^{(0)}(x_{ji}, y_{ai}, v_{bi}) \mp [X_i^{N_L}^{\dagger}]_{lb} [X_j^{N_L}]_{bl} \sqrt{x_{ji}} f_6^{(0)}(x_{ji}, y_{ai}, v_{bi}) \right\},$$
(244)

$$\mathcal{C}^{\prime\chi(0)} = -\frac{\kappa}{8} \sum_{i,j=1}^{2} \sum_{a,b=1}^{6} [X_{j}^{U_{R}^{\dagger}}]_{2b} [X_{i}^{U_{R}}]_{a3}$$

$$\times \left\{ 2\sqrt{x_{ji}} f_{3}^{(0)}(x_{ji}, y_{ai}) U_{j1} U_{i1}^{*} \delta_{ab} - f_{4}^{(0)}(x_{ji}, y_{ai}) V_{j1}^{*} V_{i1} \delta_{ab} + f_{4}^{(0)}(y_{ai}, y_{bi}) (\Gamma^{U_{R}} \Gamma^{U_{R}^{\dagger}})_{ba} \delta_{ij} \right\},$$

$$(245)$$

$$\mathcal{D}^{\prime\chi(0)} = \kappa \sum_{i=1}^{2} \sum_{a=1}^{6} \frac{M_{W}^{2}}{m_{\chi_{i}^{\pm}}^{2}} [X_{i}^{U_{R}^{\dagger}}]_{2a} [X_{i}^{U_{R}}]_{a3} h_{3}^{(0)}(y_{ai}) , \qquad (246)$$

where $X_i^{U_{L,R}}$ are defined in Eq. (88), the h_i functions are given in section C.5, and κ and y_{ai} in Eq. (235).

C.4.3 Prime Wilson coefficients C'_{Q_1,Q_2}

The Wilson coefficients $C^{\prime}_{Q_{1,2}}$ do not receive relevant SM contributions. They can be written as:

$$C'_{Q_1} = \frac{1}{(1+\epsilon_0 \tan\beta)(1+\epsilon_b \tan\beta)} \sum_{J=H,\tilde{\chi}} \left[\mathcal{N}^J_{Q_1'} + \mathcal{B}^J_{Q_1'} \right],$$
(247)

$$C'_{Q_2} = \frac{1}{(1+\epsilon_0 \tan\beta)(1+\epsilon_b \tan\beta)} \sum_{J=H,\tilde{\chi}} \left[\mathcal{N}^J_{Q_2'} + \mathcal{B}^J_{Q_2'} \right].$$
(248)

The charged Higgs contributions are:

$$\mathcal{B}_{Q_1',Q_2'}^H = \frac{m_l m_s \tan^2 \beta}{4M_W^2 s_W^2} f_7^{(0)}(x,z) , \qquad (249)$$

and

$$\mathcal{N}_{Q_1',Q_2'}^H = -\frac{m_l m_s \tan^2 \beta}{4M_W^2 s_W^2} x f_3^{(0)}(x,z) .$$
(250)
The supersymmetric contributions are:

$$\mathcal{B}_{Q_{1}',Q_{2}'}^{\chi} = \frac{\kappa M_{W}^{2}}{2g_{2}^{2}s_{W}^{2}} \sum_{i,j=1}^{2} \sum_{f=1}^{3} \sum_{a=1}^{6} \frac{[X_{j}^{U_{R}^{\dagger}}]_{2a}[X_{i}^{U_{L}}]_{a3}}{m_{\chi_{i}^{\pm}}^{2}} \times \left[f_{5}^{(0)}(x_{ji},y_{ai},v_{fi})[X_{i}^{N_{L}^{\dagger}}]_{lf}[X_{j}^{N_{R}}]_{fl} \\ \pm \sqrt{x_{ji}} f_{6}^{(0)}(x_{ji},y_{ai},v_{fi})[X_{i}^{N_{L}^{\dagger}}]_{lf}[X_{j}^{N_{R}}]_{lf} \right].$$

$$(251)$$

and

$$\mathcal{N}_{Q_1',Q_2'}^{\chi} = \frac{m_l m_s \tan^2 \beta}{M_W s_W^2 M_{A^0}^2} \sum_{i,j=1}^2 \sum_{a,b=1}^6 \sum_{m,n=1}^3 \Gamma_{imn}^{a\prime} (\Gamma^{U_L})_{bm} U_{j2} a_Y \left[a_{0,Q_1',Q_2'} + a_1' \tan \beta \right], \quad (252)$$

where

$$\Gamma_{imn}^{a\prime} \equiv \frac{1}{2\sqrt{2}} [\sqrt{2}M_W V_{i1} (\Gamma^{U_L \dagger})_{na} a_g - (M_U)_{nn} V_{i2} (\Gamma^{U_R \dagger})_{na} a_Y] \lambda_{mn}^* , \qquad (253)$$

and $a_{0,Q_1',Q_2'} = a_{0,Q_1,Q_2}^{(0)}$ is given in Eq. (201) and $a'_1 = a_1^{(0)}$ is given in Eq. (202). The $X_i^{U_{L,R}}$ are given in Eq. (88), $X_i^{N_{L,R}}$ in Eq. (180), κ , x_{ij} , y_{ai} , v_{fi} in Eqs. (178) and (179), and the f_i functions are given in section C.5.

C.5 Auxiliary functions

The auxiliary functions h_i and q_i are listed below [31]:

$$h_1^{(0)}(x) = \frac{3x^2 - 2x}{3(x-1)^4} \ln x + \frac{-8x^2 - 5x + 7}{18(x-1)^3}, \qquad (254)$$

$$h_2^{(0)}(x) = \frac{-6x^2 + 4x}{3(x-1)^3} \ln x + \frac{7x - 5}{3(x-1)^2}, \qquad (255)$$

$$h_3^{(0)}(x) = \frac{-6x^3 + 9x^2 - 2}{9(x-1)^4} \ln x + \frac{52x^2 - 101x + 43}{54(x-1)^3}, \qquad (256)$$

$$h_4^{(0)}(x) = \frac{-1}{3(x-1)^4} \ln x + \frac{2x^2 - 7x + 11}{18(x-1)^3}, \qquad (257)$$

$$h_5^{(0)}(x) = \frac{-x}{(x-1)^4} \ln x + \frac{-x^2 + 5x + 2}{6(x-1)^3}, \qquad (258)$$

$$h_6^{(0)}(x) = \frac{2x}{(x-1)^3} \ln x + \frac{-x-1}{(x-1)^2}, \qquad (259)$$

$$h_{1}^{(1)}(x,y) = \frac{-48x^{3} - 104x^{2} + 64x}{9(x-1)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$$

$$+ \frac{-378x^{3} - 1566x^{2} + 850x + 86}{81(x-1)^{5}} \ln x + \frac{2060x^{3} + 3798x^{2} - 2664x - 170}{243(x-1)^{4}}$$

$$+ \left[\frac{12x^{3} - 124x^{2} + 64x}{9(x-1)^{5}} \ln x + \frac{-56x^{3} + 258x^{2} + 24x - 82}{27(x-1)^{4}}\right]y,$$
(260)

$$h_{2}^{(1)}(x,y) = \frac{224x^{2} - 96x}{9(x-1)^{3}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$$

$$+ \frac{-24x^{3} + 352x^{2} - 128x - 32}{9(x-1)^{4}} \ln x + \frac{-340x^{2} + 132x + 40}{9(x-1)^{3}} + \left[\frac{-24x^{3} + 176x^{2} - 80x}{9(x-1)^{4}} \ln x + \frac{-28x^{2} - 108x + 64}{9(x-1)^{3}}\right] y,$$

$$(261)$$

$$h_{3}^{(1)}(x,y) = \frac{32x^{3} + 120x^{2} - 384x + 128}{81(x-1)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$$

$$+ \frac{-108x^{4} + 1058x^{3} - 898x^{2} - 1098x + 710}{81(x-1)^{5}} \ln x$$

$$+ \frac{-304x^{3} - 13686x^{2} + 29076x - 12062}{729(x-1)^{4}}$$

$$+ \left[\frac{540x^{3} - 972x^{2} + 232x + 56}{81(x-1)^{5}} \ln x + \frac{-664x^{3} + 54x^{2} + 1944x - 902}{243(x-1)^{4}}\right]y,$$

$$h_{4}^{(1)}(x,y) = \frac{-562x^{3} + 1101x^{2} - 420x + 101}{54(x-1)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right)$$
(262)
$$(262)$$

$$+ \frac{-562x^3 + 1604x^2 - 799x + 429}{54(x-1)^5} \ln x + \frac{17470x^3 - 47217x^2 + 31098x - 13447}{972(x-1)^4} + \left[\frac{89x + 55}{27(x-1)^5} \ln x + \frac{38x^3 - 135x^2 + 54x - 821}{162(x-1)^4}\right] y ,$$

$$(263)$$

$$h_{5}^{(1)}(x,y) = \frac{9x^{3} + 46x^{2} + 49x}{6(x-1)^{4}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right) + \frac{81x^{3} + 594x^{2} + 1270x + 71}{54(x-1)^{5}} \ln x \quad (264)$$
$$+ \frac{-923x^{3} - 3042x^{2} - 6921x - 1210}{324(x-1)^{4}}$$
$$+ \left[\frac{10x^{2} + 38x}{3(x-1)^{5}} \ln x + \frac{-7x^{3} + 30x^{2} - 141x - 26}{9(x-1)^{4}}\right]y,$$

$$h_{6}^{(1)}(x,y) = \frac{-32x^{2} - 24x}{3(x-1)^{3}} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right) + \frac{-52x^{2} - 109x - 7}{3(x-1)^{4}} \ln x \qquad (265)$$
$$+ \frac{95x^{2} + 180x + 61}{6(x-1)^{3}} + \left[\frac{-20x^{2} - 52x}{3(x-1)^{4}} \ln x + \frac{-2x^{2} + 60x + 14}{3(x-1)^{3}}\right] y,$$

$$h_7^{(1)}(x,y) = \frac{-20x^3 + 60x^2 - 60x - 20}{27(x-1)^4} \operatorname{Li}_2\left(1 - \frac{1}{x}\right) + \frac{-60x^2 + 240x + 4}{81(x-1)^4} \ln x \quad (266)$$
$$+ \frac{132x^2 - 382x + 186}{81(x-1)^3} + \left[\frac{20}{27(x-1)^4} \ln x + \frac{-20x^2 + 70x - 110}{81(x-1)^3}\right] y ,$$

$$q_{1}^{(1)}(x,y) = \frac{4}{3(x-y)} \left[\frac{x^{2} \ln x}{(x-1)^{4}} - \frac{y^{2} \ln y}{(y-1)^{4}} \right] + \frac{4x^{2}y^{2} + 10xy^{2} - 2y^{2} + 10x^{2}y - 44xy + 10y - 2x^{2} + 10x + 4}{9(x-1)^{3}(y-1)^{3}} ,$$
(267)

$$q_{2}^{(1)}(x,y) = \frac{4}{3(x-y)} \left[\frac{x \ln x}{(x-1)^{4}} - \frac{y \ln y}{(y-1)^{4}} \right]$$

$$+ \frac{-2x^{2}y^{2} + 10xy^{2} + 4y^{2} + 10x^{2}y - 20xy - 14y + 4x^{2} - 14x + 22}{9(x-1)^{3}(y-1)^{3}} ,$$
(268)

$$q_3^{(1)}(x,y) = \frac{8}{3(x-y)} \left[\frac{-x^2 \ln x}{(x-1)^3} + \frac{y^2 \ln y}{(y-1)^3} \right] + \frac{-12xy + 4y + 4x + 4}{3(x-1)^2(y-1)^2} ,$$

$$q_4^{(1)}(x,y) = \frac{8}{3(x-y)} \left[\frac{-x\ln x}{(x-1)^3} + \frac{y\ln y}{(y-1)^3} \right] + \frac{-4xy - 4y - 4x + 12}{3(x-1)^2(y-1)^2} ,$$
(269)

$$q_{5}^{(1)}(x,y) = \frac{4}{27(x-y)} \left[\frac{(6x^{3} - 9x^{2} + 2)\ln x}{(x-1)^{4}} - \frac{(6y^{3} - 9y^{2} + 2)\ln y}{(y-1)^{4}} \right]$$
(270)
+
$$\frac{104x^{2}y^{2} - 202xy^{2} + 86y^{2} - 202x^{2}y + 380xy - 154y + 86x^{2} - 154x + 56}{81(x-1)^{3}(y-1)^{3}} ,$$

$$q_{6}^{(1)}(x,y) = \frac{4}{9(x-y)} \left[\frac{\ln x}{(x-1)^{4}} - \frac{\ln y}{(y-1)^{4}} \right] + \frac{4x^{2}y^{2} - 14xy^{2} + 22y^{2} - 14x^{2}y + 52xy - 62y + 22x^{2} - 62x + 52}{27(x-1)^{3}(y-1)^{3}} .$$

$$(271)$$

The functions f_i read [44]:

$$f_1^{(0)}(x) = -\frac{x(6-x)}{2(x-1)} + \frac{x(2+3x)}{2(x-1)^2} \ln x , \qquad (272)$$

$$f_2^{(0)}(x) = -\frac{x}{x-1} + \frac{x}{(x-1)^2} \ln x , \qquad (273)$$

$$f_3^{(0)}(x,y) = \frac{x \ln x}{(x-1)(x-y)} + \frac{y \ln y}{(y-1)(y-x)}, \qquad (274)$$

$$f_4^{(0)}(x,y) = \frac{x^2 \ln x}{(x-1)(x-y)} + \frac{y^2 \ln y}{(y-1)(y-x)}, \qquad (275)$$

$$f_5^{(0)}(x,y,z) = \frac{x^2 \ln x}{(x-1)(x-y)(x-z)} + (x \leftrightarrow y) + (x \leftrightarrow z) , \qquad (276)$$

$$f_6^{(0)}(x,y,z) = \frac{x \ln x}{(x-1)(x-y)(x-z)} + (x \leftrightarrow y) + (x \leftrightarrow z) , \qquad (277)$$

$$f_7^{(0)}(x,y) = \frac{x \ln x}{(x-1)(x-y)} + \frac{x \ln y}{(y-1)(y-x)}, \qquad (278)$$

$$f_8^{(0)}(x) = \frac{x \ln x}{x - 1} , \qquad (279)$$

$$f_9^{(0)}(w, x, y, z) = \frac{w^2 \ln w}{(w-1)(w-x)(w-y)(w-z)} + (w \leftrightarrow x) + (w \leftrightarrow y) + (w \leftrightarrow z) , \qquad (280)$$

$$f_{10}^{(0)}(w,x,y,z) = \frac{w \ln w}{(w-1)(w-x)(w-y)(w-z)}$$
(281)

$$+(w \leftrightarrow x) + (w \leftrightarrow y) + (w \leftrightarrow z) ,$$

$$f_{11}^{(0)}(x,y) = \frac{x\ln x}{(x-y)} + \frac{x\ln y}{(y-x)}, \qquad (282)$$

$$f_1^{(1)}(x) = \frac{4x(29+7x+4x^2)}{3(x-1)^2} - \frac{4x(23+14x+3x^2)}{3(x-1)^3} \ln x \qquad (283)$$
$$-\frac{4x(4+x^2)}{(x-1)^2} \operatorname{Li}_2\left(1-\frac{1}{x}\right)$$

$$f_2^{(1)}(x) = \frac{32x(3-x)}{3(x-1)^2} - \frac{8x(11-3x)}{3(x-1)^3} \ln x - \frac{8x(2-x)}{(x-1)^2} \operatorname{Li}_2\left(1-\frac{1}{x}\right), \quad (284)$$

$$f_{3}^{(1)}(x,y) = -\frac{28y}{3(x-y)(y-1)} + \frac{2x(11x+3y)}{3(x-1)(x-y)^{2}} \ln x$$

$$+ \frac{2y[x(25-11y)-y(11+3y)]}{3(x-y)^{2}(y-1)^{2}} \ln y + \frac{4(1+y)}{(x-1)(y-1)} \operatorname{Li}_{2}\left(1-\frac{1}{y}\right)$$

$$+ \frac{4(x+y)}{(x-1)(x-y)} \operatorname{Li}_{2}\left(1-\frac{x}{y}\right),$$
(285)

$$f_{4}^{(1)}(x,y) = \frac{59x(1-y) - y(59 - 3y)}{6(y-1)(x-y)} + \frac{4x(7x^2 - 3xy + 3y^2)}{3(x-1)(x-y)^2} \ln x + 2\ln^2 y \quad (286)$$
$$+ \frac{4y^2 \left[x(18 - 11y) - y(11 - 4y)\right]}{3(x-y)^2(y-1)^2} \ln y$$
$$+ \frac{4(1+y^2)}{(x-1)(y-1)} \operatorname{Li}_2\left(1 - \frac{1}{y}\right) + \frac{4(x^2 + y^2)}{(x-1)(x-y)} \operatorname{Li}_2\left(1 - \frac{x}{y}\right),$$

$$f_{5}^{(1)}(x,y) = -\frac{83 + 27x(y-1) - 27y}{6(x-1)(y-1)} - \left\{ \frac{4x[1 + x(12+y) - y - 6x^{2}]}{3(x-1)^{2}(x-y)} \ln x \quad (287) \right. \\ \left. - \frac{2[1 + 6x^{2}(y-1) - 3x^{3}(y-1) + x(3y-4)]}{3(x-1)^{2}(x-y)(y-1)} \ln^{2} x \right. \\ \left. + \frac{4y[3x^{2}(y-1) + xy(3-2y) + y^{2}(y-2)]}{3(x-1)(x-y)^{2}(y-1)} \operatorname{Li}_{2}\left(1 - \frac{x}{y}\right) \right. \\ \left. + \frac{4[1 - 3x - x^{2}(3 - 6y) - x^{3}]}{3(x-1)(x-y)(y-1)} \operatorname{Li}_{2}\left(1 - \frac{1}{x}\right) + (x \leftrightarrow y) \right\} \\ \left. + 4\ln x \left(1 + x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}\right) f_{4}^{(0)}(x,y) ,$$

$$f_6^{(1)}(x) = \frac{2x(29+3x)}{3(x-1)^2} - \frac{2x(25+7x)}{3(x-1)^3} \ln x - \frac{8x}{(x-1)^2} \operatorname{Li}_2\left(1-\frac{1}{x}\right),$$
(288)

$$f_7^{(1)}(x) = \frac{4x \left[27 - 11x + (x-1)^2 \pi^2\right]}{3(x-1)^2} - \frac{4x(37 - 33x + 12x^2)}{3(x-1)^3} \ln x \qquad (289)$$
$$-\frac{8x(2 - 2x + x^2)}{(x-1)^2} \operatorname{Li}_2\left(1 - \frac{1}{x}\right),$$

$$f_8^{(1)}(x,y,z) = -\frac{28y^2}{3(x-y)(y-1)(y-z)} + \left[\frac{4x(7x^2 - 3xy + 3y^2)}{3(x-1)(x-y)^2(x-z)}\ln x + (x\leftrightarrow z)\right] \\ -\frac{4y^2\left\{x\left[4y^2 + 18z - 11y(1+z)\right] + y\left[3y^2 - 11z + 4y(1+z)\right]\right\}}{3(x-y)^2(y-1)^2(y-z)^2}\ln y \\ -\frac{4(1+y^2)}{(x-1)(y-1)(z-1)}\operatorname{Li}_2\left(1 - \frac{1}{y}\right)$$
(290)
$$+ \left[\frac{4(x^2+y^2)}{(x-1)(x-y)(x-z)}\operatorname{Li}_2\left(1 - \frac{x}{y}\right) + (x\leftrightarrow z)\right],$$

$$f_{9}^{(1)}(x,y,z) = -\frac{28y}{3(x-y)(y-1)(y-z)}$$

$$+ \left[\frac{2x(11x+3y)}{3(x-1)(x-y)^{2}(x-z)} \ln x + (x \leftrightarrow z) \right]$$

$$+ \frac{2y \left\{ x [3y^{2} - 25z + 11y(1+x)] + y [11z - 17y^{2} + 3y(1+z)] \right\}}{3(x-y)^{2}(y-1)^{2}(y-z)^{2}} \ln y$$

$$- \frac{4(1+y)}{(x-1)(y-1)(z-1)} \operatorname{Li}_{2} \left(1 - \frac{1}{y} \right)$$

$$+ \left[\frac{4(x+y)}{(x-1)(x-y)(x-z)} \operatorname{Li}_{2} \left(1 - \frac{x}{y} \right) + (x \leftrightarrow z) \right],$$

$$(291)$$

$$f_{10}^{(1)}(x) = \frac{4x(19-3x)}{3(x-1)^2} - \frac{4x(17-x)}{3(x-1)^3} \ln x - \frac{8x}{(x-1)^2} \operatorname{Li}_2\left(1-\frac{1}{x}\right), \quad (292)$$

$$f_{11}^{(1)}(x,y) = \frac{4x \left[8y + (x-1)(x-y)\pi^2\right]}{3y(x-1)(x-y)} - \frac{8x \left[x^2 - 7y + 3x(1+y)\right]}{3(x-y)^2(x-1)^2} \ln x$$
(293)
$$-\frac{8x(3x-7y)}{3(x-y)^2(y-1)} \ln y - \frac{8x}{y-1} \operatorname{Li}_2\left(1 - \frac{1}{x}\right)$$
$$+\frac{8x}{y(y-1)} \operatorname{Li}_2\left(1 - \frac{y}{x}\right),$$

$$f_{12}^{(1)}(x,y,z) = -\frac{28y^2}{3(x-y)(y-1)(y-z)}$$

$$+ \left[\frac{4x^2(6x+y)}{3(x-1)(x-y)^2(x-z)} \ln x + (x \leftrightarrow z) \right]$$

$$- \frac{4y^2 \left\{ x \left[6y^2 + 20z - 13y(1+z) \right] + y \left[y^2 - 13z + 6y(1+z) \right] \right\}}{3(x-y)^2(y-1)^2(y-z)^2} \ln y ,$$
(294)

$$f_{13}^{(1)}(x,y,z) = -\frac{28y}{3(x-y)(y-1)(y-z)}$$

$$+ \left[\frac{4x(6x+y)}{3(x-1)(x-y)^2(x-z)}\ln x + (x\leftrightarrow z)\right]$$

$$+ \frac{4y\left\{x\left[y^2 - 13z + 6y(1+z)\right] + y\left[y - 8y^2 + 6z + yz\right]\right\}}{3(x-y)^2(y-1)^2(y-z)^2}\ln y ,$$
(295)

$$f_{14}^{(1)}(x,y) = \frac{32x^2}{3(x-1)(x-y)} - \frac{8x^2 \left[7x(1+y) - 11y - 3x^2\right]}{3(x-1)^2(x-y)^2} \ln x \qquad (296)$$
$$-\frac{8xy(3x-7y)}{3(x-y)^2(y-1)} \ln y - \frac{8x}{y-1} \operatorname{Li}_2\left(1 - \frac{1}{x}\right) + \frac{8x}{y-1} \operatorname{Li}_2\left(1 - \frac{y}{x}\right),$$

$$f_{15}^{(1)}(x) = \frac{1-3x}{x-1} + \frac{2x}{(x-1)^2} \ln x + \frac{2x}{(x-1)} \operatorname{Li}_2\left(1-\frac{1}{x}\right), \qquad (297)$$

$$f_{16}^{(1)}(x) = \frac{28}{3(x-1)} - \frac{4x(13-6x)}{3(x-1)^2} \ln x , \qquad (298)$$

$$f_{17}^{(1)}(x,y) = -\frac{28}{3(x-1)(y-1)} + \frac{4y(10-3y)}{3(x-y)(y-1)^2} \ln y$$

$$-\frac{4y}{(x-y)(y-1)^2} \ln^2 y$$

$$+ \left[\frac{4(13x-6x^2-3y-7xy+3x^2y)}{3(x-1)^2(x-y)(y-1)} + \frac{4y\ln y}{(x-y)(y-1)^2} \right] \ln x ,$$
(299)

$$f_{18}^{(1)}(x,y) = -\frac{28y}{3(x-y)(y-1)} + \frac{4x(6x+y)}{3(x-1)(x-y)^2} \ln x$$

$$-\frac{4y[y(6+y) - x(13-6y)]}{3(x-y)^2(y-1)^2} \ln y ,$$
(300)

$$f_{19}^{(1)}(x,y) = -\frac{28[x(y-1)+y]}{3(x-y)(y-1)} + \frac{4x^2(6x+y)}{3(x-1)(x-y)^2}\ln x + \frac{4y^2[x(20-13y)-y(13-6y)]}{3(x-y)^2(y-1)^2}\ln y .$$
(301)

Appendix D Renormalization group equations

D.1 RGE for the $C_{1\dots10}$ Wilson coefficients in the standard operator basis

In the standard operator basis given in Eq. (19), the effective Wilson coefficients are defined as [48]:

$$C_{i}^{\text{eff}}(\mu) = \begin{cases} C_{i}(\mu), & \text{for } i = 1, ..., 6 ,\\ C_{7}(\mu) + \sum_{j=1}^{6} y_{j}C_{j}(\mu), & \text{for } i = 7 ,\\ C_{8}(\mu) + \sum_{j=1}^{6} z_{j}C_{j}(\mu), & \text{for } i = 8 ,\\ C_{9}(\mu), & \text{for } i = 9 , \end{cases}$$
(302)

where $\vec{y} = (0, 0, -\frac{1}{3}, -\frac{4}{9}, -\frac{20}{3}, -\frac{80}{9})$ and $\vec{z} = (0, 0, 1, -\frac{1}{6}, 20, -\frac{10}{3}).$

The transformations of the Wilson coefficients from the matching scale μ_W to the scale μ_b in the standard operator basis (Eq. (19)) are given by [49]:

$$\vec{C}^{(0)\text{eff}}(\mu_b) = U^{(0)}\vec{C}^{(0)\text{eff}}(\mu_W) ,$$
(303)

$$\vec{C}^{(1)\text{eff}}(\mu_b) = \eta \left[U^{(0)} \vec{C}^{(1)\text{eff}}(\mu_W) + U^{(1)} \vec{C}^{(0)\text{eff}}(\mu_W) \right] , \qquad (304)$$

$$\vec{C}^{(2)\text{eff}}(\mu_b) = \eta^2 \left[U^{(0)} \vec{C}^{(2)\text{eff}}(\mu_W) + U^{(1)} \vec{C}^{(1)\text{eff}}(\mu_W) + U^{(2)} \vec{C}^{(0)\text{eff}}(\mu_W) \right] , \quad (305)$$

where $\eta = \alpha_s(\mu_W)/\alpha_s(\mu_b)$ and $\vec{C} = \{C_1, \dots, C_9\}$. The $U^{(n)}$ matrix elements read

$$U_{kl}^{(n)} = \sum_{j=0}^{n} \sum_{i=1}^{9} m_{kli}^{(nj)} \eta^{a_i - j} .$$
(306)

The powers a_i are given in Table 3. The $m_{kli}^{(nj)}$ relevant in our calculations for the $U_{kl}^{(n)}$ are given in Tables 4–8.

i	1	2	3	4	5	6	7	8	9
a_i	14/23	16/23	6/23	-12/23	0.4086	-0.4230	-0.8994	0.1456	-1

Table 3: Values of the RGE a_i numbers.

i	1	2	3	4	5	6	7	8
$m_{11i}^{(00)}$	0	0	0.3333	0.6667	0	0	0	0
$m_{12i}^{(00)}$	0	0	1	-1	0	0	0	0
$m_{21i}^{(00)}$	0	0	0.2222	-0.2222	0	0	0	0
$m_{22i}^{(00)}$	0	0	0.6667	0.3333	0	0	0	0
$m_{31i}^{(00)}$	0	0	0.0106	0.0247	-0.0129	-0.0497	0.0092	0.0182
$m_{32i}^{(00)}$	0	0	0.0317	-0.0370	-0.0659	0.0595	-0.0218	0.0335
$m_{34i}^{(00)}$	0	0	0	0	-0.1933	0.1579	0.1428	-0.1074
$m_{41i}^{(00)}$	0	0	0.0159	-0.0741	0.0046	0.0144	0.0562	-0.0171
$m_{42i}^{(00)}$	0	0	0.0476	0.1111	0.0237	-0.0173	-0.1336	-0.0316
$m_{44i}^{(00)}$	0	0	0	0	0.0695	-0.0459	0.8752	0.1012
$m_{51i}^{(00)}$	0	0	-0.0026	-0.0062	0.0018	0.0083	-0.0004	-0.0009
$m_{52i}^{(00)}$	0	0	-0.0079	0.0093	0.0094	-0.0100	0.0010	-0.0017
$m_{54i}^{(00)}$	0	0	0	0	0.0274	-0.0264	-0.0064	0.0055
$m_{61i}^{(00)}$	0	0	-0.0040	0.0185	0.0021	-0.0136	-0.0043	0.0012
$m_{62i}^{(00)}$	0	0	-0.0119	-0.0278	0.0108	0.0163	0.0103	0.0023
$m_{64i}^{(00)}$	0	0	0	0	0.0317	0.0432	-0.0675	-0.0074
$m_{71i}^{(00)}$	0.5784	-0.3921	-0.1429	0.0476	-0.1275	0.0317	0.0078	-0.0031
$m_{72i}^{(00)}$	2.2996	-1.0880	-0.4286	-0.0714	-0.6494	-0.0380	-0.0185	-0.0057
$m_{73i}^{(00)}$	8.0780	-5.2777	0	0	-2.8536	0.1281	0.1495	-0.2244
$m_{74i}^{(00)}$	5.7064	-3.8412	0	0	-1.9043	-0.1008	0.1216	0.0183
$m_{75i}^{(00)}$	202.9010	-149.4668	0	0	-55.2813	2.6494	0.7191	-1.5213
$m_{76i}^{(00)}$	86.4618	-59.6604	0	0	-25.4430	-1.2894	0.0228	-0.0917
$m_{77i}^{(00)}$	0	1	0	0	0	0	0	0
$m_{78i}^{(00)}$	2.6667	-2.6667	0	0	0	0	0	0
$m_{81i}^{(00)}$	0.2169	0	0	0	-0.1793	-0.0730	0.0240	0.0113
$m_{82i}^{(00)}$	0.8623	0	0	0	-0.9135	0.0873	-0.0571	0.0209
$m_{84i}^{(00)}$	2.1399	0	0	0	-2.6788	0.2318	0.3741	-0.0670
$m_{88i}^{(00)}$	1	0	0	0	0	0	0	0

Table 4: Values of the $m_{kli}^{(00)}$ relevant for $U_{kl}^{(0)}$ [49].

i	1	2	3	4	5	6	7	8
$m_{12i}^{(10)}$	0	0	-2.9606	-4.0951	0	0	0	0
$m_{12i}^{(11)}$	0	0	5.9606	1.0951	0	0	0	0
$m_{22i}^{(10)}$	0	0	-1.9737	1.3650	0	0	0	0
$m_{22i}^{(11)}$	0	0	1.9737	-1.3650	0	0	0	0
$m_{32i}^{(10)}$	0	0	-0.0940	-0.1517	-0.2327	0.2288	0.1455	-0.4760
$m_{32i}^{(11)}$	0	0	-0.5409	1.6332	1.6406	-1.6702	-0.2576	-0.2250
$m_{42i}^{(10)}$	0	0	-0.1410	0.4550	0.0836	-0.0664	0.8919	0.4485
$m_{42i}^{(11)}$	0	0	2.2203	2.0265	-4.1830	-0.7135	-1.8215	0.7996
$m_{52i}^{(10)}$	0	0	0.0235	0.0379	0.0330	-0.0383	-0.0066	0.0242
$m_{52i}^{(11)}$	0	0	0.0400	-0.1861	-0.1669	0.1887	0.0201	0.0304
$m_{62i}^{(10)}$	0	0	0.0352	-0.1138	0.0382	0.0625	-0.0688	-0.0327
$m_{62i}^{(11)}$	0	0	-0.2614	-0.1918	0.4197	0.0295	0.1474	-0.0640
$m_{71i}^{(10)}$	0.0021	-1.4498	0.8515	0.0521	0.6707	0.1220	-0.0578	0.0355
$m_{71i}^{(11)}$	-4.3519	3.0646	1.5169	-0.5013	0.3934	-0.6245	0.2268	0.0496
$m_{72i}^{(10)}$	9.9372	-7.4878	1.2688	-0.2925	-2.2923	-0.1461	0.1239	0.0812
$m_{72i}^{(11)}$	-17.3023	8.5027	4.5508	0.7519	2.0040	0.7476	-0.5385	0.0914
$m_{74i}^{(10)}$	-8.6840	8.5586	0	0	0.7579	0.4446	0.3093	0.4318
$m_{74i}^{(11)}$	-42.9356	30.0198	0	0	5.8768	1.9845	3.5291	-0.2929
$m_{77i}^{(10)}$	0	7.8152	0	0	0	0	0	0
$m_{77i}^{(11)}$	0	-7.8152	0	0	0	0	0	0
$m_{78i}^{(10)}$	17.9842	-18.7604	0	0	0	0	0	0
$m_{78i}^{(11)}$	-20.0642	20.8404	0	0	0	0	0	0
$m_{82i}^{(10)}$	3.7264	0	0	0	-3.2247	0.3359	0.3812	-0.2968
$m_{82i}^{(11)}$	-5.8157	0	1.4062	-3.9895	3.2850	3.6851	-0.1424	0.6492
$m_{88i}^{(10)}$	6.7441	0	0	0	0	0	0	0
$m_{88i}^{(11)}$	-6.7441	0	0	0	0	0	0	0

Table 5: Values of the $m_{kli}^{(1j)}$ relevant for $U_{kl}^{(1)}$ [49].

i	1	2	3	4	5	6	7	8
$m_{72i}^{(20)}$	-212.4136	167.6577	5.7465	-3.7262	28.8574	-2.1262	2.2903	0.1462
$m_{72i}^{(21)}$	-74.7681	58.5182	-13.4731	3.0791	7.0744	2.8757	3.5962	-1.2982
$m_{72i}^{(22)}$	31.4443	-18.1165	23.2117	13.2771	-19.8699	4.0279	-8.6259	2.6149
$m_{77i}^{(20)}$	0	44.4252	0	0	0	0	0	0
$m_{77i}^{(21)}$	0	-61.0768	0	0	0	0	0	0
$m_{77i}^{(22)}$	0	16.6516	0	0	0	0	0	0
$m_{78i}^{(20)}$	15.4051	-18.7662	0	0	0	0	0	0
$m_{78i}^{(21)}$	-135.3141	146.6159	0	0	0	0	0	0
$m_{78i}^{(22)}$	36.4636	-44.4043	0	0	0	0	0	0

Table 6: Values of the $m_{kli}^{(2j)}$ relevant for $U_{kl}^{(2)}$ [49].

i	1	2	3	4	5	6	7	8	9
$m_{91i}^{(00)}$	0	0	-0.0328	-0.0404	0.0021	-0.0289	-0.0174	-0.0010	0.1183
$m_{92i}^{(00)}$	0	0	-0.0985	0.0606	0.0108	0.0346	0.0412	-0.0018	-0.0469
$m_{93i}^{(00)}$	0	0	0	0	0.0476	-0.1167	-0.3320	-0.0718	0.4729
$m_{94i}^{(00)}$	0	0	0	0	0.0318	0.0918	-0.2700	0.0059	0.1405
$m_{95i}^{(00)}$	0	0	0	0	0.9223	-2.4126	-1.5972	-0.4870	3.57455
$m_{96i}^{(00)}$	0	0	0	0	0.4245	1.1742	-0.0507	-0.0293	-1.5186
$m_{99i}^{(00)}$	0	0	0	0	0	0	0	0	1
$m_{91i}^{(10)}$	0	0	0.1958	-0.0442	-0.0112	-0.1111	0.1283	0.0114	-0.3596
$m_{92i}^{(10)}$	0	0	0.2917	0.2482	0.0382	0.1331	-0.2751	0.0260	-0.8794
$m_{93i}^{(10)}$	0	0	0	0	-0.1041	-0.5696	9.5004	0.0396	-0.4856
$m_{94i}^{(10)}$	0	0	0	0	-0.0126	-0.4049	-0.6870	0.1382	0.4172
$m_{95i}^{(10)}$	0	0	0	0	4.7639	-35.0057	30.7862	5.5105	62.3651
$m_{96i}^{(10)}$	0	0	0	0	-1.9027	-1.8789	-43.9516	1.9612	54.4557
$m_{91i}^{(11)}$	0	0	0.2918	0.0484	-0.0331	-0.0269	0.0200	-0.1094	0
$m_{92i}^{(11)}$	0	0	0.8754	-0.0725	-0.1685	0.0323	-0.0475	-0.2018	0
$m_{93i}^{(11)}$	0	0	0	0	-0.7405	-0.1088	0.3825	-7.9139	0
$m_{94i}^{(11)}$	0	0	0	0	-0.4942	0.0856	0.3111	0.6465	0
$m_{95i}^{(11)}$	0	0	0	0	-14.3464	-2.2495	1.8402	-53.6643	0
$m_{96i}^{(11)}$	0	0	0	0	-6.6029	1.0948	0.0584	-3.2339	0

Table 7: Values of the $m_{9li}^{(00)}$ and $m_{9li}^{(1j)}$ relevant for $U_{9l}^{(0)}$ and $U_{9l}^{(1)}$ [50].

•	-	0	0	4	~	0	-	0	0
ı	1	2	3	4	5	6	7	8	9
$m_{91i}^{(20)}$	0	0	0.6878	-0.9481	-0.1928	-0.8077	-0.2554	0.0562	-0.6436
$m_{92i}^{(20)}$	0	0	1.3210	3.1616	-0.4814	1.9362	-5.0873	0.0468	-13.5825
$m_{93i}^{(20)}$	0	0	0	0	-2.5758	-5.8751	0.0922	0.6433	7.7756
$m_{94i}^{(20)}$	0	0	0	0	-2.6194	1.1302	-27.7073	-0.8550	16.0333
$m_{95i}^{(20)}$	0	0	0	0	-6.4519	-555.931	35.1531	80.2925	102.043
$m_{96i}^{(20)}$	0	0	0	0	-53.3822	34.3969	-124.609	-32.7515	-98.8845
$m_{91i}^{(21)}$	0	0	-1.7394	0.0530	0.1741	-0.1036	-0.1478	1.2522	0
$m_{92i}^{(21)}$	0	0	-2.5918	-0.2971	-0.5949	0.1241	0.3170	2.8655	0
$m_{93i}^{(21)}$	0	0	0	0	1.6188	-0.5311	-10.9454	4.36311	0
$m_{94i}^{(21)}$	0	0	0	0	0.1967	-0.3775	0.7915	15.2328	0
$m_{95i}^{(21)}$	0	0	0	0	-74.1049	-32.6399	-35.4688	607.188	0
$m_{96i}^{(21)}$	0	0	0	0	29.5971	-1.7519	50.6366	216.094	0
$m_{91i}^{(22)}$	0	0	4.1531	-0.4627	-0.3404	-1.0326	0.0809	0.2167	0
$m_{92i}^{(22)}$	0	0	12.4592	0.6940	-1.7340	1.2360	-0.1921	0.3998	0
$m_{93i}^{(22)}$	0	0	0	0	-7.6198	-4.1683	1.5484	15.674	0
$m_{94i}^{(22)}$	0	0	0	0	-5.0848	3.2810	1.2592	-1.2804	0
$m_{95i}^{(22)}$	0	0	0	0	-147.615	-86.199	7.4486	106.285	0
$m_{96i}^{(22)}$	0	0	0	0	-67.9394	41.9523	0.2364	6.405	0

Table 8: Values of the $m_{9li}^{(2j)}$ relevant for $U_{9l}^{(2)}$ [50].

The NLO electroweak matching corrections to C_{10} in the SM are given as [41]

$$\delta C_{10}^{\text{ew}}(\mu_b) = \frac{\alpha_e}{\alpha_s} \left(\frac{4\pi}{\alpha_s} C_{10}^{(01)}(\mu_b) + C_{10}^{(11)}(\mu_b) \right) + \frac{\alpha_e}{4\pi} C_{10}^{(12)}(\mu_b) , \qquad (307)$$

where

$$C_{10}^{(01)}(\mu_b) = \sum_{i=1}^8 b_i \eta^{a_i} C_2^{(0)} , \qquad (308)$$

$$C_{10}^{(11)}(\mu_b) = \sum_{i=1}^{8} \eta^{a_i+1} \left[\left(d_i^{(2a)} \eta^{-1} + d_i^{(2b)} \right) C_2^{(0)} + d_i^{(1)} C_1^{(0)} + d_i^{(4)} C_4^{(0)} \right] -0.11060 \frac{\ln \eta}{\eta} C_2^{(0)} + \left(\eta^{-1} - 1 \right) \left(0.26087 C_9^{(0)} + 1.15942 C_{10}^{(0)} \right) ,$$
(309)

$$C_{10}^{(12)}(\mu_b) = \sum_{i=1}^{8} \eta^{a_i+2} \left[\left(e_i^{(1a)} \eta^{-1} + e_i^{(1b)} \right) C_1^{(1)} + \left(e_i^{(4a)} \eta^{-1} + e_i^{(4b)} \right) C_4^{(1)} + \sum_{j=1}^{6} e_i^{(j)} C_j^{(2)} \right] (310)$$

+ $\left(0.27924 C_1^{(1)} + 0.33157 C_4^{(1)} + 2.35917 C_9^{(0)} + 3.29679 C_{10}^{(0)} \right) \ln \eta$
+ $\left(1 - \eta \right) \left(0.26087 C_9^{(1)} + 1.15942 C_{10}^{(1)} \right) + C_{10}^{(12)}(\mu_W) ,$

with $C_{10}^{(12)}(\mu_W)$ given by the following interpolation:

$$C_{10}^{(12)}(\mu_W) = \frac{1}{s_W^{2OS}} \Big[46.9288 - 3.1023 \log(\mu_W^2) + 0.099297 \log^2(\mu_W^2)$$
(311)
+0.175877 (m_t - 163.5) + 0.0173725 (M_h - 125.9) \Big] - \frac{G_{\mu}^{(1)}}{G_{\mu}^{(0)}} C_{10}^{(0)}(\mu_W) ,

where [42, 43]

$$\frac{G_{\mu}^{(1)}}{G_{\mu}^{(0)}} = \frac{4\pi}{\alpha_e} \Delta r = \frac{4\pi}{\alpha_e} \left[\Delta \alpha + \Delta r^{\delta \rho} + \Delta r_{\rm rem} \right] \approx \frac{4\pi}{\alpha_e} \left[0.06 - 0.03 + 0.01 \right].$$
(312)

In the above equations, M_h is the Higgs mass and the powers a'_i and magic numbers b_i , $d_i^{(j)}$ and $e_i^{(j)}$ are given in Table 9.

i	1	2	3	4	5	6	7	8
a'_i	-2	-1	-0.899395	-0.521739	-0.422989	0.145649	0.260870	0.408619
b_i	0.00354	0.01223	-0.00977	-0.01070	-0.00572	0.00022	0.01137	-0.00117
$d_i^{(2a)}$	0	0	0.61602	0.44627	0.57472	0.08573	-0.48807	-0.24089
$d_i^{(2b)}$	-1.18162	0.22940	0.06522	-0.04380	-0.02201	-0.00316	-0.03366	-0.00414
$d_i^{(1)}$	0.01117	-0.03088	0.00411	0.00713	0.00478	0.00012	0.00379	-0.00023
$d_i^{(4)}$	-0.00799	-0.03666	0.06300	0	-0.01519	-0.00071	0	-0.00344
$e_i^{(1a)}$	0	0	-0.25941	-0.29751	-0.48014	0.04647	-0.16269	-0.04728
$e_i^{(1b)}$	1.13374	0.09381	-0.03041	0.00781	0.01838	-0.00138	-0.02259	0.00121
$e_i^{(4a)}$	0	0	-4.03683	0	1.52565	-0.27461	0	-0.70642
$e_i^{(4b)}$	3.38669	-0.10885	0.16283	0	0.06697	-0.01681	0	0.00137
$e_i^{(1)}$	0.01117	-0.03088	0.00411	0.00713	0.00478	0.00012	0.00379	-0.00023
$e_i^{(2)}$	0.00354	0.01223	-0.00977	-0.01070	-0.00572	0.00022	0.01137	-0.00117
$e_i^{(3)}$	0.02179	-0.12336	0.07870	0	0.01930	0.00873	0	-0.00516
$e_i^{(4)}$	-0.00799	-0.03666	0.06400	0	-0.01519	-0.00071	0	-0.00344
$e_i^{(5)}$	0.19550	-0.93249	0.37858	0	0.39909	0.05921	0	-0.09989
$e_i^{(6)}$	-0.17154	0.39616	0.01201	0	-0.19423	0.00357	0	-0.04597

Table 9: Numerical values of a'_i , b_i , $d^{(j)}_i$ and $e^{(j)}_i$ relevant for C_{10} electroweak corrections [41].

D.2 RGE the $C_{1\dots 8}$ Wilson coefficients in the traditional operator basis

The operators in the traditional basis can be expressed as [48]

$$P_{1} = (\bar{s}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\beta}) (\bar{c}_{L}^{\beta} \gamma^{\mu} b_{L}^{\alpha}) ,$$

$$P_{2} = (\bar{s}_{L}^{\alpha} \gamma_{\mu} c_{L}^{\alpha}) (\bar{c}_{L}^{\beta} \gamma^{\mu} b_{L}^{\beta}) ,$$

$$P_{3} = (\bar{s}_{L}^{\alpha} \gamma_{\mu} b_{L}^{\alpha}) \sum_{q} (\bar{q}_{L}^{\beta} \gamma^{\mu} q_{L}^{\beta}) ,$$

$$P_{4} = (\bar{s}_{L}^{\alpha} \gamma_{\mu} b_{L}^{\beta}) \sum_{q} (\bar{q}_{L}^{\beta} \gamma^{\mu} q_{L}^{\alpha}) ,$$

$$P_{5} = (\bar{s}_{L}^{\alpha} \gamma_{\mu} b_{L}^{\alpha}) \sum_{q} (\bar{q}_{R}^{\beta} \gamma^{\mu} q_{R}^{\beta}) ,$$

$$P_{6} = (\bar{s}_{L}^{\alpha} \gamma_{\mu} b_{L}^{\beta}) \sum_{q} (\bar{q}_{R}^{\beta} \gamma^{\mu} q_{R}^{\alpha}) .$$
(313)

The operators P_7 and P_8 are identical to O_7 and O_8 , and the C_7 and C_8 coefficients are therefore indistinguishable in both bases.

We derive the transition formulas from the standard basis to the traditional basis at the matching scale. At LO, they are as follows:

$$C_1^{(0)\text{trad}}(\mu_W) = \frac{1}{2} C_1^{(0)}(\mu_W) , \qquad (314)$$

$$C_2^{(0)\text{trad}}(\mu_W) = -\frac{1}{6}C_1^{(0)}(\mu_W) + C_2^{(0)}(\mu_W) , \qquad (315)$$

$$C_3^{(0)\text{trad}}(\mu_W) = C_3^{(0)}(\mu_W) - \frac{1}{6}C_4^{(0)}(\mu_W) + 16C_5^{(0)}(\mu_W) - \frac{8}{3}C_6^{(0)}(\mu_W) , \quad (316)$$

$$C_4^{(0)\text{trad}}(\mu_W) = \frac{1}{2} C_4^{(0)}(\mu_W) + 8 C_6^{(0)}(\mu_W) , \qquad (317)$$

$$C_5^{(0)\text{trad}}(\mu_W) = C_3^{(0)}(\mu_W) - \frac{1}{6}C_4^{(0)}(\mu_W) + 4C_5^{(0)}(\mu_W) - \frac{2}{3}C_6^{(0)}(\mu_W) , \qquad (318)$$

$$C_6^{(0)\text{trad}}(\mu_W) = \frac{1}{2} C_4^{(0)}(\mu_W) + 2 C_6^{(0)}(\mu_W) .$$
(319)

At NLO they read:

$$C_1^{(1)\text{trad}}(\mu_W) = -\frac{5}{6} C_1^{(0)}(\mu_W) - 2 C_2^{(0)}(\mu_W) + \frac{1}{2} C_1^{(1)}(\mu_W) , \qquad (320)$$

$$C_2^{(1)\text{trad}}(\mu_W) = -\frac{11}{18} C_1^{(0)}(\mu_W) + \frac{2}{3} C_2^{(0)}(\mu_W) - \frac{1}{6} C_1^{(1)}(\mu_W) + C_2^{(1)}(\mu_W) , \qquad (321)$$

$$C_{3}^{(1)\text{trad}}(\mu_{W}) = \frac{2}{3} C_{3}^{(0)}(\mu_{W}) - \frac{11}{18} C_{4}^{(0)}(\mu_{W}) + \frac{736}{9} C_{5}^{(0)}(\mu_{W}) - \frac{350}{27} C_{6}^{(0)}(\mu_{W}) \quad (322)$$
$$+ C_{3}^{(1)}(\mu_{W}) - \frac{1}{6} C_{4}^{(1)}(\mu_{W}) + 16 C_{5}^{(1)}(\mu_{W}) - \frac{8}{3} C_{6}^{(1)}(\mu_{W}) ,$$

$$C_4^{(1)\text{trad}}(\mu_W) = -2 C_3^{(0)}(\mu_W) - \frac{5}{6} C_4^{(0)}(\mu_W) - \frac{160}{3} C_5^{(0)}(\mu_W) - \frac{322}{9} C_6^{(0)}(\mu_W)$$
(323)
+ $\frac{1}{2} C_4^{(1)}(\mu_W) + 8 C_6^{(1)}(\mu_W) ,$

$$C_{5}^{(1)\text{trad}}(\mu_{W}) = -\frac{2}{3} C_{3}^{(0)}(\mu_{W}) + \frac{11}{18} C_{4}^{(0)}(\mu_{W}) - \frac{680}{9} C_{5}^{(0)}(\mu_{W}) - \frac{20}{27} C_{6}^{(0)}(\mu_{W}) (324) + C_{3}^{(1)}(\mu_{W}) - \frac{1}{6} C_{4}^{(1)}(\mu_{W}) + 4 C_{5}^{(1)}(\mu_{W}) - \frac{2}{3} C_{6}^{(1)}(\mu_{W}) , C_{6}^{(1)\text{trad}}(\mu_{W}) = 2 C_{3}^{(0)}(\mu_{W}) + \frac{5}{6} C_{4}^{(0)}(\mu_{W}) + \frac{104}{3} C_{5}^{(0)}(\mu_{W}) + \frac{404}{9} C_{6}^{(0)}(\mu_{W})$$
(325)
$$+ \frac{1}{2} C_{4}^{(1)}(\mu_{W}) + 2 C_{6}^{(1)}(\mu_{W}) .$$

In the following we omit the superscript "trad".

The effective coefficients in this basis are different and given below [48, 51]:

$$C_{i}^{\text{eff}}(\mu) = \begin{cases} C_{i}(\mu), & \text{for } i = 1, ..., 6 ,\\ C_{7}(\mu) + \sum_{j=1}^{6} y_{j}C_{j}(\mu), & \text{for } i = 7 ,\\ C_{8}(\mu) + \sum_{j=1}^{6} z_{j}C_{j}(\mu), & \text{for } i = 8 , \end{cases}$$
(326)

where $\vec{y} = (0, 0, 0, 0, -\frac{1}{3}, -1)$ and $\vec{z} = (0, 0, 0, 0, 1, 0)$.

The RGE formulas for the Wilson coefficients to the scale μ_b are:

$$\vec{C}^{(0)\text{eff}}(\mu_b) = V^{(0)}\vec{C}^{(0)\text{eff}}(\mu_W) ,$$
 (327)

$$\vec{C}^{(1)\text{eff}}(\mu_b) = \eta \left[V^{(0)} \vec{C}^{(1)\text{eff}}(\mu_W) + V^{(1)} \vec{C}^{(0)\text{eff}}(\mu_W) \right] , \qquad (328)$$

where $\eta = \alpha_s(\mu_W)/\alpha_s(\mu_b)$ and $\vec{C} = \{C_1, \dots, C_8\}$. The $V^{(n)}$ matrix elements read

$$V_{kl}^{(n)} = \sum_{j=0}^{n} \sum_{i=1}^{8} l_{kli}^{(nj)} \eta^{a_i - j} .$$
(329)

The powers a_i are given in Table 3. The $l_{kli}^{(nj)}$ relevant in our calculations for the $V_{kl}^{(n)}$ are given in Tables 10–12.

D.3 Running group equations for C_{Q_1,Q_2}

The RGE for C_{Q_1,Q_2} are:

$$C_{Q_1,Q_2}(\mu_b) = \eta^{-12/23} C_{Q_1,Q_2}(\mu_W) , \qquad (330)$$

where $\eta = \alpha_s(\mu_W)/\alpha_s(\mu_b)$.

D.4 Running group equations for the prime Wilson coefficients

The RGE for $C'_{7,8}$ are:

$$C_7'(\mu_b) = \eta^{16/23} C_7'(\mu_W) , \qquad (331)$$

$$C_8'(\mu_b) = \eta^{14/23} C_8'(\mu_W) , \qquad (332)$$

(333)

where $\eta = \alpha_s(\mu_W)/\alpha_s(\mu_b)$. $C'_{9,10}$ do not run, so that:

$$C'_{9,10}(\mu_b) = C'_{9,10}(\mu_W) . ag{334}$$

Finally, the RGE for C_{Q_1,Q_2} are:

$$C'_{Q_1,Q_2}(\mu_b) = \eta^{-12/23} C_{Q_1,Q_2}(\mu_W) .$$
(335)

i	1	2	3	4	5	6	7	8
$l_{11i}^{(00)}$	0	0	0.5	0.5	0	0	0	0
$l_{12i}^{(00)}$	0	0	0.5	-0.5	0	0	0	0
$l_{21i}^{(00)}$	0	0	0.5	-0.5	0	0	0	0
$l_{22i}^{(00)}$	0	0	0.5	0.5	0	0	0	0
$l_{31i}^{(00)}$	0	0	-0.0714286	-0.166667	0.0369877	0.187713	0.00572944	0.00766546
$l_{32i}^{(00)}$	0	0	-0.0714286	0.166667	0.0509536	-0.140341	-0.011259	0.00540834
$l_{33i}^{(00)}$	0	0	0	0	0.286846	0.657881	0.00612913	0.049144
$l_{34i}^{(00)}$	0	0	0	0	0.328744	-0.32628	-0.0448363	0.0423726
$l_{35i}^{(00)}$	0	0	0	0	-0.0629326	-0.184577	0.0845972	0.162912
$l_{36i}^{(00)}$	0	0	0	0	0.0447397	-0.261048	0.222642	-0.00633396
$l_{41i}^{(00)}$	0	0	-0.0714286	0.166667	0.07142	-0.162432	-0.00795682	0.00373054
$l_{42i}^{(00)}$	0	0	-0.0714286	-0.166667	0.0983869	0.12144	0.0156361	0.00263207
$l_{43i}^{(00)}$	0	0	0	0	0.553874	-0.569279	-0.00851189	0.0239168
$l_{44i}^{(00)}$	0	0	0	0	0.634775	0.282337	0.0622669	0.0206214
$l_{45i}^{(00)}$	0	0	0	0	-0.121517	0.159718	-0.117485	0.0792842
$l_{46i}^{(00)}$	0	0	0	0	0.0863884	0.22589	-0.309196	-0.00308254
$l_{51i}^{(00)}$	0	0	0	0	-0.0287888	-0.0156196	0.00125475	0.0431536
$l_{52i}^{(00)}$	0	0	0	0	-0.0396589	0.0116778	-0.00246572	0.0304469
$l_{53i}^{(00)}$	0	0	0	0	-0.223262	-0.0547423	0.00134228	0.276662
$l_{54i}^{(00)}$	0	0	0	0	-0.255872	0.0271497	-0.00981913	0.238542
$l_{55i}^{(00)}$	0	0	0	0	0.0489825	0.0153586	0.0185267	0.917132
$l_{56i}^{(00)}$	0	0	0	0	-0.0348224	0.0217218	0.0487584	-0.0356578
$l_{61i}^{(00)}$	0	0	0	0	0.0243034	-0.0319436	0.023497	-0.0158568
$l_{62i}^{(00)}$	0	0	0	0	0.03348	0.0238823	-0.0461745	-0.0111877
$l_{63i}^{(00)}$	0	0	0	0	0.188477	-0.111954	0.0251362	-0.10166
$l_{64i}^{(00)}$	0	0	0	0	0.216007	0.0555241	-0.183878	-0.0876523
$l_{65i}^{(00)}$	0	0	0	0	-0.0413509	0.03141	0.346942	-0.337001
$l_{66i}^{(00)}$	0	0	0	0	0.029397	0.0444233	0.913077	0.0131025
$l_{71i}^{(00)}$	1.92331	-1.14694	-0.428571	0.0714286	-0.471374	0.0508102	0.00943952	-0.00810992
$l_{72i}^{(00)}$	2.29959	-1.08798	-0.428571	-0.0714286	-0.649357	-0.0379876	-0.0185498	-0.00572193
$l_{73i}^{(00)}$	14.2158	-10.6963	0	0	-3.65558	0.178076	0.010098	-0.0519935
$l_{74i}^{(00)}$	15.3446	-10.948	0	0	-4.18953	-0.0883176	-0.0738699	-0.0448295
$l_{75i}^{(00)}$	-6.13775	5.41867	0	0	0.802017	-0.0499613	0.139378	-0.172358
$l_{76i}^{(00)}$	-1.23905	1.50636	0	0	-0.570166	-0.0706605	0.366812	0.00670122
$l_{77i}^{(00)}$	0	1	0	0	0	0	0	0
$l_{78i}^{(00)}$	2.66667	-2.66667	0	0	0	0	0	0
$l_{81i}^{(00)}$	0.721243	0	0	0	-0.663114	-0.116803	0.0290479	0.0296268
$l_{82i}^{(00)}$	0.862347	0	0	0	-0.913494	0.0873264	-0.0570826	0.0209031
$l_{83i}^{(00)}$	5.33091	0	0	0	-5.14256	-0.409363	0.0310743	0.18994
$l_{84i}^{(00)}$	5.75422	0	0	0	-5.8937	0.203026	-0.227317	0.163769
$l_{85i}^{(00)}$	-2.30166	0	0	0	1.12825	0.114852	0.428902	0.62965
$l_{86i}^{(00)}$	-0.464643	0	0	0	-0.802091	0.162435	1.12878	-0.0244806
$l_{88i}^{(00)}$	1	0	0	0	0	0	0	0

Table 10: Values of the $l_{kli}^{(00)}$ relevant for $V_{kl}^{(0)}$. 90

i	1	2	3	4	5	6	7	8
$l_{11i}^{(10)}$	0	0	-0.813642	0.714241	0	0	0	0
$l_{12i}^{(10)}$	0	0	-0.813642	-0.714241	0	0	0	0
$l_{21i}^{(10)}$	0	0	-0.813642	-0.714241	0	0	0	0
$l_{22i}^{(10)}$	0	0	-0.813642	0.714241	0	0	0	0
$l_{31i}^{(10)}$	0	0	0.116235	-0.23808	0.091958	1.0191	-0.0429392	-0.0694057
$l_{32i}^{(10)}$	0	0	0.116235	0.23808	0.219879	-0.0708733	0.0941505	-0.0650574
$l_{33i}^{(10)}$	0	0	0	0	0.899547	4.95376	-0.0263952	-0.477143
$l_{34i}^{(10)}$	0	0	0	0	0.785234	2.92566	0.138935	-0.406354
$l_{35i}^{(10)}$	0	0	0	0	-1.0542	-3.33502	-3.05229	0.533491
$l_{36i}^{(10)}$	0	0	0	0	-0.0548816	1.82004	-1.33142	-0.449073
$l_{41i}^{(10)}$	0	0	0.116235	0.23808	0.177563	-0.881851	0.0596323	-0.0337776
$l_{42i}^{(10)}$	0	0	0.116235	-0.23808	0.424566	0.0613283	-0.130752	-0.0316614
$l_{43i}^{(10)}$	0	0	0	0	1.73695	-4.2866	0.0366567	-0.232211
$l_{44i}^{(10)}$	0	0	0	0	1.51622	-2.53164	-0.192947	-0.19776
$l_{45i}^{(10)}$	0	0	0	0	-2.03556	2.88586	4.2389	0.259633
$l_{46i}^{(10)}$	0	0	0	0	-0.105971	-1.57492	1.84902	-0.21855
$l_{51i}^{(10)}$	0	0	0	0	-0.071574	-0.0847995	-0.00940367	-0.390727
$l_{52i}^{(10)}$	0	0	0	0	-0.171139	0.00589737	0.0206189	-0.366248
$l_{53i}^{(10)}$	0	0	0	0	-0.700148	-0.412203	-0.00578055	-2.68613
$l_{54i}^{(10)}$	0	0	0	0	-0.611174	-0.243444	0.0304267	-2.28762
$l_{55i}^{(10)}$	0	0	0	0	0.820517	0.277507	-0.668451	3.00335
$l_{56i}^{(10)}$	0	0	0	0	0.0427162	-0.151445	-0.29158	-2.52811
$l_{61i}^{(10)}$	0	0	0	0	0.0604226	-0.173424	-0.176098	0.143573
$l_{62i}^{(10)}$	0	0	0	0	0.144475	0.0120607	0.386121	0.134578
$l_{63i}^{(10)}$	0	0	0	0	0.591063	-0.842998	-0.10825	0.987022
$l_{64i}^{(10)}$	0	0	0	0	0.515952	-0.497869	0.569787	0.840587
$l_{65i}^{(10)}$	0	0	0	0	-0.692679	0.56753	-12.5178	-1.10358
$l_{66i}^{(10)}$	0	0	0	0	-0.0360609	-0.309721	-5.46029	0.928955
$l_{71i}^{(10)}$	10.104	-9.15977	0.697408	0.102034	-1.17192	0.275851	-0.0707444	0.0734299
$l_{72i}^{(10)}$	12.2508	-9.05632	0.697408	-0.102034	-2.80215	-0.019184	0.155117	0.0688296
$l_{73i}^{(10)}$	133.186	-109.059	0	0	-11.4639	1.34089	-0.0434874	0.504809
$l_{74i}^{(10)}$	56.7737	-31.5638	0	0	-10.0071	0.79192	0.228902	0.429915
$l_{75i}^{(10)}$	-118.662	102.581	0	0	13.4348	-0.902725	-5.02879	-0.564424
$l_{76i}^{(10)}$	-16.7842	6.06809	0	0	0.699415	0.492649	-2.19357	0.475111
$l_{77i}^{(10)}$	0	7.81516	0	0	0	0	0	0
$l_{78i}^{(10)}$	17.9842	-18.7604	0	0	0	0	0	0
$l_{81i}^{(10)}$	3.789	0	0	0	-1.64862	-0.634131	-0.217699	-0.268251
$l_{82i}^{(10)}$	4.59403	0	0	0	-3.94197	0.0441005	0.477337	-0.251445
$l_{83i}^{(10)}$	49.9448	0	0	0	-16.127	-3.08245	-0.133822	-1.84414
$l_{84i}^{(10)}$	21.2901	0	0	0	-14.0776	-1.82048	0.704391	-1.57055
$l_{85i}^{(10)}$	-44.4981	0	0	0	18.8996	2.0752	-15.4749	2.06193
$l_{86i}^{(10)}$	-6.29409	0	0	0	0.983914	-1.13251	-6.75021	-1.73565
$l_{88i}^{(10)}$	6.74407	0	0	0	0	0	0	0

Table 11: Values of the $l_{kli}^{(1j)}$ relevant for $V_{kl}^{(1)}$. 91

i	1	2	3	4	5	6	7	8
$l_{11i}^{(11)}$	0	0	0.813642	-0.714241	0	0	0	0
$l_{12i}^{(11)}$	0	0	0.813642	0.714241	0	0	0	0
$l_{21i}^{(11)}$	0	0	0.813642	0.714241	0	0	0	0
$l_{22i}^{(11)}$	0	0	0.813642	-0.714241	0	0	0	0
$l_{31i}^{(11)}$	0	0	-0.076552	0.145488	-0.64231	-0.55328	0.0057761	0.244008
$l_{32i}^{(11)}$	0	0	-0.076552	-0.145488	-0.884835	0.413653	-0.0113507	0.172159
$l_{33i}^{(11)}$	0	0	0	0	-4.98122	-1.93909	0.00617904	1.56436
$l_{34i}^{(11)}$	0	0	0	0	-5.70879	0.961704	-0.0452015	1.34881
$l_{35i}^{(11)}$	0	0	0	0	1.09285	0.544036	0.0852862	5.18584
$l_{36i}^{(11)}$	0	0	0	0	-0.776927	0.769433	0.224455	-0.201624
$l_{41i}^{(11)}$	0	0	-0.235282	0.0396975	0.357177	0.368846	-0.000986616	-0.205332
$l_{42i}^{(11)}$	0	0	-0.235282	-0.0396975	0.49204	-0.275763	0.00193882	-0.144871
$l_{43i}^{(11)}$	0	0	0	0	2.76997	1.2927	-0.00105544	-1.3164
$l_{44i}^{(11)}$	0	0	0	0	3.17456	-0.641123	0.00772086	-1.13502
$l_{45i}^{(11)}$	0	0	0	0	-0.607717	-0.362684	-0.0145677	-4.36387
$l_{46i}^{(11)}$	0	0	0	0	0.432035	-0.512945	-0.0383392	0.169666
$l_{51i}^{(11)}$	0	0	0.0396825	-0.0925926	0.532957	0.168728	0.0615379	-0.153808
$l_{52i}^{(11)}$	0	0	0.0396825	0.0925926	0.734191	-0.126148	-0.120929	-0.108519
$l_{53i}^{(11)}$	0	0	0	0	4.13317	0.591346	0.0658307	-0.986079
$l_{54i}^{(11)}$	0	0	0	0	4.73687	-0.293281	-0.481571	-0.850211
$l_{55i}^{(11)}$	0	0	0	0	-0.906796	-0.165909	0.908628	-3.26884
$l_{56i}^{(11)}$	0	0	0	0	0.644655	-0.234646	2.39132	0.127092
$l_{61i}^{(11)}$	0	0	-0.119048	0.277778	-0.40242	-0.256146	0.139621	0.505742
$l_{62i}^{(11)}$	0	0	-0.119048	-0.277778	-0.554367	0.191504	-0.274371	0.356824
$l_{63i}^{(11)}$	0	0	0	0	-3.12083	-0.897721	0.149361	3.24236
$l_{64i}^{(11)}$	0	0	0	0	-3.57667	0.44523	-1.09262	2.7956
$l_{65i}^{(11)}$	0	0	0	0	0.684696	0.251867	2.06155	10.7484
$l_{66i}^{(11)}$	0	0	0	0	-0.486761	0.356216	5.42556	-0.417894
$l_{71i}^{(11)}$	-14.4711	8.96349	4.55076	-0.7519	1.45474	-0.999901	0.274046	0.129599
$l_{72i}^{(11)}$	-17.3023	8.50271	4.55076	0.7519	2.00402	0.747564	-0.538534	0.0914379
$l_{73i}^{(11)}$	-106.96	83.5937	0	0	11.2817	-3.50438	0.293164	0.830869
$l_{74i}^{(11)}$	-115.454	85.5607	0	0	12.9296	1.73802	-2.14458	0.716387
$l_{75i}^{(11)}$	46.1808	-42.3478	0	0	-2.47516	0.983197	4.04639	2.75433
$l_{76i}^{(11)}$	9.32267	-11.7725	0	0	1.75963	1.39054	10.6492	-0.107087
$l_{77i}^{(11)}$	0	-7.81516	0	0	0	0	0	0
$l_{78i}^{(11)}$	-20.0642	20.8404	0	0	0	0	0	0
$l_{81i}^{(11)}$	-4.86411	0	1.40619	3.98945	2.38464	-4.92905	0.0724692	0.920088
$l_{82i}^{(11)}$	-5.81573	0	1.40619	-3.98945	3.28504	3.68514	-0.142411	0.649165
$l_{83i}^{(11)}$	-35.952	0	0	0	18.4933	-17.2749	0.0775246	5.89877
$l_{84i}^{(11)}$	-38.8068	0	0	0	21.1945	8.56761	-0.567115	5.086
$l_{85i}^{(11)}$	15.5225	0	0	0	-4.05734	4.8467	1.07003	19.5544
$l_{86i}^{(11)}$	3.13358	0	0	0	2.88442	6.85471	2.8161	-0.760267
$l_{88i}^{(11)}$	-6.74407	0	0	0	0	0	0	0

Table 12: Values of the $l_{kli}^{(1j)}$ relevant for $V_{kl}^{(1)}$. 92

Appendix E Calculation of flavour observables

We provide here the detailed calculation of all the implemented observables for reference. The meson masses, lifetimes and form factors, as well as the CKM matrix elements which appear in the following are given in Appendix G. At the end, in Appendix H, we provide also some suggested limits for the observables which can be used in order to constrain supersymmetric models.

E.1 Branching ratio of $\bar{B} \to X_s \gamma$

The decay $\bar{B} \to X_s \gamma$ proceeds through electromagnetic penguin loops, involving W boson in the Standard Model, in addition to charged Higgs boson, chargino, neutralino and gluino loops in supersymmetric models. The contribution of neutralino and gluino loops is negligible in minimal flavour violating scenarios.

In SuperIso, the full NNLO calculation of the $\bar{B} \to X_s \gamma$ branching ratio is implemented based on [52,53]. The branching ratio reads

$$BR(\bar{B} \to X_s \gamma) = BR(\bar{B} \to X_c e\bar{\nu})_{exp} \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{6\alpha}{\pi C} \left[P(E_0) + N(E_0) + \epsilon_{em} \right], \quad (336)$$

with

$$C = \left| \frac{V_{ub}}{V_{cb}} \right|^2 \frac{\Gamma[\bar{B} \to X_c e\bar{\nu}]}{\Gamma[\bar{B} \to X_u e\bar{\nu}]} .$$
(337)

 $P(E_0)$ and $N(E_0)$ denote respectively the perturbative and non perturbative contributions, where E_0 is a cut on the photon energy, taken to be 1.6 GeV. C can be obtained from a fit to the semileptonic moments [54]

$$C = g(\rho) \left[0.849 - 0.92 \,\delta_{\alpha_s} + 0.0596 \,\delta_b - 0.2237 \big(\bar{m}_c (3 \,\text{GeV}) - 1 \big) \right]$$
(338)
$$-0.0167 \,\mu_G^2 - 0.203 \,\rho_D^3 + 0.004 \,\rho_{LS}^3 \right],$$

where

$$g(\rho) = 1 - 8\rho + 8\rho^3 - \rho^4 - 12\rho^2 \ln \rho , \qquad (339)$$

with $\rho = (m_c/m_b)^2$, $\delta_{\alpha_s} = \alpha_s (4.6 \text{ GeV}) - 0.22$, and $\delta_b = \bar{m}_b(\bar{m}_b) - 4.18 \text{ GeV}$. The numerical values of μ_G , ρ_D and ρ_{LS} are given in Appendix G.

Following [53], we can expand $P(E_0)$ as

$$P(E_0) = P^{(0)}(\mu_b) + \left(\frac{\alpha_s(\mu_b)}{4\pi}\right) \left[P_1^{(1)}(\mu_b) + P_2^{(1)}(E_0,\mu_b)\right]$$

$$+ \left(\frac{\alpha_s(\mu_b)}{4\pi}\right)^2 \left[P_1^{(2)}(\mu_b) + P_2^{(2)}(E_0,\mu_b) + P_3^{(2)}(E_0,\mu_b)\right] + \mathcal{O}\left(\alpha_s^3(\mu_b)\right) ,$$
(340)

where

$$P^{(0)}(\mu_b) = \left[C_7^{(0)\text{eff}}(\mu_b)\right]^2 + \left[C_7'(\mu_b)\right]^2,$$

$$P_1^{(1)}(\mu_b) = 2C_7^{(0)\text{eff}}(\mu_b) C_7^{(1)\text{eff}}(\mu_b),$$

$$P_1^{(2)}(\mu_b) = \left[C_7^{(1)\text{eff}}(\mu_b)\right]^2 + 2C_7^{(0)\text{eff}}(\mu_b) C_7^{(2)\text{eff}}(\mu_b),$$
(341)

and

$$P_2^{(1)}(E_0,\mu_b) = \sum_{i,j=1}^8 C_i^{(0)\text{eff}}(\mu_b) C_j^{(0)\text{eff}}(\mu_b) K_{ij}^{(1)}(E_0,\mu_b) + (C_i \leftrightarrow C_i'), \quad (342)$$

$$P_3^{(2)}(E_0,\mu_b) = 2 \sum_{i,j=1}^8 C_i^{(0)\text{eff}}(\mu_b) C_j^{(1)\text{eff}}(\mu_b) K_{ij}^{(1)}(E_0,\mu_b) , \qquad (343)$$

where the $K_{ij}^{(1)}$ can be written in the form:

$$K_{i7}^{(1)} = \operatorname{Re} r_i^{(1)} - \frac{1}{2} \gamma_{i7}^{(0)\text{eff}} \ln \left(\frac{\mu_b}{m_b^{1S}}\right)^2 + 2\phi_{i7}^{(1)}(\delta) , \quad \text{for } i \le 6 , \quad (344)$$

$$K_{77}^{(1)} = -\frac{182}{9} + \frac{8}{9}\pi^2 - \gamma_{77}^{(0)\text{eff}} \ln\left(\frac{\mu_b}{m_b^{1S}}\right)^2 + 4\phi_{77}^{(1)}(\delta) , \qquad (345)$$

$$K_{78}^{(1)} = \frac{44}{9} - \frac{8}{27}\pi^2 - \frac{1}{2}\gamma_{87}^{(0)\text{eff}} \ln\left(\frac{\mu_b}{m_b^{1S}}\right)^2 + 2\phi_{78}^{(1)}(\delta) , \qquad (346)$$

$$K_{ij}^{(1)} = 2(1+\delta_{ij}) \phi_{ij}^{(1)}(\delta) , \qquad \text{for } i, j \neq 7 . \qquad (347)$$

The matrix $\hat{\gamma}^{(0)\text{eff}}$ and the quantities $r_i^{(1)}$ are given by [55]:

$$\begin{aligned} r_{1}^{(1)} &= \frac{833}{729} - \frac{1}{3} \Big[a(z) + b(z) \Big] + \frac{40}{243} i\pi , \\ r_{2}^{(1)} &= -\frac{1666}{243} + 2 \Big[a(z) + b(z) \Big] - \frac{80}{81} i\pi , \\ r_{3}^{(1)} &= \frac{2392}{243} + \frac{8\pi}{3\sqrt{3}} + \frac{32}{9} X_{b} - a(1) + 2 b(1) + \frac{56}{81} i\pi , \\ r_{4}^{(1)} &= -\frac{761}{729} - \frac{4\pi}{9\sqrt{3}} - \frac{16}{27} X_{b} + \frac{1}{6} a(1) + \frac{5}{3} b(1) + 2 b(z) - \frac{148}{243} i\pi , \\ r_{5}^{(1)} &= \frac{56680}{243} + \frac{32\pi}{3\sqrt{3}} + \frac{128}{9} X_{b} - 16 a(1) + 32 b(1) + \frac{896}{81} i\pi , \\ r_{6}^{(1)} &= \frac{5710}{729} - \frac{16\pi}{9\sqrt{3}} - \frac{64}{27} X_{b} - \frac{10}{3} a(1) + \frac{44}{3} b(1) + 12a(z) + 20b(z) - \frac{2296}{243} i\pi , \\ r_{8}^{(1)} &= \frac{44}{9} - \frac{8}{27} \pi^{2} + \frac{8}{9} i\pi , \end{aligned}$$

where

$$z = \left(\frac{m_c(\mu_c)}{m_b^{1S}}\right)^2 \,,\tag{349}$$

and the constant X_b can be written as

$$X_b = \int_0^1 dx \int_0^1 dy \int_0^1 dv \, xy \ln\left[v + x(1-x)(1-v)(1-v+vy)\right] \simeq -0.1684 \,, \qquad (350)$$

and

$$\hat{\gamma}^{(0)\text{eff}} = \begin{bmatrix} -4 & \frac{8}{3} & 0 & -\frac{2}{9} & 0 & 0 & -\frac{208}{243} & \frac{173}{162} \\ 12 & 0 & 0 & \frac{4}{3} & 0 & 0 & \frac{416}{81} & \frac{70}{27} \\ 0 & 0 & 0 & -\frac{52}{3} & 0 & 2 & -\frac{176}{81} & \frac{14}{27} \\ 0 & 0 & -\frac{40}{9} & -\frac{100}{9} & \frac{4}{9} & \frac{5}{6} & -\frac{152}{243} & -\frac{587}{162} \\ 0 & 0 & 0 & -\frac{256}{3} & 0 & 20 & -\frac{6272}{81} & \frac{6596}{27} \\ 0 & 0 & -\frac{256}{9} & \frac{56}{9} & \frac{40}{9} & -\frac{2}{3} & \frac{4624}{243} & \frac{4772}{81} \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{32}{3} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -\frac{32}{9} & \frac{28}{3} \end{bmatrix} .$$
(351)

The small- m_c expansions of a(z) and b(z) up to $\mathcal{O}(z^4)$ read

$$\begin{aligned} a(z) &= \frac{16}{9} \Biggl\{ \Biggl[\frac{5}{2} - \frac{\pi^2}{3} - 3\zeta(3) + \Biggl(\frac{5}{2} - \frac{3\pi^2}{4} \Biggr) \ln z + \frac{1}{4} (\ln z)^2 + \frac{1}{12} (\ln z)^3 \Biggr] z \end{aligned} \tag{352} \\ &+ \Biggl[\frac{7}{4} + \frac{2\pi^2}{3} - \frac{\pi^2}{2} \ln z - \frac{1}{4} (\ln z)^2 + \frac{1}{12} (\ln z)^3 \Biggr] z^2 + \Biggl[-\frac{7}{6} - \frac{\pi^2}{4} + 2 \ln z - \frac{3}{4} (\ln z)^2 \Biggr] z^3 \\ &+ \Biggl[\frac{457}{216} - \frac{5\pi^2}{18} - \frac{1}{72} \ln z - \frac{5}{6} (\ln z)^2 \Biggr] z^4 + i\pi \Biggl[\Biggl(4 - \frac{\pi^2}{3} + \ln z + (\ln z)^2 \Biggr) \frac{z}{2} \\ &+ \Biggl(\frac{1}{2} - \frac{\pi^2}{6} - \ln z + \frac{1}{2} (\ln z)^2 \Biggr) z^2 + z^3 + \frac{5}{9} z^4 \Biggr] \Biggr\} + \mathcal{O}(z^5 (\ln z)^2) , \end{aligned} \end{aligned}$$

$$b(z) &= -\frac{8}{9} \Biggl\{ \Biggl[-3 + \frac{\pi^2}{6} - \ln z \Biggr] z - \frac{2\pi^2}{3} z^{3/2} + \Biggl[\frac{1}{2} + \pi^2 - 2 \ln z - \frac{1}{2} (\ln z)^2 \Biggr] z^2 \tag{353} \\ &+ \Biggl[-\frac{25}{12} - \frac{1}{9} \pi^2 - \frac{19}{18} \ln z + 2 (\ln z)^2 \Biggr] z^3 + \Biggl[-\frac{1376}{225} + \frac{137}{30} \ln z + 2 (\ln z)^2 + \frac{2\pi^2}{3} \Biggr] z^4 \\ &+ i\pi \Biggl[-z + (1 - 2 \ln z) z^2 + \Biggl(-\frac{10}{9} + \frac{4}{3} \ln z \Biggr) z^3 + z^4 \Biggr] \Biggr\} + \mathcal{O}(z^5 (\ln z)^2) , \end{aligned}$$

where $\zeta(3)$ is the Riemann zeta function given in Eq. (15). Defining

$$\delta \equiv 1 - 2E_0/m_b^{1S} , \qquad (354)$$

the explicit form of the functions $\phi_{ij}(\delta)$ which originate from the gluon bremsstrahlung $b \to s\gamma g$, can be written as [56]:

$$\begin{split} \phi_{22}(\delta) &= \frac{16z}{27} \left[\delta \int_{0}^{(1-\delta)/z} dt \, (1-zt) \left| \frac{G(t)}{t} + \frac{1}{2} \right|^{2} + \int_{(1-\delta)/z}^{1/z} dt \, (1-zt)^{2} \left| \frac{G(t)}{t} + \frac{1}{2} \right|^{2} \right] \,, \\ \phi_{27}(\delta) &= -\frac{8z^{2}}{9} \left[\delta \int_{0}^{(1-\delta)/z} dt \, \operatorname{Re}\left(G(t) + \frac{t}{2} \right) + \int_{(1-\delta)/z}^{1/z} dt \, (1-zt) \operatorname{Re}\left(G(t) + \frac{t}{2} \right) \right] \,, \\ \phi_{77}(\delta) &= -\frac{2}{3} \ln^{2} \delta - \frac{7}{3} \ln \delta - \frac{31}{9} + \frac{10}{3} \delta + \frac{1}{3} \delta^{2} - \frac{2}{9} \delta^{3} + \frac{1}{3} \delta(\delta - 4) \ln \delta \,, \end{split}$$
(355)
$$\phi_{78}(\delta) &= \frac{8}{9} \left[\operatorname{Li}_{2}(1-\delta) - \frac{\pi^{2}}{6} - \delta \ln \delta + \frac{9}{4} \delta - \frac{1}{4} \delta^{2} + \frac{1}{12} \delta^{3} \right] \,, \end{split}$$

$$\begin{split} \phi_{88}(\delta) &= \frac{1}{27} \left\{ -2\ln\frac{m_b}{m_s} \left[\delta^2 + 2\delta + 4\ln(1-\delta) \right] \right. \\ &+ 4\operatorname{Li}_2(1-\delta) - \frac{2\pi^2}{3} - \delta(2+\delta)\ln\delta + 8\ln(1-\delta) - \frac{2}{3}\delta^3 + 3\delta^2 + 7\delta \right\} \,, \end{split}$$

with

$$G(t) = \begin{cases} -2 \arctan^2 \sqrt{t/(4-t)} , & \text{for } t < 4 \\ -\pi^2/2 + 2 \ln^2[(\sqrt{t} + \sqrt{t-4})/2] - 2i\pi \ln[(\sqrt{t} + \sqrt{t-4})/2] , & \text{for } t \ge 4 \end{cases}$$
(356)

and

$$\phi_{11} = \frac{1}{36}\phi_{22},
\phi_{12} = -\frac{1}{3}\phi_{22},
\phi_{17} = -\frac{1}{6}\phi_{27},
\phi_{18} = \frac{1}{18}\phi_{27},
\phi_{28} = -\frac{1}{3}\phi_{27}.$$
(357)

The functions ϕ_{47} and ϕ_{48} are given by [53]:

$$\phi_{47}^{(1)}(\delta) = -\frac{1}{54}\delta\left(1-\delta+\frac{1}{3}\delta^2\right) + \frac{1}{12} \lim_{m_c \to m_b} \phi_{27}^{(1)}(\delta) ,$$

$$\phi_{48}^{(1)}(\delta) = -\frac{1}{3}\phi_{47}^{(1)}(\delta) .$$
(358)

The remaining NNLO correction to $P(E_0)$ is composed of two parts:

$$P_2^{(2)}(E_0,\mu_b) = P_2^{(2)\beta_0}(E_0,\mu_b) + P_2^{(2)\text{rem}}(E_0,\mu_b) , \qquad (359)$$

with

$$P_2^{(2)\beta_0}(E_0,\mu_b) \simeq \sum_{i,j=1,2,7,8} C_i^{(0)\text{eff}}(\mu_b) \ C_j^{(0)\text{eff}}(\mu_b) \ K_{ij}^{(2)\beta_0}(E_0,\mu_b) \ + \left(C_i \leftrightarrow C_i'\right) , \qquad (360)$$

where the contribution for i, j = 3, 4, 5, 6 are neglected, and

$$K_{27}^{(2)\beta_0} = \beta_0 \operatorname{Re}\left[-\frac{3}{2}r_2^{(2)}(z) + 2\left(a(z) + b(z) - \frac{290}{81}\right)L_b - \frac{100}{81}L_b^2\right] + 2\phi_{27}^{(2)\beta_0}(\delta) , \quad (361)$$

$$K_{17}^{(2)\beta_0} = -\frac{1}{6} K_{27}^{(2)\beta_0}, aga{362}$$

$$K_{77}^{(2)\beta_0} = \beta_0 \left[-\frac{3803}{54} - \frac{46}{27}\pi^2 + \frac{80}{3}\zeta(3) + \left(\frac{8}{9}\pi^2 - \frac{98}{3}\right)L_b - \frac{16}{3}L_b^2 \right] + 4\phi_{77}^{(2)\beta_0}(\delta) , \quad (363)$$

$$K_{78}^{(2)\beta_0} = \beta_0 \left[\frac{1256}{81} - \frac{64}{81} \pi^2 - \frac{32}{9} \zeta(3) + \left(\frac{188}{27} - \frac{8}{27} \pi^2 \right) L_b + \frac{8}{9} L_b^2 \right] + 2 \phi_{78}^{(2)\beta_0}(\delta) , \quad (364)$$

$$K_{ij}^{(2)\beta_0} = 2(1+\delta_{ij}) \phi_{ij}^{(2)\beta_0}(\delta) , \quad \text{for } i, j \neq 7 .$$
(365)

The small- m_c expansion of $\operatorname{Re} r_2^{(2)}(z)$ up to $\mathcal{O}(z^4)$ leads to

$$\operatorname{Re} r_{2}^{(2)}(z) = \frac{67454}{6561} - \frac{124\pi^{2}}{729} - \frac{4}{1215} \Big[11280 - 1520\pi^{2} - 171\pi^{4} - 5760\zeta(3) \qquad (366) \\ + 6840 \ln z - 1440\pi^{2} \ln z - 2520\zeta(3) \ln z + 120(\ln z)^{2} + 100(\ln z)^{3} \\ - 30(\ln z)^{4} \Big] z - \frac{64\pi^{2}}{243} \Big[43 - 12 \ln 2 - 3 \ln z \Big] z^{3/2} - \frac{2}{1215} \Big[11475 - 380\pi^{2} \\ + 96\pi^{4} + 7200\zeta(3) - 1110 \ln z - 1560\pi^{2} \ln z + 1440\zeta(3) \ln z + 990(\ln z)^{2} \\ + 260(\ln z)^{3} - 60(\ln z)^{4} \Big] z^{2} + \frac{2240\pi^{2}}{243} z^{5/2} - \frac{2}{2187} \Big[62471 - 2424\pi^{2} \\ - 33264\zeta(3) - 19494 \ln z - 504\pi^{2} \ln z - 5184(\ln z)^{2} + 2160(\ln z)^{3} \Big] z^{3} \\ - \frac{2464}{6075}\pi^{2}z^{7/2} + \Big[-\frac{15103841}{546750} + \frac{7912}{3645}\pi^{2} + \frac{2368}{81}\zeta(3) + \frac{147038}{6075} \ln z \\ + \frac{352}{243}\pi^{2} \ln z + \frac{88}{243}(\ln z)^{2} - \frac{512}{243}(\ln z)^{3} \Big] z^{4} + \mathcal{O}(z^{9/2}(\ln z)^{4}) ,$$

where

$$L_b = \ln\left(\frac{\mu_b}{m_b^{1S}}\right)^2 \,. \tag{367}$$

The functions $\phi_{ij}^{(2)\beta_0}(\delta)$ read [53,57]:

$$\phi_{22}^{(2)\beta_0}(\delta) = \beta_0 \left[\phi_{22}^{(1)}(\delta) L_b + h_{22}^{(2)} \right] , \qquad (368)$$

$$\phi_{11}^{(2)\beta_0}(\delta) = \frac{1}{36} \phi_{22}^{(2)\beta_0}(\delta) , \qquad (369)$$

$$\phi_{12}^{(2)\beta_0}(\delta) = -\frac{1}{3}\phi_{22}^{(2)\beta_0}(\delta) , \qquad (370)$$

$$\phi_{27}^{(2)\beta_0}(\delta) = \beta_0 \left[\phi_{27}^{(1)}(\delta) L_b + h_{27}^{(2)} \right] , \qquad (371)$$

$$\phi_{28}^{(2)\beta_0}(\delta) = \beta_0 \left[\phi_{28}^{(1)}(\delta) L_b + h_{28}^{(2)} \right] , \qquad (372)$$

$$\phi_{18}^{(2)\beta_0}(\delta) = -\frac{1}{6}\phi_{28}^{(2)\beta_0}(\delta) , \qquad (373)$$

$$\phi_{77}^{(2)\beta_0}(\delta) = \beta_0 \left[\phi_{77}^{(1)}(\delta) L_b + 4 \int_0^{1-\delta} dx \ F^{(2,nf)} \right] , \qquad (374)$$

$$\phi_{88}^{(2)\beta_0}(\delta) = \beta_0 \left[\phi_{88}^{(1)}(\delta) L_b + h_{88}^{(2)} \right] , \qquad (375)$$

where

$$h_{22}^{(2)}(\delta) = 0.01370 + 0.3357 \,\delta - 0.08668 \,\delta^2 + (0.3575 + 1.825 \,\delta - 0.3743 \,\delta^2) \, z^{\frac{1}{2}} \quad (376)$$

$$+ (-2.306 - 5.800 \,\delta - 6.226 \,\delta^2) \, z + (3.449 - 0.5480 \,\delta + 17.27 \,\delta^2) \, z^{\frac{3}{2}} ,$$

$$h_{27}^{(2)}(\delta) = -0.1755 - 1.455 \,\delta + 1.119 \,\delta^2 + (0.7260 - 7.230 \,\delta + 5.977 \,\delta^2) \,z^{\frac{1}{2}} \qquad (377)$$

+(13.79 + 113.7 δ - 100.4 δ^2) z + (-145.1 - 307.1 δ + 388.5 δ^2) $z^{\frac{3}{2}}$
+(475.2 + 313.0 δ - 775.8 δ^2) z^2 + (-509.7 - 126.1 δ + 646.2 δ^2) $z^{\frac{5}{2}}$,

$$\begin{aligned} h_{28}^{(2)}(\delta) &= 0.02605 + 0.1679 \,\delta - 0.1970 \,\delta^2 + (-0.03801 + 0.6017 \,\delta - 0.7558 \,\delta^2) \,z^{\frac{1}{2}} & (378) \\ &+ (2.755 - 10.03 \,\delta + 11.27 \,\delta^2) \,z + (-27.05 + 68.47 \,\delta - 72.51 \,\delta^2) \,z^{\frac{3}{2}} \\ &+ (85.87 - 289.3 \,\delta + 297.7 \,\delta^2) \,z^2 + (-91.53 + 399.8 \,\delta - 399.9 \,\delta^2) \,z^{\frac{5}{2}} , \end{aligned}$$

$$h_{88}^{(2)}(\delta) = \frac{4}{27} \left\{ \left[\left(1 + \frac{1}{2}\delta\right)\delta\ln\delta - 6\ln(1-\delta) - 2\text{Li}_2(1-\delta) + \frac{1}{3}\pi^2 - \frac{16}{3}\delta - \frac{5}{3}\delta^2 + \frac{1}{9}\delta^3 \right] \ln\frac{m_b}{m_s} (379) \right. \\ \left. - 2\text{Li}_3(\delta) + (5-2\ln\delta) \left[\text{Li}_2(1-\delta) - \frac{1}{6}\pi^2 \right] - \frac{1}{12}\pi^2\delta(2+\delta) + \left[\frac{1}{2}\delta + \frac{1}{4}\delta^2 - \ln(1-\delta) \right] \ln^2\delta \right. \\ \left. + \left(\frac{151}{18} - \frac{1}{3}\pi^2 \right) \ln(1-\delta) + \left(-\frac{53}{12} - \frac{19}{12}\delta + \frac{2}{9}\delta^2 \right) \delta\ln\delta + \frac{787}{72}\delta + \frac{227}{72}\delta^2 - \frac{41}{72}\delta^3 \right\} ,$$

and $F^{(2,nf)}$ is given by [58]

$$F^{(2,\mathrm{nf})} = S_{\mathrm{nf}}\delta(1-z) - \frac{1}{2} \left[\frac{\ln^2(1-z)}{1-z} \right]_+ - \frac{13}{36} \left[\frac{\ln(1-z)}{1-z} \right]_+ + \left(-\frac{\pi^2}{18} + \frac{85}{72} \right) \left[\frac{1}{1-z} \right]_+ \\ + \frac{z^2 - 3}{6(z-1)} \operatorname{Li}_2(1-z) + \frac{z^2 - 3}{6(z-1)} \ln(1-z) \ln(z) - \frac{1+z}{4} \ln^2(1-z)$$
(380)
$$6z^3 - 25z^2 - z - 18 \qquad \pi^2 - 49 + 38z^2 - 55z$$

$$-\frac{6z^3 - 25z^2 - z - 18}{36z}\ln(1-z) - (1+z)\frac{\pi^2}{36} + \frac{-49 + 38z^2 - 55z}{72},$$

where the $[\ln^n(1-x)/(1-x)]_+$ are the plus-distributions defined in the standard way, and $S_{\rm nf} = 49/24 + \pi^2/8 - 2\zeta(3)/3 \approx 2.474$. The remaining $\phi_{ij}^{(2)\beta_0}(\delta)$ functions are neglected.

The $P_2^{(2)\text{rem}}$ term is more difficult to calculate, as its analytic expression is only known in the limit $m_c \gg m_b/2$. In this limit, we have

$$P_2^{(2)\text{rem}}(E_0,\mu_b) \simeq \sum_{i,j=1,2,7,8} C_i^{(0)\text{eff}}(\mu_b) \ C_j^{(0)\text{eff}}(\mu_b) \ K_{ij}^{(2)\text{rem}}(E_0,\mu_b) \ + \left(C_i \leftrightarrow C_i'\right), \quad (381)$$

where

$$K_{22}^{(2)\text{rem}} = 36 K_{11}^{(2)\text{rem}} + \mathcal{O}\left(\frac{1}{z}\right) = -6 K_{12}^{(2)\text{rem}} + \mathcal{O}\left(\frac{1}{z}\right)$$
(382)
$$= \left(K_{27}^{(1)}\right)^2 + \mathcal{O}\left(\frac{1}{z}\right) = \left(\frac{218}{243} - \frac{208}{81}L_D\right)^2 + \mathcal{O}\left(\frac{1}{z}\right) ,$$

$$K_{27}^{(2)\text{rem}} = K_{27}^{(1)} K_{77}^{(1)} + \left(\frac{127}{324} - \frac{35}{27} L_D\right) K_{78}^{(1)} + \frac{2}{3} (1 - L_D) K_{47}^{(1)\text{rem}}$$

$$-\frac{4736}{729} L_D^2 + \frac{1150}{729} L_D - \frac{1617980}{19683} + \frac{20060}{243} \zeta(3) + \frac{1664}{81} L_c + \mathcal{O}\left(\frac{1}{z}\right) ,$$
(383)

$$K_{28}^{(2)\text{rem}} = K_{27}^{(1)}K_{78}^{(1)} + \left(\frac{127}{324} - \frac{35}{27}L_D\right)K_{88}^{(1)} + \frac{2}{3}(1 - L_D)K_{48}^{(1)} + \mathcal{O}\left(\frac{1}{z}\right) , \qquad (384)$$

$$K_{17}^{(2)\text{rem}} = -\frac{1}{6}K_{27}^{(2)\text{rem}} + \left(\frac{5}{16} - \frac{3}{4}L_D\right)K_{78}^{(1)} - \frac{1237}{729} + \frac{232}{27}\zeta(3) + \frac{70}{27}L_D^2 \qquad (385)$$
$$-\frac{20}{27}L_D + \mathcal{O}\left(\frac{1}{z}\right) ,$$

$$K_{18}^{(2)\text{rem}} = -\frac{1}{6}K_{28}^{(2)\text{rem}} + \left(\frac{5}{16} - \frac{3}{4}L_D\right)K_{88}^{(1)} + \mathcal{O}\left(\frac{1}{z}\right) , \qquad (386)$$

$$K_{77}^{(2)\text{rem}} = \left(K_{77}^{(1)} - 4\phi_{77}^{(1)}(\delta) + \frac{2}{3}\ln z\right)K_{77}^{(1)} - \frac{32}{9}L_D^2 + \frac{224}{27}L_D - \frac{628487}{729}$$
(387)
$$-\frac{628}{405}\pi^4 + \frac{31823}{729}\pi^2 + \frac{428}{27}\pi^2\ln 2 + \frac{26590}{81}\zeta(3) - \frac{160}{3}L_b^2$$

$$-\frac{2720}{9}L_b + \frac{256}{27}\pi^2L_b + \frac{512}{27}\pi\alpha\gamma + 4\phi_{77}^{(2)\text{rem}}(\delta) + \mathcal{O}\left(\frac{1}{z}\right),$$

$$K_{78}^{(2)\text{rem}} = \left(-\frac{50}{3} + \frac{8}{3}\pi^2 - \frac{2}{3}L_D\right)K_{78}^{(1)} + \frac{16}{27}L_D^2 - \frac{112}{81}L_D + \frac{364}{243} + \mathcal{O}\left(\frac{1}{z}\right) , \quad (388)$$

$$K_{88}^{(2)\text{rem}} = \left(-\frac{50}{3} + \frac{8}{3}\pi^2 - \frac{2}{3}L_D\right)K_{88}^{(1)} + \mathcal{O}\left(\frac{1}{z}\right) , \qquad (389)$$

with

$$K_{47}^{(1)\text{rem}} = K_{47}^{(1)} - \beta_0 \left(\frac{26}{81} - \frac{4}{27}L_b\right),$$
 (390)

$$L_c = \ln\left(\frac{\mu_c}{m_c(\mu_c)}\right)^2 , \qquad (391)$$

and

$$L_D \equiv L_b - \ln z = \ln \left(\frac{\mu_b}{m_c(\mu_c)}\right)^2 \,. \tag{392}$$

The function $\phi_{77}^{(2)\text{rem}}(\delta)$ reads

$$\phi_{77}^{(2)\text{rem}}(\delta) = -4 \int_{0}^{1-\delta} dx \left[\frac{16}{9} F^{(2,a)} + 4F^{(2,na)} + \frac{29}{3} F^{(2,nf)} \right]$$

$$-\frac{8\pi \alpha_{\Upsilon}}{27 \,\delta} \left[2\delta \ln^{2} \delta + \left(4 + 7\delta - 2\delta^{2} + \delta^{3}\right) \ln \delta + 7 - \frac{8}{3}\delta - 7\delta^{2} + 4\delta^{3} - \frac{4}{3}\delta^{4} \right] ,$$
(393)

where $F^{(2,a)}$ and $F^{(2,na)}$ are given by [58]:

$$\begin{split} F^{(2,a)} &= S_{a}\delta(1-z) + \frac{1}{2} \left[\frac{\ln^{3}(1-z)}{1-z} \right]_{+} + \frac{21}{8} \left[\frac{\ln^{2}(1-z)}{1-z} \right]_{+} + \left(-\frac{\pi^{2}}{6} + \frac{271}{48} \right) \left[\frac{\ln(1-z)}{1-z} \right]_{+} \\ &+ \left(\frac{425}{96} - \frac{\pi^{2}}{6} - \frac{\zeta(3)}{2} \right) \left[\frac{1}{1-z} \right]_{+} + \frac{4z - 4z^{2} + 1 + z^{3}}{2(z-1)} \left[\text{Li}_{3} \left(\frac{z}{2-z} \right) - \text{Li}_{3} \left(-\frac{z}{2-z} \right) \right] \\ &- 2\text{Li}_{3} \left(\frac{1}{2-z} \right) + \frac{\zeta(3)}{4} - 2(z-1)^{2}\text{Li}_{3}(z-1) + \left[\frac{z^{3} - 2z^{2} + 2z - 3}{2(z-1)} \ln(1-z) \right] \\ &- \frac{-140z^{4} + 219z^{3} - 124z^{2} + 28z + 27z^{5} + 9z^{6} + z^{8} - 6z^{7} - 6}{12z(z-1)^{3}} \right] \text{Li}_{2}(z-1) \\ &+ \left[\frac{2z^{3} - 9z^{2} - 2z + 11}{4(z-1)} \ln(1-z) - \frac{-27z^{2} + 8z^{6} - 9 + 21z - 3z^{3} + 64z^{4} - 46z^{5}}{12z(z-1)^{3}} \right] \text{Li}_{2}(1-z) \\ &- \frac{-17z^{2} + 4z + 4z^{3} + 11}{4(z-1)} \ln(1-z) - \frac{2z^{3} + 13 - 9z^{2}}{4(z-1)} \text{Li}_{3}(z) + \frac{4z - 4z^{2} + 1 + z^{3}}{6(z-1)} \ln^{3}(2-z) \\ &+ \left[-\frac{-140z^{4} + 219z^{3} - 124z^{2} + 28z + 27z^{5} + 9z^{6} + z^{8} - 6z^{7} - 6}{12z(z-1)^{3}} \ln^{3}(2-z) \right] \\ &+ \left[-\frac{-140z^{4} + 219z^{3} - 124z^{2} + 28z + 27z^{5} + 9z^{6} + z^{8} - 6z^{7} - 6}{12z(z-1)^{3}} \ln^{3}(2-z) \right] \\ &+ \left[-\frac{-140z^{4} + 219z^{3} - 124z^{2} + 28z + 27z^{5} + 9z^{6} + z^{8} - 6z^{7} - 6}{12z(z-1)^{3}} \ln^{3}(2-z) \right] \\ &+ \left[-\frac{z^{4} - 4z^{2} + 1 + z^{3}}{2(z-1)} \ln^{2}(1-z) - \frac{4z - 4z^{2} + 1 + z^{3}}{2-1} \frac{\pi^{2}}{12} \right] \ln^{2}(2-z) \\ &+ \frac{z^{3} - 2z^{2} + 2z + 1}{4z} \ln^{3}(1-z) + \frac{z^{5} - 3z^{4} + 5z^{3} + 7z^{2} + 5z - 9}{24z} \ln^{2}(1-z) \\ &+ \left[-\frac{z^{2} + 8z - 11}{4z} \ln^{2}(1-z) - \frac{-27z^{2} + 8z^{6} - 9 + 21z - 3z^{3} + 64z^{4} - 46z^{5}}{12z(z-1)^{3}} \ln(1-z) \right] \ln(z) \\ &+ \left[\left(-z^{2} + z - 3 \right) \frac{\pi^{2}}{12} - \frac{4z^{5} + 151z + 2z^{4} - 48z^{2} - 41z^{3} - 36}{48z(z-1)} \right] \ln(1-z) \\ &+ \frac{z^{3} - 11z^{2} - 2z + 18}{4(z-1)} \zeta(3) - \frac{8z^{4} - 244z^{3} + 175z^{2} + 598z - 569}{96(z-1)} \\ - \frac{(z-2)(z^{4} - z^{3} - 11z^{2} + 13z + 3)}{z} \frac{\pi^{2}}{72}, \end{aligned}$$

and

$$\begin{split} F^{(2,\mathrm{na})} &= S_{\mathrm{na}}\delta(1-z) + \frac{11}{8} \left[\frac{\ln^2(1-z)}{1-z} \right]_+ + \left(\frac{\pi^2}{12} + \frac{95}{144} \right) \left[\frac{\ln(1-z)}{1-z} \right]_+ \\ &+ \left(\frac{\zeta(3)}{4} - \frac{905}{288} + \frac{17\pi^2}{72} \right) \left[\frac{1}{1-z} \right]_+ + (z-1)^2 \mathrm{Li}_3(z-1) \\ &- \frac{4z - 4z^2 + 1 + z^3}{4(z-1)} \left[\mathrm{Li}_3\left(\frac{z}{2-z} \right) - \mathrm{Li}_3\left(-\frac{z}{2-z} \right) - 2\mathrm{Li}_3\left(\frac{1}{2-z} \right) + \frac{\zeta(3)}{4} \right] \\ &+ \left[\frac{-140z^4 + 219z^3 - 124z^2 + 28z + 27z^5 + 9z^6 + z^8 - 6z^7 - 6}{24z(z-1)^3} \right] \\ &- \frac{z^3 - 2z^2 + 2z - 3}{4(z-1)} \ln(1-z) \right] \mathrm{Li}_2(z-1) + \left[\frac{(1+z)(2z^4 - 29z^3 + 73z^2 - 57z + 15)}{24(z-1)^3} \right] \\ &+ \frac{z(3-z)}{4(z-1)} \ln(1-z) \\ &- \frac{4z - 4z^2 + 1 + z^3}{12(z-1)} \ln^3(2-z) + \left[\frac{4z - 4z^2 + 1 + z^3}{4(z-1)} \mathrm{Li}_3(z) + \frac{(z-3)z}{2} \mathrm{Li}_3(1-z) \right] \\ &- \frac{4z - 4z^2 + 1 + z^3}{12(z-1)} \ln^3(2-z) + \left[\frac{4z - 4z^2 + 1 + z^3}{4(z-1)} \ln^2(1-z) + \frac{4z - 4z^2 + 1 + z^3}{2-1} \frac{\pi^2}{24} \right] \\ &+ \frac{-140z^4 + 219z^3 - 124z^2 + 28z + 27z^5 + 9z^6 + z^8 - 6z^7 - 6}{24z(z-1)^3} \ln(1-z) \right] \ln(2-z) \\ &+ \frac{(1+z)(2z^4 - 29z^3 + 73z^2 - 57z + 15)}{24(z-1)^3} \ln(1-z) \ln(z) - \frac{(z-1)^2}{8} \ln^3(1-z) \\ &- \frac{(z+2)(z^3 - 5z^2 + 9z - 35)}{48} \ln^2(1-z) \frac{z^5 - 3z^4 - 3z^3 + 34z^2 - 24z + 3}{z} \frac{\pi^2}{144} \\ &+ \left[(z^2 - z + 3)\frac{\pi^2}{24} + \frac{6z^5 + 72 - 392z^3 + 51z^4 + 219z^2 + 92z}{144z(z-1)} \right] \ln(1-z) + \frac{-z^3 - 10z^2 + 6z + 7}{8(z-1)} \zeta(3) + \frac{12z^4 - 754z^3 + 1191z^2 + 264z - 761}{288(z-1)} , \end{split}$$

where $S_{\rm a} = 1.216, \, S_{\rm na} = -4.795$ and

$$\text{Li}_{3}(x) = \int_{0}^{x} dy \, \frac{\text{Li}_{2}(y)}{y} \,. \tag{396}$$

 α_Υ in Eq. (393) is defined as

$$\alpha_{\Upsilon} \equiv \alpha_s^{(4)}(\mu = m_b^{1S}) . \tag{397}$$

The missing K_{ij} and ϕ_{ij} are neglected.

To estimate the value of $P_2^{(2)\text{rem}}$ for $m_c < m_b/2$, it is necessary to use an interpolation method. We consider the linear combination:

$$P_2^{(2)\text{rem}}(z) = x_1 \left[|r_2^{(1)}(z)|^2 - |r_2^{(1)}(0)|^2 \right] + x_2 \operatorname{Re} \left[r_2^{(2)}(z) - r_2^{(2)}(0) \right]$$
(398)
+ $x_3 \operatorname{Re} \left[r_2^{(1)}(z) - r_2^{(2)}(0) \right] + x_4 z \frac{d}{dz} \operatorname{Re} r_2^{(1)}(z) + x_5 .$

In this equation, x_1, \dots, x_5 are constants to be determined. Noting that $P_2^{(2)\text{rem}}(0) = x_5$, we make two different assumptions:

(a)
$$x_5 = 0$$
,
(b) $x_5 = -P_1^{(2)}(z=0) - P_3^{(2)}(z=0)$.

To determine the four other x_i , we impose that for $z \gg 1$, Eqs. (381) and (399) coincide, and by matching the different terms in both equations, the x_i can be worked out. In particular, we can show that

$$x_1 = \left(C_2^{(0)\text{eff}}\right)^2 + \frac{1}{36} \left(C_1^{(0)\text{eff}}\right)^2 - \frac{1}{3} \left(C_1^{(0)\text{eff}}\right) \left(C_2^{(0)\text{eff}}\right) , \qquad (399)$$

and

$$x_2 = C_7^{(0)\text{eff}} \left(\frac{4019}{486} C_1^{(0)\text{eff}} - \frac{1184}{81} C_2^{(0)\text{eff}} - 4C_7^{(0)\text{eff}} + \frac{4}{3} C_8^{(0)\text{eff}} \right) .$$
(400)

Finally, x_3 and x_4 can be determined by choosing two large values for z and requiring matching between Eqs. (381) and (399) for both values.

The two possible determinations of x_5 lead to different results, and we therefore compute the branching ratio in both cases (a) and (b), and then we give the average value as output, as advised in [53].

The non-perturbative correction $N(E_0)$ reads [56]

$$N(E_0) = -\frac{1}{18} \left(K_c^{(0)} + r K_t^{(0)} \right) \left(\eta^{\frac{6}{23}} + \eta^{-\frac{12}{23}} \right) \frac{\lambda_2}{m_c^2} + \dots , \qquad (401)$$

where $r = \overline{m}_b(\mu_W)/m_b^{1S}$, $\lambda_2 \approx (m_{B^*}^2 - m_B^2)/4$ is given in Appendix G, and

$$K_c^{(0)} = \sum_{i=1}^8 d_i \eta^{a_i} , \qquad (402)$$

with d_i given in Table 13, and a_i in Table 3, and

$$K_t^{(0)} = \left(C_7(\mu_W) + \frac{23}{36}\right)\eta^{\frac{4}{23}} - \frac{8}{3}\left(C_8(\mu_W) + \frac{1}{3}\right)\left(\eta^{\frac{4}{23}} - \eta^{\frac{2}{23}}\right).$$
(403)

In Eqs. (402) and (403), $\eta = \alpha_s(\mu_W)/\alpha_s(\mu_b)$.

i	1	2	3	4	5	6	7	8
d_i	1.4107	-0.8380	-0.4286	-0.0714	-0.6494	-0.0380	-0.0185	-0.0057

Table 13: Useful numbers for $K_c^{(0)}$ [56].

The electromagnetic correction ϵ_{em} can be written as [33]:

$$\epsilon_{em} = \frac{\alpha}{\alpha_s(\mu_b)} \left(2 \left[C_7^{(em)}(\mu_b) C_7^{(0)}(\mu_b) \right] - k_{\rm SL}^{(em)}(\mu_b) \left| C_7^{(0)}(\mu_b) \right|^2 \right), \tag{404}$$

where

$$k_{\rm SL}^{\rm (em)}(\mu_b) = \frac{12}{23} \left(\eta^{-1} - 1\right) = \frac{2\alpha_s(\mu_b)}{\pi} \ln \frac{\mu_W}{\mu_b} , \qquad (405)$$

and

$$C_{7}^{(\text{em})}(\mu_{b}) = \left(\frac{32}{75}\eta^{-\frac{9}{23}} - \frac{40}{69}\eta^{-\frac{7}{23}} + \frac{88}{575}\eta^{\frac{16}{23}}\right)C_{7}^{(0)}(\mu_{W}) + C_{8}^{(\text{em})}(\mu_{b})C_{8}^{(0)}(\mu_{W}) + C_{2}^{(\text{em})}(\mu_{b}),$$

$$(406)$$

with

$$C_8^{(\text{em})}(\mu_b) = -\frac{32}{575} \eta^{-\frac{9}{23}} + \frac{32}{1449} \eta^{-\frac{7}{23}} + \frac{640}{1449} \eta^{\frac{14}{23}} - \frac{704}{1725} \eta^{\frac{16}{23}} , \qquad (407)$$

$$C_{2}^{(\text{em})}(\mu_{b}) = -\frac{190}{8073} \eta^{-\frac{35}{23}} - \frac{359}{3105} \eta^{-\frac{17}{23}} + \frac{4276}{121095} \eta^{-\frac{12}{23}} + \frac{350531}{1009125} \eta^{-\frac{9}{23}} \qquad (408)$$
$$+ \frac{2}{4347} \eta^{-\frac{7}{23}} - \frac{5956}{15525} \eta^{\frac{6}{23}} + \frac{38380}{169533} \eta^{\frac{14}{23}} - \frac{748}{8625} \eta^{\frac{16}{23}} .$$

Using all the above equations, the inclusive branching ratio of $B \to X_s \gamma$ can be obtained.

E.2 Isospin asymmetry of $B \to K^* \gamma$

The isospin asymmetry Δ_0 in $B \to K^* \gamma$ decays arises when the photon is emitted from the spectator quark. The contribution to the decay width depends therefore on the charge of the spectator quark and is different for charged and neutral B meson decays:

$$\Delta_{0\pm} = \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) - \Gamma(B^{\pm} \to K^{*\pm}\gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0}\gamma) + \Gamma(B^{\pm} \to K^{*\pm}\gamma)} , \qquad (409)$$

which can be written as [59]:

$$\Delta_0 = \operatorname{Re}(b_d - b_u) , \qquad (410)$$

where the spectator dependent coefficients b_q take the form:

$$b_q = \frac{12\pi^2 f_B Q_q}{\overline{m}_b T_1^{B \to K^*} a_7^c} \left(\frac{f_{K^*}^{\perp}}{\overline{m}_b} K_1 + \frac{f_{K^*} m_{K^*}}{6\lambda_B m_B} K_{2q} \right) .$$
(411)

In the same way as for $b \to s\gamma$ branching ratio, the SUSY contributions induced by charged Higgs and chargino loops must be taken into account for the calculation of isospin symmetry breaking.

The functions K_1 and K_{2q} can be written in function of the Wilson coefficients C_i in the traditional basis (see Appendix D.2) at scale μ_b [59]:

$$K_{1} = -\left(C_{6}(\mu_{b}) + \frac{C_{5}(\mu_{b})}{N}\right)F_{\perp} + \frac{C_{F}}{N}\frac{\alpha_{s}(\mu_{b})}{4\pi}\left\{\left(\frac{m_{b}}{m_{B}}\right)^{2}C_{8}(\mu_{b})X_{\perp}\right) - C_{2}(\mu_{b})\left[\left(\frac{4}{3}\ln\frac{m_{b}}{\mu_{b}} + \frac{2}{3}\right)F_{\perp} - G_{\perp}(x_{cb})\right] + r_{1}\right\} + \left(C_{i}\leftrightarrow C_{i}'\right),$$

$$K_{2q} = \frac{V_{us}^{*}V_{ub}}{V_{cs}^{*}V_{cb}}\left(C_{2}(\mu_{b}) + \frac{C_{1}(\mu_{b})}{N}\right)\delta_{qu} + \left(C_{4}(\mu_{b}) + \frac{C_{3}(\mu_{b})}{N}\right) + \frac{C_{F}}{N}\frac{\alpha_{s}(\mu_{b})}{4\pi}\left[C_{2}(\mu_{b})\left(\frac{4}{3}\ln\frac{m_{b}}{\mu_{b}} + \frac{2}{3} - H_{\perp}(x_{cb})\right) + r_{2}\right] + \left(C_{i}\leftrightarrow C_{i}'\right),$$

$$(412)$$

where $x_{cb} = \frac{m_c^2}{m_b^2}$ and N = 3 and $C_F = 4/3$ are colour factors, and:

$$r_{1} = \left[\frac{8}{3}C_{3}(\mu_{b}) + \frac{4}{3}n_{f}\left(C_{4}(\mu_{b}) + C_{6}(\mu_{b})\right) - 8\left(NC_{6}(\mu_{b}) + C_{5}(\mu_{b})\right)\right]F_{\perp}\ln\frac{\mu_{b}}{\mu_{0}} + \dots,$$

$$r_{2} = \left[-\frac{44}{3}C_{3}(\mu_{b}) - \frac{4}{3}n_{f}\left(C_{4}(\mu_{b}) + C_{6}(\mu_{b})\right)\right]\ln\frac{\mu_{b}}{\mu_{0}} + \dots.$$
(414)

Here the number of flavours $n_f = 5$, and $\mu_0 = O(m_b)$ is an arbitrary normalization scale. The coefficient a_7^c reads [60]:

$$a_{7}^{c}(K^{*}\gamma) = C_{7}(\mu_{b}) + \frac{\alpha_{s}(\mu_{b})C_{F}}{4\pi} \Big[C_{2}(\mu_{b})G_{2}(x_{cb}) + C_{8}(\mu_{b})G_{8} \Big] + \frac{\alpha_{s}(\mu_{h})C_{F}}{4\pi} \Big[C_{2}(\mu_{h})H_{2}(x_{cb}) + C_{8}(\mu_{h})H_{8} \Big] + \big(C_{i} \leftrightarrow C_{i}'\big) , \qquad (415)$$

where $\mu_h = \sqrt{\Lambda_h \mu_b}$ is the spectator scale, and

$$G_2(x_{cb}) = -\frac{104}{27} \ln \frac{\mu_b}{m_b} + g_2(x_{cb}) , \qquad (416)$$

$$G_8 = \frac{8}{3} \ln \frac{\mu_b}{m_b} + g_8 , \qquad (417)$$

with

$$g_8 = \frac{11}{3} - \frac{2\pi^2}{9} + \frac{2i\pi}{3} , \qquad (418)$$

$$g_2(x) = \frac{2}{9} x \Big[48 + 30i\pi - 5\pi^2 - 2i\pi^3 - 36\zeta(3) + (36 + 6i\pi - 9\pi^2) \ln x \qquad (419) \\ + (3 + 6i\pi) \ln^2 x + \ln^3 x \Big]$$

$$\begin{aligned} &+\frac{2}{9} x^2 \Big[18 + 2\pi^2 - 2i\pi^3 + (12 - 6\pi^2) \ln x + 6i\pi \ln^2 x + \ln^3 x \Big] \\ &+\frac{1}{27} x^3 \Big[-9 + 112i\pi - 14\pi^2 + (182 - 48i\pi) \ln x - 126 \ln^2 x \Big] \\ &-\frac{833}{162} - \frac{20i\pi}{27} + \frac{8\pi^2}{9} x^{3/2} , \end{aligned}$$

where $\zeta(3)$ is given in Eq. (15). The function $H_2(x)$ in Eq. (415) is defined as:

$$H_2(x) = -\frac{2\pi^2}{3N} \frac{f_B f_{K^*}^{\perp}}{T_1^{B \to K^*} m_B^2} \int_0^1 d\xi \frac{\Phi_{B1}(\xi)}{\xi} \int_0^1 dv \, h(\bar{v}, x) \Phi_{\perp}(v) , \qquad (420)$$

where h(u, x) is the hard-scattering function:

$$h(u,x) = \frac{4x}{u^2} \left[\operatorname{Li}_2\left(\frac{2}{1-\sqrt{\frac{u-4x+i\varepsilon}{u}}}\right) + \operatorname{Li}_2\left(\frac{2}{1+\sqrt{\frac{u-4x+i\varepsilon}{u}}}\right) \right] - \frac{2}{u}, \quad (421)$$

and Li₂ is the usual dilogarithm function given in Eq. (32). Φ_{\perp} is the light-cone wave function with transverse polarization, which can be written in the form [61]:

$$\Phi_{\perp}(u) = 6u\bar{u} \left[1 + 3a_1^{\perp}\xi + a_2^{\perp}\frac{3}{2}(5\xi^2 - 1) \right] , \qquad (422)$$

where $\bar{u} = 1 - u$ and $\xi = 2u - 1$, and Φ_{B1} is the distribution amplitude of the *B* meson involved in the leading-twist projection. Finally:

$$H_8 = \frac{4\pi^2}{3N} \frac{f_B f_{K^*}^{\perp}}{T_1^{B \to K^*} m_B^2} \int_0^1 d\xi \frac{\Phi_{B1}(\xi)}{\xi} \int_0^1 dv \frac{\Phi_{\perp}(v)}{v} \,. \tag{423}$$

The first negative moment of Φ_{B1} can be parametrized by the quantity λ_B such as

$$\int_{0}^{1} d\xi \frac{\Phi_{B1}(\xi)}{\xi} = \frac{m_B}{\lambda_B} \,. \tag{424}$$

The convolution integrals of the hard-scattering kernels with the meson distribution amplitudes are as follows:

$$F_{\perp} = \int_{0}^{1} dx \, \frac{\phi_{\perp}(x)}{3\bar{x}} ,$$

$$G_{\perp}(s_{c}) = \int_{0}^{1} dx \, \frac{\phi_{\perp}(x)}{3\bar{x}} \, G(s_{c}, \bar{x}) ,$$

$$H_{\perp}(s_{c}) = \int_{0}^{1} dx \left(g_{\perp}^{(v)}(x) - \frac{g_{\perp}^{\prime(a)}(x)}{4} \right) G(s_{c}, \bar{x}) ,$$

$$X_{\perp} = \int_{0}^{1} dx \, \phi_{\perp}(x) \, \frac{1 + \bar{x}}{3\bar{x}^{2}} ,$$
(425)

with $s_c = (m_c/m_b)^2$, and

$$G(s,\bar{x}) = -4 \int_0^1 du \, u\bar{u} \, \ln(s - u\bar{u}\bar{x} - i\epsilon) \,, \tag{426}$$

and the Gegenbauer momenta read [61]:

$$g_{\perp}^{(a)}(u) = 6u\bar{u}\left\{1 + a_{1}^{\parallel}\xi + \left[\frac{1}{4}a_{2}^{\parallel} + \frac{5}{3}\zeta_{3}^{A}\left(1 - \frac{3}{16}\omega_{1,0}^{A}\right) + \frac{35}{4}\zeta_{3}^{V}\right](5\xi^{2} - 1)\right\} (427)$$

$$+6\,\tilde{\delta}_{+}\left(3u\bar{u} + \bar{u}\ln\bar{u} + u\ln u\right) + 6\,\tilde{\delta}_{-}\left(\bar{u}\ln\bar{u} - u\ln u\right),$$

$$g_{\perp}^{(v)}(u) = \frac{3}{4}(1 + \xi^{2}) + a_{1}^{\parallel}\frac{3}{2}\xi^{3} + \left(\frac{3}{7}a_{2}^{\parallel} + 5\zeta_{3}^{A}\right)\left(3\xi^{2} - 1\right)$$

$$+ \left(\frac{9}{112}a_{2}^{\parallel} + \frac{105}{16}\zeta_{3}^{V} - \frac{15}{64}\zeta_{3}^{A}\omega_{1,0}^{A}\right)\left(3 - 30\xi^{2} + 35\xi^{4}\right)$$

$$+ \frac{3}{2}\tilde{\delta}_{+}\left(2 + \ln u + \ln\bar{u}\right) + \frac{3}{2}\tilde{\delta}_{-}\left(2\xi + \ln\bar{u} - \ln u\right).$$

To compute X_{\perp} , the parameter $X = \ln(m_B/\Lambda_h) (1 + \varrho e^{i\varphi})$ is introduced to parametrize the logarithmically divergent integral $\int_0^1 dx/(1-x)$. $\varrho \leq 1$ and the phase φ are arbitrary, and $\Lambda_h \approx 0.5$ GeV is a typical hadronic scale. The remaining parameters are given in Appendix G.

SuperIso first computes numerically all the integrals and the Wilson coefficients, and then calculates the isospin asymmetry of $B \to K^* \gamma$ using all the above equations.

E.3 $B \to X_s \ell^+ \ell^-$

The decay $B \to X_s \ell^+ \ell^-$ with $\ell = e, \mu$, or τ , is particularly attractive because of kinematic observables such as the dilepton invariant mass spectrum and the forward-backward asymmetry ($A_{\rm FB}$), and plays a complementary role to the inclusive $B \to X_s \gamma$ decay.
E.3.1 Main formulas

The implementation of $B \to X_s \ell^+ \ell^-$ is following [45]⁵. The higher order and power corrections are implemented following [62], and the electromagnetic logarithmically enhanced corrections are taken from [63, 64].

The differential decay rate can then be written as:

$$\begin{aligned} \frac{d\mathcal{B}(B \to X_{s}\ell^{+}\ell^{-})}{d\hat{s}} &= \mathcal{B}(B \to X_{c}l\bar{\nu})\frac{\alpha^{2}}{4\pi^{2}f(z)\kappa(z)}\frac{|V_{tb}V_{ts}^{*}|^{2}}{|V_{cb}|^{2}}(1-\hat{s})^{2}\sqrt{1-\frac{4\hat{m}_{\ell}^{2}}{\hat{s}}} \quad (429)\\ &\times \left\{ |C_{9}^{new}|^{2}(1+\frac{2\hat{m}_{\ell}^{2}}{\hat{s}})(1+2\hat{s})\left(1+\frac{\alpha_{s}}{\pi}\tau_{99}(\hat{s})\right) \right.\\ &+ 4|C_{7}^{new}|^{2}(1+\frac{2\hat{m}_{\ell}^{2}}{\hat{s}})(1+\frac{2}{\hat{s}})\left(1+\frac{\alpha_{s}}{\pi}\tau_{77}(\hat{s})\right) \\ &+ |C_{10}^{new}|^{2}[(1+2\hat{s})+\frac{2\hat{m}_{\ell}^{2}}{\hat{s}}(1-4\hat{s})]\left(1+\frac{\alpha_{s}}{\pi}\tau_{99}(\hat{s})\right) \\ &+ 12\text{Re}(C_{7}^{new}C_{9}^{new*})(1+\frac{2\hat{m}_{\ell}^{2}}{\hat{s}})\left(1+\frac{\alpha_{s}}{\pi}\tau_{79}(\hat{s})\right) \\ &+ \frac{3}{2}|C_{Q_{1}}|^{2}(\hat{s}-4\hat{m}_{\ell}^{2})+\frac{3}{2}|C_{Q_{2}}|^{2}\hat{s}+6Re(C_{10}^{new}C_{Q_{2}}^{*})\hat{m}_{\ell}\right\} \\ &+ \delta_{d\mathcal{B}/d\hat{s}}^{brems,A}+\delta_{d\mathcal{B}/d\hat{s}}^{brems,B}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}+\delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}, \\ &= \frac{d\mathcal{B}_{0}}{d\hat{s}}+\delta_{d\mathcal{B}/d\hat{s}}, \end{aligned}$$

where

$$\hat{m}_i \equiv \frac{m_i}{m_{b,pole}} , \qquad (430)$$

$$\hat{s} \equiv \frac{s}{m_{b,pole}^2} , \qquad (431)$$

$$z = m_c^2 / m_b^2 , (432)$$

and

$$f(z) = 1 - 8z + 8z^3 - z^4 - 12z^2 \ln z , \qquad (433)$$

$$\kappa(z) = 1 - \frac{2\alpha_s(m_b)}{3\pi} \frac{h(z)}{f(z)}, \qquad (434)$$

⁵Note that O_8 and O_9 in and [45] correspond to O_9 and O_{10} respectively in the recent literature and in this manuscript.

with

$$h(z) = -(1-z^2) \left(\frac{25}{4} - \frac{239}{3}z + \frac{25}{4}z^2\right) + z \ln(z) \left(20 + 90z - \frac{4}{3}z^2 + \frac{17}{3}z^3\right)$$
(435)
+ $z^2 \ln^2(z) \left(36 + z^2\right) + (1-z^2) \left(\frac{17}{3} - \frac{64}{3}z + \frac{17}{3}z^2\right) \ln(1-z)$
- $4 \left(1 + 30z^2 + z^4\right) \ln(z) \ln(1-z) - (1 + 16z^2 + z^4) \left(6 \operatorname{Li}(z) - \pi^2\right)$
- $32z^{3/2}(1+z) \left[\pi^2 - 4\operatorname{Li}(\sqrt{z}) + 4\operatorname{Li}(-\sqrt{z}) - 2\ln(z) \ln\left(\frac{1-\sqrt{z}}{1+\sqrt{z}}\right)\right].$

We also give the forward-backward asymmetry in $B \to X_s \ell^+ \ell^-$:

$$\begin{aligned} A_{FB}(\hat{s}) &= \int_{0}^{1} dz \frac{d^{2}\mathcal{B}}{d\hat{s}dz} - \int_{-1}^{0} dz \frac{d^{2}\mathcal{B}}{d\hat{s}dz} \end{aligned} \tag{436} \\ &= -\mathcal{B}(B \to X_{c} l\bar{\nu}) \frac{3\alpha^{2}}{4\pi^{2} f(z)\kappa(z)} \frac{|V_{tb}V_{ts}^{*}|^{2}}{|V_{cb}|^{2}} (1-\hat{s})^{2} (1-\frac{4\hat{m}_{\ell}^{2}}{\hat{s}}) \\ &\times \left\{ \operatorname{Re}(C_{9}^{new}C_{10}^{new*}) \hat{s} \left(1 + \frac{\alpha_{s}}{\pi} \tau_{910}(\hat{s}) \right) + 2\operatorname{Re}(C_{7}^{new}C_{10}^{new*}) \left(1 + \frac{\alpha_{s}}{\pi} \tau_{710}(\hat{s}) \right) \right. \\ &+ \operatorname{Re}(C_{9}^{new}C_{Q_{1}}^{*}) \hat{m}_{\ell} + 2\operatorname{Re}(C_{7}^{new}C_{Q_{1}}^{*}) \hat{m}_{\ell} \right\} \\ &+ \delta_{A_{FB}}^{1/m_{b}^{2}}(\hat{s}) + \delta_{A_{FB}}^{1/m_{c}^{2}}(\hat{s}) + \delta_{A_{FB}}^{brems}(\hat{s}) + \delta_{A_{FB}}^{em}(\hat{s}) \\ &+ (C_{i} \leftrightarrow C_{i}') \\ &\equiv A_{0FB} + \delta_{A_{FB}} , \end{aligned}$$

where [65]:

$$B(B \to X_c l \bar{\nu}) = (10.64 \pm 0.17 \pm 0.06)\%$$
 (437)

f(z) and $\kappa(z)$ are given in Eqs. (433) and (434). Also:

$$\tau_{77}(s) = -\frac{2}{9(2+s)} \left[2(1-s)^2 \ln(1-s) + \frac{6s(2-2s-s^2)}{(1-s)^2} \ln(s) + \frac{11-7s-10s^2}{(1-s)} \right] (438)$$

$$\tau_{99}(s) = -\frac{4}{9(1+2s)} \left[2(1-s)^2 \ln(1-s) + \frac{3s(1+s)(1-2s)}{(1-s)^2} \ln(s) + \frac{3(1-3s^2)}{1-s} \right] (439)$$

$$\tau_{79}(s) = -\frac{4(1-s)^2}{9s}\ln(1-s) - \frac{4s(3-2s)}{9(1-s)^2}\ln(s) - \frac{2(5-3s)}{9(1-s)}$$
(440)

$$\tau_{710}(s) = -\frac{5}{2} + \frac{1}{3(1-3s)} - \frac{1}{3} \frac{s(6-7s)\ln(s)}{(1-s)^2} - \frac{1}{9} \frac{(3-7s+4s^2)\ln(1-s)}{s} + \frac{f_7(s)}{3}$$
(441)

$$\tau_{910}(s) = -\frac{5}{2} + \frac{1}{3(1-s)} - \frac{1}{3} \frac{s(6-7s)\ln(s)}{((1-s)^2)} - \frac{2}{9} \frac{(3-5s+2s^2)\ln(1-s)}{s} + \frac{f_9(s)}{3}$$
(442)

where

$$f_{7}(s) = \frac{1}{6(s-1)^{2}} \Big\{ 24(1+13s-4s^{2}) \operatorname{Li}_{2}(\sqrt{s}) + 12(1-17s+6s^{2}) \operatorname{Li}_{2}(s) + 6s(6-7s) \ln(s) \\ + 24(1-s)^{2} \ln(s) \ln(1-s) + 12(-13+16s-3s^{2}) [\ln(1-\sqrt{s}) - \ln(1-s)] \\ + 39 - 2\pi^{2} + 252s - 26\pi^{2}s + 21s^{2} + 8\pi^{2}s^{2} - 180\sqrt{s} - 132s\sqrt{s} \Big\},$$
(443)

$$f_{9}(s) = -\frac{1}{6(s-1)^{2}} \Big\{ 48s(-5+2s)\operatorname{Li}_{2}(\sqrt{s}) + 24(-1+7s-3s^{2})\operatorname{Li}_{2}(s) + 6s(-6+7s)\ln(s) \\ -24(1-s)^{2}\ln(s)\ln(1-s) + 24(5-7s+2s^{2})[\ln(1-\sqrt{s}) - \ln(1-s)] \\ -21 - 156s + 20\pi^{2}s + 9s^{2} - 8\pi^{2}s^{2} + 120\sqrt{s} + 48s\sqrt{s} \Big\} .$$

$$(444)$$

 and^6

$$C_7^{new}(s) = \left(1 + \frac{\alpha_s}{\pi}\sigma_7(s)\right)C_7^{\text{eff}} - \frac{\alpha_s}{4\pi}\left[C_1^{(0)}F_1^{(7)}(s) + C_2^{(0)}F_2^{(7)}(s) + C_8^{\text{eff}(0)}F_8^{(7)}(s)\right]$$
(445)

$$C_9^{new}(s) = \left(1 + \frac{\alpha_s}{\pi}\sigma_9(s)\right)C_9^{\text{eff}}(s) - \frac{\alpha_s}{4\pi} \left[C_1^{(0)}F_1^{(9)}(s) + C_2^{(0)}F_2^{(9)}(s) + C_8^{\text{eff}(0)}F_8^{(9)}(s)\right](446)$$

$$C_{10}^{new}(s) = \left(1 + \frac{\alpha_s}{\pi}\sigma_9(s)\right) C_{10}^{\text{eff}} .$$
(447)

In the above formulas⁷ [62]:

$$\sigma_9(s) = \sigma(s) + \frac{3}{2},$$
 (448)

$$\sigma_7(s) = \sigma(s) + \frac{1}{6} - \frac{8}{3} \ln\left(\frac{\mu}{m_b}\right) , \qquad (449)$$

$$\sigma(s) = -\frac{4}{3}\text{Li}_2(s) - \frac{2}{3}\ln(s)\ln(1-s) - \frac{2}{9}\pi^2 - \ln(1-s) - \frac{2}{9}(1-s)\ln(1-s) \quad (450)$$

⁶The C_i^{eff} are the same as the \tilde{C}_i^{eff} in [62]. C_7^{eff} is the same as A_7 in [66,67]. ⁷The ω_i in [66,67] can be written as $\omega_7 = \sigma_7 + \tau_{77}/2$, $\omega_9 = \sigma_9 + \tau_{99}/2$ and $\omega_{79} = (\sigma_7 + \sigma_9 + \tau_{79})/2$.

and

$$C_7^{\text{eff}} = C_7(\mu) - \frac{1}{3}C_3(\mu) - \frac{4}{9}C_4(\mu) - \frac{20}{3}C_5(\mu) - \frac{80}{9}C_6(\mu) , \qquad (451)$$

$$C_8^{\text{eff}} = C_8(\mu) + C_3(\mu) - \frac{1}{6}C_4(\mu) + 20C_5(\mu) - \frac{10}{3}C_6(\mu) , \qquad (452)$$

$$C_{9}^{\text{eff}}(s) = C_{9}(\mu) + \sum_{i=1}^{6} C_{i}(\mu)\gamma_{i9}^{(0)}\ln\left(\frac{m_{b}}{\mu}\right) + \frac{4}{3}C_{3}(\mu) + \frac{64}{9}C_{5}(\mu) + \frac{64}{27}C_{6}(\mu) \quad (453)$$

$$+ g\left(\hat{m}_{c},s\right)\left(\frac{4}{3}C_{1}(\mu) + C_{2}(\mu) + 6C_{3}(\mu) + 60C_{5}(\mu)\right)$$

$$+ g\left(1,s\right)\left(-\frac{7}{2}C_{3}(\mu) - \frac{2}{3}C_{4}(\mu) - 38C_{5}(\mu) - \frac{32}{3}C_{6}(\mu)\right)$$

$$+ g\left(0,s\right)\left(-\frac{1}{2}C_{3}(\mu) - \frac{2}{3}C_{4}(\mu) - 8C_{5}(\mu) - \frac{32}{3}C_{6}(\mu)\right), \quad (454)$$

where

$$g(z,s) = -\frac{4}{9}\ln(z) + \frac{8}{27} + \frac{16}{9}\frac{z}{s} - \frac{2}{9}\left(2 + \frac{4z}{s}\right)\sqrt{\left|\frac{4z-s}{s}\right|}$$
(455)

$$\times \begin{cases} 2\arctan\sqrt{\frac{s}{4z-s}} & \text{for } s < 4z, \\ \ln\left(\frac{\sqrt{s}+\sqrt{s-4z}}{\sqrt{s}-\sqrt{s-4z}}\right) - i\pi & \text{for } s > 4z. \end{cases}$$

The virtual corrections to $O_{1,2}$ and O_8 are embedded in $F_{1,2}^{(7,9)}$ and $F_8^{(7,9)}$. They are given in [66,67] for small s (0.05 $\leq s/m_b^2 \leq 0.25$) and in [68] for large s. The small s results are reproduced in the following whereas the large s results are taken from the code provided in [68].

$$F_8^{(7)} = \frac{4\pi^2}{27} \frac{(2+\hat{s})}{(1-\hat{s})^4} - \frac{4}{9} \frac{(11-16\hat{s}+8\hat{s}^2)}{(1-\hat{s})^2} - \frac{8}{9} \frac{\sqrt{\hat{s}}\sqrt{4-\hat{s}}}{(1-\hat{s})^3} (9-5\hat{s}+2\hat{s}^2) \arcsin\left(\frac{\sqrt{\hat{s}}}{2}\right) - \frac{16}{3} \frac{2+\hat{s}}{(1-\hat{s})^4} \arcsin^2\left(\frac{\sqrt{\hat{s}}}{2}\right) - \frac{8\hat{s}}{9(1-\hat{s})} \ln \hat{s} - \frac{32}{9} \ln \frac{\mu}{m_b} - \frac{8}{9} i\pi , \qquad (456)$$

$$F_8^{(9)} = -\frac{8\pi^2}{27} \frac{(4-\hat{s})}{(1-\hat{s})^4} + \frac{8}{9} \frac{(5-2\hat{s})}{(1-\hat{s})^2} + \frac{16}{9} \frac{\sqrt{4-\hat{s}}}{\sqrt{\hat{s}}(1-\hat{s})^3} (4+3\hat{s}-\hat{s}^2) \arcsin\left(\frac{\sqrt{\hat{s}}}{2}\right) + \frac{32}{3} \frac{(4-\hat{s})}{(1-\hat{s})^4} \arcsin^2\left(\frac{\sqrt{\hat{s}}}{2}\right) + \frac{16}{9(1-\hat{s})} \ln \hat{s} .$$

$$(457)$$

Defining $L_s = \ln(\hat{s})$, $L_{\mu} = \ln\left(\frac{\mu}{m_b}\right)$ and $L_c = \ln\left(\frac{m_c}{m_b}\right) = \ln(\hat{m}_c) = L_z/2$:

$$F_{1}^{(9)} = \left(-\frac{1424}{729} + \frac{16}{243}i\pi + \frac{64}{27}L_{c}\right)L_{\mu} - \frac{16}{243}L_{\mu}L_{s} + \left(\frac{16}{1215} - \frac{32}{135}z^{-1}\right)L_{\mu}\hat{s} \quad (458)$$

$$+ \left(\frac{4}{2835} - \frac{8}{315}z^{-2}\right)L_{\mu}\hat{s}^{2} + \left(\frac{16}{76545} - \frac{32}{8505}z^{-3}\right)L_{\mu}\hat{s}^{3} - \frac{256}{243}L_{\mu}^{2} + f_{1}^{(9)},$$

$$F_{2}^{(9)} = \left(\frac{256}{243} - \frac{32}{81}i\pi - \frac{128}{9}L_{c}\right)L_{\mu} + \frac{32}{81}L_{\mu}L_{s} + \left(-\frac{32}{405} + \frac{64}{45}z^{-1}\right)L_{\mu}\hat{s} \quad (459)$$

$$+ \left(-\frac{8}{945} + \frac{16}{105}z^{-2}\right)L_{\mu}\hat{s}^{2} + \left(-\frac{32}{25515} + \frac{64}{2835}z^{-3}\right)L_{\mu}\hat{s}^{3} + \frac{512}{81}L_{\mu}^{2} + f_{2}^{(9)},$$

$$F_{1}^{(7)} = -\frac{208}{243}L_{\mu} + f_{1}^{(7)}, \quad (460)$$

$$F_2^{(7)} = \frac{416}{81} L_\mu + f_2^{(7)} .$$
(461)

The analytic results for $f_1^{(9)}$, $f_1^{(7)}$, $f_2^{(9)}$, and $f_2^{(7)}$ are rather lengthy. They are decomposed as:

$$f_a^{(b)} = \sum_{i,j,l,m} \kappa_{a,ijlm}^{(b)} \hat{s}^i L_s^j z^l L_c^m + \sum_{i,j} \rho_{a,ij}^{(b)} \hat{s}^i L_s^j .$$
(462)

The quantities $\rho_{a,ij}^{(b)}$ collect the half-integer powers of $z = m_c^2/m_b^2 = \hat{m}_c^2$. This way, the summation indices in the above equation run over integers only. The coefficients $\kappa_{a,ijlm}^{(b)}$ and $\rho_{a,ij}^{(b)}$ are listed in the appendix of [68].

E.3.2 Λ^2_{QCD}/m^2_b and Λ^3_{QCD}/m^3_b corrections

These corrections read [62]

$$\begin{split} \delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{2}}(s) &= \frac{3\lambda_{2}}{2m_{b}^{2}} \Biggl\{ \frac{\alpha^{2}}{4\pi^{2}} \left| \frac{V_{ts}}{V_{cb}} \right|^{2} \frac{\mathcal{B}(B \to X_{c} l \bar{\nu})}{f(z) \kappa(z)} \Biggl(-(6+3s-5s^{3}) \frac{4|C_{7}^{\text{new}}(s)|^{2}}{s} \Biggr) + (1-15s^{2}+10s^{3}) \left[|C_{9}^{\text{new}}(s)|^{2} + |C_{10}^{\text{new}}(s)|^{2} \right] \\ &- 4(5+6s-7s^{2}) Re \left[C_{7}^{\text{new}}(s) C_{9}^{\text{new}}(s)^{*} \right] \Biggr) + \frac{g_{\lambda}(z)}{f(z)} \frac{d\mathcal{B}_{0}}{d\hat{s}} \Biggr\} , \\ \delta_{A_{FB}}^{1/m_{b}^{2}}(s) &= \frac{3\lambda_{2}}{2m_{b}^{2}} \Biggl\{ \frac{\alpha^{2}}{4\pi^{2}} \left| \frac{V_{ts}}{V_{cb}} \right|^{2} \frac{\mathcal{B}(B \to X_{c} l \bar{\nu})}{f(z) \kappa(z)} \Biggl(s \operatorname{Re} \left[C_{10}^{\text{new}}(s)^{*} C_{9}^{\text{new}}(s) \right] (9+14s-15s^{2}) \\ &+ 2\operatorname{Re} \left[C_{10}^{\text{new}}(s)^{*} C_{7}^{\text{new}}(s) \right] (7+10s-9s^{2}) \Biggr) + \frac{g_{\lambda}(z)}{f(z)} A_{0FB}(s) \Biggr\}$$
(464)
$$&+ \frac{4\lambda_{1}}{3m_{b}^{2}} \frac{s}{(1-s)^{2}} A_{0FB}(s) , \end{split}$$

with

$$g_{\lambda}(z) = 3 - 8z + 24z^2 - 24z^3 + 5z^4 + 12z^2 \ln z , \qquad (465)$$

and

$$\begin{split} \delta_{d\mathcal{B}/d\hat{s}}^{1/m_{b}^{3}}(s) &= -\frac{\rho_{1}}{m_{b}^{3}} \Biggl\{ \frac{g_{\rho}(z)}{6f(z)} \frac{d\mathcal{B}_{0}}{d\hat{s}} + \frac{\alpha^{2}}{4\pi^{2}} \left| \frac{V_{ts}}{V_{cb}} \right|^{2} \frac{\mathcal{B}(B \to X_{c}l\bar{\nu})}{f(z)\kappa(z)} \\ & \times \left(\left[\frac{5s^{4} + 19s^{3} + 9s^{2} - 7s + 22}{6(1-s)} + 8\Delta(f_{1})\delta(1-s) \right] \frac{4|C_{7}^{\text{new}}(s)|^{2}}{s} \right. \\ & \left. + \left[\frac{10s^{4} + 23s^{3} - 9s^{2} + 13s + 11}{6(1-s)} + 8\Delta(f_{1})\delta(1-s) \right] \left[|C_{9}^{\text{new}}(s)|^{2} + |C_{10}^{\text{new}}(s)|^{2} \right] \\ & \left. + 4 \left[\frac{-3s^{3} + 17s^{2} - s + 3}{2(1-s)} + 8\Delta(f_{1})\delta(1-s) \right] Re\left[C_{7}^{\text{new}}(s)C_{9}^{\text{new}}(s)^{*} \right] \Biggr\} \,, \end{split}$$

where

$$g_{\rho}(z) = 77 - 88z + 24z^2 - 8z^3 + 5z^4 + 48\ln z + 36z^2\ln z$$
(467)

arises from the semileptonic normalization and $\Delta(f_1)$ is a local contribution that cures the singularity for $s \to 1$.

E.3.3 Λ^2_{QCD}/m_c^2 correction

These corrections read [62]

$$\begin{split} \delta_{d\mathcal{B}/d\hat{s}}^{1/m_{c}^{2}}(s) &= \frac{8\lambda_{2}}{9m_{c}^{2}} \frac{\alpha^{2}}{4\pi^{2}} \left| \frac{V_{cs}^{*}V_{ts}}{V_{cb}^{*}V_{tb}} \right| \frac{(1-s)^{2}}{f(z)\kappa(z)} \mathcal{B}(B \to X_{c}l\bar{\nu}) \end{split}$$
(468)
 $\times Re \left[\frac{1+6s-s^{2}}{s} F\left(\frac{s}{4z}\right) C_{2}C_{7}^{\mathrm{new}}(s)^{*} + (2+s)F\left(\frac{s}{4z}\right) C_{2}C_{9}^{\mathrm{new}}(s)^{*} \right],$
 $\delta_{A_{FB}}^{1/m_{c}^{2}}(s) &= -\frac{\lambda_{2}}{3m_{c}^{2}} \frac{\alpha^{2}}{4\pi^{2}} \left| \frac{V_{cs}^{*}V_{ts}}{V_{cb}^{*}V_{tb}} \right| \frac{(1-s)^{2}}{f(z)\kappa(z)} \mathcal{B}(B \to X_{c}l\bar{\nu})$ (469)
 $\times Re \left[(1+3s)F\left(\frac{s}{4z}\right) C_{2}C_{10}^{\mathrm{new}}(s)^{*} \right],$

where

$$F(r) = \frac{3}{2r} \begin{cases} \frac{1}{\sqrt{r(1-r)}} \arctan \sqrt{\frac{r}{1-r}} - 1 & 0 < r < 1 ,\\ \frac{1}{2\sqrt{r(r-1)}} \left(\ln \frac{1-\sqrt{1-1/r}}{1+\sqrt{1-1/r}} + i\pi \right) - 1 & r > 1 . \end{cases}$$
(470)

The input values of the HQET parameters are:

$ar{\Lambda}$	$\lambda_1^{ m eff}({ m GeV^2})$	$\lambda_2^{\rm eff}({ m GeV^2})$	$\rho_1 (\text{GeV}^3)$
0.40 ± 0.10	-0.15 ± 0.10	0.12 ± 0.02	0.06 ± 0.06

E.3.4 Bremsstrahlung contributions

The sum of the bremsstrahlung contributions from $O_7 - O_8$ and $O_8 - O_9$ interference terms as well as the $O_8 - O_8$ can be written as [69]:

$$\delta_{d\mathcal{B}/d\hat{s}}^{brems,A} = \left(\frac{\alpha}{4\pi}\right)^2 \left(\frac{\alpha_s}{4\pi}\right) \frac{m_{b,pole}^5 |V_{ts}^* V_{tb}|^2 G_F^2}{48\pi^3} \left(2\operatorname{Re}\left[c_{78}\tau_{78} + c_{89}\tau_{89}\right] + c_{88}\tau_{88}\right).$$
(471)

Using $\Gamma(B \to X_c l\nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 f(z) \kappa(z)$ the above expression can be written as

$$\delta_{d\mathcal{B}/d\hat{s}}^{brems,\mathbf{A}} = 4\left(\frac{\alpha}{4\pi}\right)^2 \left(\frac{\alpha_s}{4\pi}\right) \left|\frac{V_{ts}^* V_{tb}}{V_{cb}}\right|^2 \frac{\mathcal{B}(B \to X_c l\bar{\nu})}{f(z)\kappa(z)} \left(2\operatorname{Re}\left[c_{78}\,\tau_{78} + c_{89}\,\tau_{89}\right] + c_{88}\,\tau_{88}\right) \,. \tag{472}$$

The coefficients c_{ij} are given by

$$c_{78} = C_F \cdot C_7^{(0,eff)} C_8^{(0,eff)*}, \quad c_{89} = C_F \cdot C_8^{(0,eff)} C_9^{(0,eff)*}, \quad c_{88} = C_F \cdot \left| C_8^{(0,eff)} \right|^2, \quad (473)$$

while the quantities τ_{ij} read

$$\begin{aligned} \tau_{78} &= \frac{8}{9\,\hat{s}} \left\{ 25 - 2\,\pi^2 - 27\,\hat{s} + 3\,\hat{s}^2 - \hat{s}^3 + 12\,\left(\hat{s} + \hat{s}^2\right)\,\ln(\hat{s}) \end{aligned} \tag{474} \\ &+ 6\left(\frac{\pi}{2} - \arctan\left[\frac{2 - 4\,\hat{s} + \hat{s}^2}{(2 - \hat{s})\sqrt{\hat{s}}\sqrt{4 - \hat{s}}}\right]\right)^2 - 24\,\mathrm{Re}\left(\mathrm{Li}_2\left[\frac{\hat{s} - i\sqrt{\hat{s}}\sqrt{4 - \hat{s}}}{2}\right]\right) \\ &- 12\left((1 - \hat{s})\sqrt{\hat{s}}\sqrt{4 - \hat{s}} - 2\arctan\left[\frac{\sqrt{\hat{s}}\sqrt{4 - \hat{s}}}{2 - \hat{s}}\right]\right) \\ &\times \left(\arctan\left[\sqrt{\frac{4 - \hat{s}}{\hat{s}}}\right] - \arctan\left[\frac{\sqrt{\hat{s}}\sqrt{4 - \hat{s}}}{2 - \hat{s}}\right]\right) \right\}, \end{aligned}$$

$$\tau_{88} &= \frac{4}{27\,\hat{s}}\left\{-8\,\pi^2 + (1 - \hat{s})\left(77 - \hat{s} - 4\,\hat{s}^2\right) - 24\,\mathrm{Li}_2(1 - \hat{s}) \\ &+ 3\left(10 - 4\,\hat{s} - 9\,\hat{s}^2 + 8\ln\left[\frac{\sqrt{\hat{s}}}{1 - \hat{s}}\right]\right)\ln(\hat{s}) + 48\,\mathrm{Re}\left(\mathrm{Li}_2\left[\frac{3 - \hat{s}}{2} + i\,\frac{(1 - \hat{s})\sqrt{4 - \hat{s}}}{2\sqrt{\hat{s}}}\right]\right) \\ &- 6\left(\frac{20\,\hat{s} + 10\,\hat{s}^2 - 3\,\hat{s}^3}{\sqrt{\hat{s}}\sqrt{4 - \hat{s}}} - 8\,\pi + 8\,\arctan\left[\sqrt{\frac{4 - \hat{s}}{\hat{s}}}\right]\right) \\ &\times \left(\arctan\left[\sqrt{\frac{4 - \hat{s}}{\hat{s}}}\right] - \arctan\left[\frac{\sqrt{\hat{s}}\sqrt{4 - \hat{s}}}{2 - \hat{s}}\right]\right)\right\}, \end{aligned}$$

$$\tau_{89} = \frac{2}{3} \left\{ \hat{s} (4-\hat{s}) - 3 - 4 \ln(\hat{s}) \left(1 - \hat{s} - \hat{s}^2\right) - 8 \operatorname{Re} \left(\operatorname{Li}_2 \left[\frac{\hat{s}}{2} + i \frac{\sqrt{\hat{s}} \sqrt{4 - \hat{s}}}{2} \right] - \operatorname{Li}_2 \left[\frac{-2 + \hat{s} (4-\hat{s})}{2} + i \frac{(2-\hat{s})\sqrt{\hat{s}} \sqrt{4 - \hat{s}}}{2} \right] \right) + 4 \left(\hat{s}^2 \sqrt{\frac{4-\hat{s}}{\hat{s}}} + 2 \arctan \left[\frac{\sqrt{\hat{s}} \sqrt{4 - \hat{s}}}{2 - \hat{s}} \right] \right) \times \left(\arctan \left[\sqrt{\frac{4-\hat{s}}{\hat{s}}} \right] - \arctan \left[\frac{\sqrt{\hat{s}} \sqrt{4 - \hat{s}}}{2 - \hat{s}} \right] \right) \right\}.$$
(476)

The bremsstrahlung contributions from O_1 and O_2 and interference terms with O_7 , O_8 , O_9 and O_{10} is given in the following [69]:

$$\delta_{d\mathcal{B}/d\hat{s}}^{brems,\mathbf{B}} = \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{\alpha_{s}}{4\pi}\right) \frac{G_{F}^{2} m_{b,pole}^{5} |V_{ts}^{*} V_{tb}|^{2}}{48 \pi^{3}}$$

$$\times \int_{\hat{s}}^{1} dw \left[\left(c_{11} + c_{12} + c_{22}\right) \tau_{22} + 2 \operatorname{Re}\left[\left(c_{17} + c_{27}\right) \tau_{27} + \left(c_{18} + c_{28}\right) \tau_{28} + \left(c_{19} + c_{29}\right) \tau_{29}\right] \right]$$

$$= 4 \left(\frac{\alpha}{4\pi}\right)^{2} \left(\frac{\alpha_{s}}{4\pi}\right) \left| \frac{V_{ts}^{*} V_{tb}}{V_{cb}} \right|^{2} \frac{\mathcal{B}(B \to X_{c} l \bar{\nu})}{f(z) \kappa(z)}$$

$$\times \int_{\hat{s}}^{1} dw \left[\left(c_{11} + c_{12} + c_{22}\right) \tau_{22} + 2 \operatorname{Re}\left[\left(c_{17} + c_{27}\right) \tau_{27} + \left(c_{18} + c_{28}\right) \tau_{28} + \left(c_{19} + c_{29}\right) \tau_{29}\right] \right] .$$

The quantities τ_{ij} , expressed in terms of $\bar{\Delta}i_{23}$ and $\bar{\Delta}i_{27}$, read

$$\tau_{22} = \frac{8}{27} \frac{(w-\hat{s})(1-w)^2}{\hat{s}w^3} \left\{ \left[3w^2 + 2\hat{s}^2(2+w) - \hat{s}w(5-2w) \right] |\bar{\Delta}i_{23}|^2 \right.$$

$$\left. + \left[2\hat{s}^2(2+w) + \hat{s}w(1+2w) \right] |\bar{\Delta}i_{27}|^2 + 4\hat{s} \left[w(1-w) - \hat{s}(2+w) \right] \cdot \operatorname{Re} \left[\bar{\Delta}i_{23} \bar{\Delta}i_{27}^* \right] \right\},$$

$$\tau_{27} = \frac{8}{3} \frac{1}{\hat{s}w} \times \left\{ \left[(1-w) \left(4\hat{s}^2 - \hat{s}w + w^2 \right) + \hat{s}w(4+\hat{s}-w) \ln(w) \right] \bar{\Delta}i_{23} \right.$$

$$\left. - \left[4\hat{s}^2(1-w) + \hat{s}w(4+\hat{s}-w) \ln(w) \right] \bar{\Delta}i_{27} \right\},$$

$$\tau_{28} = \frac{8}{9} \frac{1}{\hat{s}w(w-\hat{s})} \times \left\{ \left[(w-s)^2(2\hat{s}-w)(1-w) \right] \bar{\Delta}i_{23} - \left[2\hat{s}(w-\hat{s})^2(1-w) \right] \bar{\Delta}i_{27} \right.$$

$$\left. + \hat{s}w \left[(1+2\hat{s}-2w)\bar{\Delta}i_{23} - 2(1+\hat{s}-w)\bar{\Delta}i_{27} \right] \cdot \ln \left[\frac{\hat{s}}{(1+\hat{s}-w)(w^2+\hat{s}(1-w))} \right] \right\},$$

$$\left. + \hat{s}w \left[(1+2\hat{s}-2w)\bar{\Delta}i_{23} - 2(1+\hat{s}-w)\bar{\Delta}i_{27} \right] \cdot \ln \left[\frac{\hat{s}}{(1+\hat{s}-w)(w^2+\hat{s}(1-w))} \right] \right\},$$

$$\tau_{29} = \frac{4}{3w} \left\{ \left[2\,\hat{s}(1-w)(\hat{s}+w) + 4\,\hat{s}\,w\ln(w) \right] \bar{\Delta} i_{23} \right.$$

$$\left. - \left[2\,\hat{s}(1-w)(\hat{s}+w) + w(3\,\hat{s}+w)\ln(w) \right] \bar{\Delta} i_{27} \right\}.$$
(481)

The coefficients c_{ij} read

$$c_{11} = C_{\tau_{1}} \cdot \left| C_{1}^{(0)} \right|^{2}, \qquad (482)$$

$$c_{17} = C_{\tau_{2}} \cdot C_{1}^{(0)} C_{7}^{(0,eff)*}, \\ c_{27} = C_{F} \cdot C_{2}^{(0)} C_{7}^{(0,eff)*}, \\ c_{12} = C_{\tau_{2}} \cdot 2 \operatorname{Re} \left[C_{1}^{(0)} C_{2}^{(0)*} \right], \\ c_{18} = C_{\tau_{2}} \cdot C_{1}^{(0)} C_{8}^{(0,eff)*}, \\ c_{28} = C_{F} \cdot C_{2}^{(0)} C_{8}^{(0,eff)*}, \\ c_{29} = C_{F} \cdot \left| C_{2}^{(0)} \right|^{2}, \\ c_{19} = C_{\tau_{2}} \cdot C_{1}^{(0)} C_{9}^{(0,eff)*}, \\ c_{29} = C_{F} \cdot C_{2}^{(0)} C_{9}^{(0,eff)*}, \\ c_{29} = C_{F} \cdot C_{2}^{(0)} C_{9}^{(0,eff)*}, \\ c_{29} = C_{F} \cdot C_{2}^{(0)} C_{9}^{(0,eff)*}, \\ c_{20} = C_{F} \cdot C_{2}^{(0)} C_{9}^{(0,eff)}, \\ c_{20} = C_{F} \cdot C_{F} \cdot C_{F}^{(0)} C_{F}^{(0,eff)}, \\ c_{20} = C_{F} \cdot C_{F} \cdot C_{F}^{(0)} C_{F}^{(0,eff)}, \\ c_{20} = C_{F} \cdot C_{F} \cdot C_{F}^{(0)} C_{F}^{(0,eff)}, \\ c_{20} = C_{F} \cdot C_{F} \cdot C_{F}^{(0)} C_{F}^{(0,eff)}, \\ c_{20} = C_{F} \cdot C_{F} \cdot C_{F}^{(0)} C_{F}^{(0,eff)}, \\ c_{20} = C_{F} \cdot C_{F} \cdot C$$

where the colour factors are:

$$C_F = \frac{N_c^2 - 1}{2N_c} , \qquad (483)$$

$$C_{\tau_1} = \frac{N_c^2 - 1}{8 N_c^3} , \qquad (484)$$

$$C_{\tau_2} = -\frac{N_c^2 - 1}{4 N_c^2} . ag{485}$$

Also:

$$\bar{\Delta}i_{23} = -2 + \frac{4}{w - \hat{s}} \left[z \, G_{-1}\left(\frac{\hat{s}}{z}\right) - z \, G_{-1}\left(\frac{w}{z}\right) - \frac{\hat{s}}{2} \, G_0\left(\frac{\hat{s}}{z}\right) + \frac{\hat{s}}{2} \, G_0\left(\frac{w}{z}\right) \right], \quad (486)$$

$$\bar{\Delta}i_{27} = 2\left[G_0\left(\frac{\hat{s}}{z}\right) - G_0\left(\frac{w}{z}\right)\right],\tag{487}$$

with

$$G_{-1}(t) = \begin{cases} 2\pi \arctan\left(\sqrt{\frac{4-t}{t}}\right) - \frac{\pi^2}{2} - 2 \arctan^2\left(\sqrt{\frac{4-t}{t}}\right), & t < 4\\ -2i\pi \ln\left(\frac{\sqrt{t}+\sqrt{t-4}}{2}\right) - \frac{\pi^2}{2} + 2\ln^2\left(\frac{\sqrt{t}+\sqrt{t-4}}{2}\right), & t > 4 \end{cases}, \quad (488)$$

$$G_0(t) = \begin{cases} \pi\sqrt{\frac{4-t}{t}} - 2 - 2\sqrt{\frac{4-t}{t}} \arctan\left(\sqrt{\frac{4-t}{t}}\right), & t < 4\\ -i\pi\sqrt{\frac{t-4}{t}} - 2 + 2\sqrt{\frac{t-4}{t}} \ln\left(\frac{\sqrt{t}+\sqrt{t-4}}{2}\right), & t > 4 \end{cases}. \quad (489)$$

The terms arising from the interference of the matrix elements of the operators O_1, O_2, O_8 with O_{10} which contribute to the forward-backward asymmetry are taken from [70]:

$$\begin{split} \delta_{A_{FB}}^{brems}(\hat{s}) &= \left(\frac{\alpha}{4\pi}\right)^2 \frac{G_F^2 m_{b,pole}^5 |V_{ts}^* V_{tb}|^2}{48\pi^3} (1-\hat{s})^2 \\ &\times \frac{2\alpha_s}{3\pi} \left\{ Re \left[C_8^{0,eff} C_{10}^{eff*} \right] \tau_{810}(\hat{s}) + Re \left[\left(C_2^0 - \frac{1}{6} C_1^0 \right) C_{10}^{eff*} \right] \tau_{210}(\hat{s}) \right\} \\ &= \left(\frac{\alpha}{4\pi} \right)^2 \left| \frac{V_{ts}^* V_{tb}}{V_{cb}} \right|^2 \frac{\mathcal{B}(B \to X_c l \bar{\nu})}{f(z) \kappa(z)} (1-\hat{s})^2 \\ &\times \frac{8\alpha_s}{3\pi} \left\{ Re \left[C_8^{0,eff} C_{10}^{eff*} \right] \tau_{810}(\hat{s}) + Re \left[\left(C_2^0 - \frac{1}{6} C_1^0 \right) C_{10}^{eff*} \right] \tau_{210}(\hat{s}) \right\} , \end{split}$$

where

$$\begin{aligned} \tau_{810} &= \frac{1}{6(1-\hat{s})^2} \left\{ 3 \left[(1-\sqrt{\hat{s}})^2 (23-6\sqrt{\hat{s}}-\hat{s}) + 4(1-\hat{s})(7+\hat{s}) \ln(1+\sqrt{\hat{s}}) \right. \\ &+ 2s \left(1+s-\ln(\hat{s})\right) \ln(\hat{s}) \right] + 2 \left[-3\pi^2 (1+2\hat{s}) + 6(3-\hat{s})\hat{s} \ln(2-\sqrt{\hat{s}}) \right. \\ &- 36(1+2\hat{s}) L i_2 [-\sqrt{\hat{s}}] - 6\sqrt{\frac{\hat{s}}{4-\hat{s}}} \left[2(-3+\hat{s})\hat{s} \arctan\left(\frac{2+\sqrt{\hat{s}}}{\sqrt{4-\hat{s}}}\right) \right. \\ &+ 2\pi \ln(2-\sqrt{\hat{s}}) - \arctan\left(\sqrt{\frac{4-\hat{s}}{\hat{s}}}\right) \left((-3+\hat{s})\hat{s} + 4\ln(2-\sqrt{\hat{s}}) \right) \\ &- \arctan\left(\frac{\sqrt{\hat{s}}\sqrt{4-\hat{s}}}{2-\hat{s}}\right) \left((-3+\hat{s})\hat{s} - \ln(\hat{s}) \right) + 4Re\left(iLi_2 [\frac{(-2+i\sqrt{4-\hat{s}}+\sqrt{\hat{s}})\sqrt{\hat{s}}}{i\sqrt{4-\hat{s}}-\sqrt{\hat{s}}}] \right) \\ &- 2Re\left(iLi_2 [\frac{i}{2}\sqrt{4-\hat{s}}(1-\hat{s})\sqrt{\hat{s}} + \frac{(3-\hat{s})\hat{s}}{2}] \right) \right] \right] \right\}, \end{aligned}$$

and

$$\begin{aligned} \tau_{210} &= \int_{\hat{s}}^{1} \frac{-dw\,\hat{s}}{(\hat{s}-w)(1-\hat{s})^{2}} \Biggl\{ \Biggl[4(1-\hat{s})(1+w) - \frac{2\sqrt{(\hat{s}-w^{2})^{2}} \Bigl(w(3+w)-\hat{s}(1-w)\Bigr)}{w^{2}} \\ &+ \Bigl(2+5w+2w^{2}+\hat{s}(3+4w)\Bigr) \ln \left(\frac{\hat{s}+w^{2}+\sqrt{(\hat{s}-w^{2})^{2}}}{2w}\right) - \frac{(\hat{s}-w)}{\hat{s}\sqrt{(1+w)^{2}-4\hat{s}}} \\ &\times \Bigl(w(2-w)-\hat{s}(6-5w)\Bigr) \Bigl[\ln\Bigl(1+w-\hat{s}(3-w)+(1-\hat{s})\sqrt{(1+w)^{2}-4\hat{s}} \Bigr) \\ &- \ln\Bigl(\hat{s}(1-3w)+w^{2}(1+w)+\sqrt{(s-w^{2})^{2}}\sqrt{(1+w)^{2}-4\hat{s}} \Bigr) \Bigr] \Bigr] \bar{\Delta}_{23} \\ &- \Biggl[2(1-\hat{s})(1+2w) - \frac{2\sqrt{(\hat{s}-w^{2})^{2}}\Bigl(w(2+w)-\hat{s}(1-w)\Bigr)}{w^{2}} \\ &+ 2\Bigl(\hat{s}(1+2w)+w(2+w)\Bigr) \ln\Biggl(\frac{\hat{s}+w^{2}+\sqrt{(\hat{s}-w^{2})^{2}}}{2w}\Biggr) \\ &+ \frac{4(1-w)(\hat{s}-w)}{\sqrt{(1+w)^{2}-4\hat{s}}} \Bigl[\ln\Bigl(1+w-\hat{s}(3-w)+(1-\hat{s})\sqrt{(1+w)^{2}-4\hat{s}} \Bigr) \\ &- \ln\Bigl(\hat{s}(1-3w)+w^{2}(1+w)+\sqrt{(\hat{s}-w^{2})^{2}}\sqrt{(1+w)^{2}-4\hat{s}} \Bigr) \Bigr] \Bigr] \bar{\Delta}_{27} \Biggr\}, \tag{492}$$

where $\overline{\Delta}_{i_{23}}$ and $\overline{\Delta}_{i_{27}}$ are given in Eqs. (486) and (487), and the functions $G_{-1}(t)$ and $G_0(t)$ in Eqs. (488) and (489).

E.3.5 Electromagnetic contributions

The electromagnetic logarithmically enhanced contributions read⁸ [63, 64]:

$$\begin{split} \delta_{d\mathcal{B}/d\hat{s}}^{em} &= \frac{4\mathcal{B}(B \to X_c l\bar{\nu})}{f(z)\kappa(z)} \left| \frac{V_{tb}V_{ts}^*}{V_{cb}} \right|^2 (1-\hat{s})^2 \left(\frac{\alpha}{4\pi}\right)^3 \left\{ 8\left(1+2\hat{s}\right) \left[|C_9|^2 \,\omega_{99}^{(em)}(\hat{s}) + |C_{10}|^2 \,\omega_{1010}^{(em)}(\hat{s}) \right. \\ &+ \operatorname{Re} \left[(C_2 + C_F C_1) C_9^* \,\omega_{29}^{(em)}(\hat{s}) \right] + (C_2 + C_F C_1)^2 \,\omega_{22}^{(em)}(\hat{s}) \right] \\ &+ 96 \left[\operatorname{Re} \left[C_7 C_9^* \right] \,\omega_{79}^{(em)}(\hat{s}) + \operatorname{Re} \left[(C_2 + C_F C_1) C_7^* \,\omega_{27}^{(em)}(\hat{s}) \right] \right] \\ &+ 8 \left(4 + \frac{8}{\hat{s}}\right) \, |C_7|^2 \,\omega_{77}^{(em)}(\hat{s}) \right\}, \end{split}$$

$$(493)$$

⁸Note that the operators O_9 and O_{10} here include a prefactor $e^2/(4\pi)^2$ contrary to the convention in [63,64].

$$\delta_{A_{FB}}^{em}(\hat{s}) = \frac{4\mathcal{B}(B \to X_c l\bar{\nu})}{f(z)\kappa(z)} \left| \frac{V_{tb}V_{ts}^*}{V_{cb}} \right|^2 (1-\hat{s})^2 \left(\frac{\alpha}{4\pi}\right)^3 \left\{ -48 \operatorname{Re}\left[C_7 C_{10}^*\right] \,\omega_{710}^{(em)}(\hat{s}) -24 \,\hat{s} \left[\operatorname{Re}\left[C_9 C_{10}^*\right] \,\omega_{910}^{(em)}(\hat{s}) + \operatorname{Re}\left[(C_2 + C_F C_1) C_{10}^* \,\omega_{210}^{(em)}(\hat{s})\right] \right] \right\},$$

where

$$\omega_{99}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[-\frac{1+4s-8s^2}{6(1-s)(1+2s)} + \ln(1-s) - \frac{(1-6s^2+4s^3)\ln s}{2(1-s)^2(1+2s)} \right]$$
(495)
$$-\frac{1}{9}Li_2(s) + \frac{4}{27}\pi^2 - \frac{121-27s-30s^2}{72(1-s)(1+2s)} - \frac{(41+76s)\ln(1-s)}{36(1+2s)} + \left(\frac{-3-10s-17s^2+14s^3}{18(1-s)^2(1+2s)} + \frac{17\ln(1-s)}{18}\right)\ln s - \frac{(1-6s^2+4s^3)\ln^2 s}{2(1-s)^2(1+2s)} ,$$
$$+ \left(\frac{m_b^2}{18(1-s)^2(1+2s)} + \frac{1+4s-8s^2}{18(1-s)^2(1+2s)} + \ln(1-s)\right) \ln s - \frac{(1-6s^2+4s^3)\ln s}{2(1-s)^2(1+2s)} ,$$

$$\omega_{1010}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[-\frac{1+4s-8s^2}{6(1-s)(1+2s)} + \ln(1-s) - \frac{(1-6s^2+4s^2)\ln s}{2(1-s)^2(1+2s)} \right], \quad (496)$$

$$\omega_{77}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[\frac{s}{2\left(1-s\right)\left(2+s\right)} + \ln(1-s) - \frac{s\left(-3+2s^2\right)}{2\left(1-s\right)^2\left(2+s\right)}\ln(s)\right], \quad (497)$$

$$\omega_{79}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[-\frac{1}{2(1-s)} + \ln(1-s) + \frac{\left(-1+2s-2s^2\right)}{2(1-s)^2}\ln(s)\right], \quad (498)$$

$$\omega_{29}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[\frac{\Sigma_1(s) + i\Sigma_1^I(s)}{8(1-s)^2(1+2s)}\right] + \frac{16}{9}\,\omega_{1010}^{(\text{em})}(s)\,\ln\!\left(\frac{\mu_b}{5\,\,\text{GeV}}\right) \,, \tag{499}$$

$$\omega_{22}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[\frac{\Sigma_2(s)}{8(1-s)^2(1+2s)} + \frac{\Sigma_1(s)}{9(1-s)^2(1+2s)}\ln\left(\frac{\mu_b}{5 \text{ GeV}}\right)\right]$$
(500)

$$+ \frac{64}{81} \omega_{1010}^{(\text{em})}(s) \ln^2 \left(\frac{\mu_b}{5 \text{ GeV}}\right) ,$$

$$\omega_{27}^{(\text{em})}(s) = \ln \left(\frac{m_b^2}{m_\ell^2}\right) \left[\frac{\Sigma_3(s) + i \Sigma_3^I(s)}{96(1-s)^2}\right] + \frac{8}{9} \omega_{79}^{(\text{em})}(s) \ln \left(\frac{\mu_b}{5 \text{ GeV}}\right) , \qquad (501)$$

$$\omega_{710}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[\frac{7 - 16\sqrt{s} + 9s}{4(1-s)} + \ln(1-\sqrt{s}) + \frac{1+3s}{1-s}\ln\left(\frac{1+\sqrt{s}}{2}\right) - \frac{s\ln s}{(1-s)}\right] (502)$$

$$\omega_{910}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[-\frac{5 - 16\sqrt{s} + 11s}{4(1-s)} + \ln(1-\sqrt{s}) + \frac{1 - 5s}{1-s}\ln\left(\frac{1+\sqrt{s}}{2}\right) - \frac{(1-3s)\ln s}{(1-s)} \right],$$
(503)

$$\omega_{210}^{(\text{em})}(s) = \ln\left(\frac{m_b^2}{m_\ell^2}\right) \left[-\frac{\Sigma_7(s) + i\Sigma_7^I(s)}{24\,s\,(1-s)^2}\right] + \frac{8}{9}\,\omega_{910}^{(\text{em})}(s)\,\ln\left(\frac{\mu_b}{5\,\text{GeV}}\right) \,. \tag{504}$$

The functions Σ_i have been evaluated numerically in the low q^2 region [63]:

$$\Sigma_1(s) = 23.787 - 120.948 \, s + 365.373 \, s^2 - 584.206 \, s^3 \,, \tag{505}$$

$$\Sigma_1^I(s) = 1.653 + 6.009 \, s - 17.080 \, s^2 + 115.880 \, s^3 \,, \tag{506}$$

$$\Sigma_2(s) = 11.488 - 36.987 s + 255.330 s^2 - 812.388 s^3 + 1011.791 s^4 , \qquad (507)$$

$$\Sigma_3(s) = 109.311 - 846.039 \, s + 2890.115 \, s^2 - 4179.072 \, s^3 \,, \tag{508}$$

$$\Sigma_3^I(s) = 4.606 + 17.650 \, s - 53.244 \, s^2 + 348.069 \, s^3 \,, \tag{509}$$

$$\Sigma_7(s) = -0.259023 - 28.424 \, s + 205.533 \, s^2 - 603.219 \, s^3 + 722.031 \, s^4 \,, \tag{510}$$

$$\Sigma_7^I(s) = \left[-12.20658 - 215.8208 \, (s-a) + 412.1207 \, (s-a)^2\right] (s-a)^2 \, \theta(s-a) \, , \, (511)$$

with $a = (4m_c^2/m_b^2)^2$, while in the high q^2 region they become [64]

$$\Sigma_1(s) = -148.061\,\delta^2 + 492.539\,\delta^3 - 1163.847\,\delta^4 + 1189.528\,\delta^5 \,, \tag{512}$$

$$\Sigma_1^I(s) = -261.287\,\delta^2 + 1170.856\,\delta^3 - 2546.948\,\delta^4 + 2540.023\,\delta^5 \,, \tag{513}$$

$$\Sigma_2(s) = -221.904\,\delta^2 + 900.822\,\delta^3 - 2031.620\,\delta^4 + 1984.303\,\delta^5 \,, \tag{514}$$

$$\Sigma_3(s) = -298.730\,\delta^2 + 828.0675\,\delta^3 - 2217.6355\,\delta^4 + 2241.792\,\delta^5 \,, \tag{515}$$

$$\Sigma_3^I(s) = -528.759\,\delta^2 + 2095.723\,\delta^3 - 4681.843\,\delta^4 + 5036.677\,\delta^5 , \qquad (516)$$

$$\Sigma_7(s) = 77.0256 \,\delta^2 - 264.705 \,\delta^3 + 595.814 \,\delta^4 - 610.1637 \,\delta^5 \,, \tag{517}$$

$$\Sigma_7^I(s) = 135.858 \,\delta^2 - 618.990 \,\delta^3 + 1325.040 \,\delta^4 - 1277.170 \,\delta^5 \,, \tag{518}$$

with $\delta = (1 - s)$.

E.3.6 Long distance contributions

The long distance contributions are parametrized using the replacement [62]

$$g(z,\hat{s}) \longrightarrow g(z,0) + \frac{\hat{s}}{3} P \int_{\hat{s}_c}^{\infty} d\hat{s}' \frac{R_{\rm had}^{c\bar{c}}(\hat{s}')}{\hat{s}'(\hat{s}'-\hat{s})} + i\frac{\pi}{3} R_{\rm had}^{c\bar{c}}(\hat{s}) , \qquad (519)$$

where P denotes the principal value, and [71]

$$R^{c\bar{c}} = \sigma_{\rm tot}(e^+e^- \to {\rm hadrons}) / \sigma(e^+e^- \to \mu^+\mu^-) = R^{c\bar{c}}_{\rm cont} + R^{c\bar{c}}_{\rm res} , \qquad (520)$$

where $\hat{s}_c = 4\hat{m}_D$ and $R_{\text{cont}}^{c\bar{c}}$ and $R_{\text{res}}^{c\bar{c}}$ denote the contributions from the continuum and the narrow resonances, respectively.

The latter is given by the Breit-Wigner formula

$$R_{\rm res}^{c\bar{c}} = \sum_{V=J/\psi,\psi',\dots} \frac{9\hat{s}}{\alpha_{em}^2} \; \frac{BR(V \to l^+ l^-)\hat{\Gamma}_{\rm total}^V \hat{\Gamma}_{\rm had}^V}{(\hat{s} - \hat{m}_V^2)^2 + \hat{m}_V^2 \hat{\Gamma}_{\rm total}^{V^2}} \;, \tag{521}$$

where the meson parameters are given in Table 14, whereas $R_{\rm cont}^{c\bar{c}}$ can be determined using

Meson	Mass~(GeV)	$BR(V \to \mu^+ \mu^-)$	$\Gamma_{\rm total} \ ({\rm MeV})$	$\Gamma_{\rm had}~({\rm MeV})$
$J/\Psi(1S)$	3.096916	$5.93 imes 10^{-2}$	0.0929	0.08147
$\Psi(2S)$	3.68609	$7.7 imes 10^{-3}$	0.304	0.29746
$\Psi(3770)$	3.77292	1.1×10^{-5}	27.3	23.6
$\Psi(4040)$	4.039	1.4×10^{-5}	80	52
$\Psi(4160)$	4.153	$1.0 imes 10^{-5}$	103	78
$\Psi(4415)$	4.421	$1.1 imes 10^{-5}$	62	43

Table 14: Meson masses and decay properties [15].

the experimental data:

$$R_{\rm cont}^{c\bar{c}} = \begin{cases} 0 & \text{for } 0 \le \hat{s} \le 0.60 \ ,\\ -6.80 + 11.33\hat{s} & \text{for } 0.60 \le \hat{s} \le 0.69 \ ,\\ 1.02 & \text{for } 0.69 \le \hat{s} \le 1 \ . \end{cases}$$
(522)

E.4 $B \to \bar{K}^* \ell^+ \ell^-$

The full angular distribution of the decay $\bar{B}^0 \to \bar{K}^{*0} (\to K^- \pi^+) \ell^+ \ell^-$ with $\bar{K}^{*0} \to K^- \pi^+$ on the mass shell, is completely described by four independent kinematic variables, the lepton-pair invariant mass, q^2 , and the three angles, θ_{K^*} , θ_{ℓ} and ϕ . Summing over the lepton spins, the differential decay distribution can be written as [72, 73, 80]:

$$\frac{d^4\Gamma}{dq^2 d\cos\theta_l d\cos\theta_{K^*} d\phi} = \frac{9}{32\pi} J(q^2, \theta_l, \theta_{K^*}, \phi) , \qquad (523)$$

where q^2 is the dilepton invariant mass squared, θ_{ℓ} is defined as the angle between ℓ^- and the \bar{B} in the dilepton frame, θ_{K^*} is the angle between K^- and \bar{B} in the $K^-\pi^+$ frame and ϕ is given by the angle between the normals of the $K^-\pi^+$ and the dilepton planes.

The full kinematically accessible phase space is bounded by

$$4m_{\ell}^2 \leqslant q^2 \leqslant (M_B - m_{K^*})^2, \quad -1 \leqslant \cos \theta_{\ell} \leqslant 1, \quad -1 \leqslant \cos \theta_{K^*} \leqslant 1, \quad 0 \leqslant \phi \leqslant 2\pi.$$
(524)

The dependence of the decay distribution on the three angles can be made more explicit as

$$J(q^{2}, \theta_{\ell}, \theta_{K^{*}}, \phi) = J_{1}^{s} \sin^{2} \theta_{K^{*}} + J_{1}^{c} \cos^{2} \theta_{K^{*}} + (J_{2}^{s} \sin^{2} \theta_{K^{*}} + J_{2}^{c} \cos^{2} \theta_{K^{*}}) \cos 2\theta_{\ell}$$

+ $J_{3} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{\ell} \cos 2\phi + J_{4} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \cos \phi$
+ $J_{5} \sin 2\theta_{K^{*}} \sin \theta_{\ell} \cos \phi + J_{6} \sin^{2} \theta_{K^{*}} \cos \theta_{\ell} + J_{7} \sin 2\theta_{K^{*}} \sin \theta_{\ell} \sin \phi$
+ $J_{8} \sin 2\theta_{K^{*}} \sin 2\theta_{\ell} \sin \phi + J_{9} \sin^{2} \theta_{K^{*}} \sin^{2} \theta_{\ell} \sin 2\phi$, (525)

where the coefficients $J_i^{(a)} = J_i^{(a)}(q^2)$ for i = 1, ..., 9 and a = s, c are functions of the dilepton mass.

E.4.1 Observables

The dilepton invariant mass spectrum for $B \to K^* l^+ l^-$ can be obtained after integrating the 4-differential distribution over all angles [73]:

$$\frac{d\Gamma}{dq^2} = \frac{3}{4} \left(J_1 - \frac{J_2}{3} \right), \quad \text{and} \quad \frac{d\bar{\Gamma}}{dq^2} = \frac{3}{4} \left(\bar{J}_1 - \frac{\bar{J}_2}{3} \right).$$
(526)

The (normalized) forward-backward asymmetry $A_{\rm FB}$ is given, after full ϕ and θ_{K^*} integration as [73]

$$A_{\rm FB}(q^2) \equiv \left[\int_{-1}^0 - \int_0^1 \right] d\cos\theta_l \frac{d^2\Gamma}{dq^2 d\cos\theta_l} \middle/ \frac{d\Gamma}{dq^2} = -\frac{3}{8} \frac{J_6 + \bar{J}_6}{d\Gamma/dq^2 + d\bar{\Gamma}/dq^2} \,.$$
(527)

where $J_i \equiv 2J_i^s + J_i^c$. A particularly interesting observable is the zero–crossing of the forward-backward asymmetry (q_0^2) , which is calculated numerically in SuperIso.

The fractions of the K^* are [74]

$$F_L(s) = \frac{3\left(J_1^c + \bar{J}_1^c\right) - \left(J_2^c + \bar{J}_2^c\right)}{4\left(d\Gamma/dq^2 + d\bar{\Gamma}/dq^2\right)},$$
(528)

$$F_T(s) = \frac{4 \left(J_2^s + \bar{J}_2^s\right)}{d\Gamma/dq^2 + d\bar{\Gamma}/dq^2} \,.$$
(529)

The transverse amplitudes can be written as [75]

$$A_T^{(1)}(s) = \frac{-2\operatorname{Re}(A_{\parallel}A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}, \qquad (530)$$

$$A_T^{(2)}(s) = \frac{J_3 + \bar{J}_3}{2\left(J_2^s + \bar{J}_2^s\right)},$$
(531)

$$A_T^{(3)}(s) = \left(\frac{4(J_4 + \bar{J}_4)^2 + \beta_\ell^2 (J_7 + \bar{J}_7)^2}{-2(J_2^c + \bar{J}_2^c)(2(J_2^s + \bar{J}_2^s) + J_3 + \bar{J}_3)}\right)^{1/2},$$
(532)

$$A_T^{(4)}(s) = \left(\frac{\beta_\ell^2 (J_5 + \bar{J}_5)^2 + 4(J_8 + \bar{J}_8)^2}{4(J_4 + \bar{J}_4)^2 + \beta_\ell^2 (J_7 + \bar{J}_7)^2}\right)^{1/2},$$
(533)

$$A_T^{(5)}(s) = \frac{|A_{\perp}^L A_{\parallel}^{R*} + A_{\parallel}^L A_{\perp}^{R*}|}{|A_{\perp}|^2 + |A_{\parallel}|^2}, \qquad (534)$$

$$A_{Im}(s) = \frac{J_9 + \bar{J}_9}{d\Gamma/dq^2 + d\bar{\Gamma}/dq^2} .$$
(535)

For the K^* polarization parameter we have [75]

$$\alpha_{K^*}(s) = \frac{2F_L}{F_T} - 1 = -\frac{J_2 + J_2}{2\left(J_2^s + \bar{J}_2^s\right)} \,. \tag{536}$$

Another observable which is rather independent of hadronic input parameters is the isospin asymmetry arising from non-factorisable effects which depend on the charge of the spectator quark. Hence, depending on whether the decaying B meson is charged or neutral, there will be a difference in the contribution of these effects to the decay width which can cause an isospin asymmetry. The (CP-averaged) isospin asymmetry is defined as [76]

$$\frac{dA_I}{dq^2} = \frac{d\Gamma[B^0 \to K^{*0}\ell^+\ell^-]/dq^2 - d\Gamma[B^\pm \to K^{*\pm}\ell^+\ell^-]/dq^2}{d\Gamma[B^0 \to K^{*0}\ell^+\ell^-]/dq^2 + d\Gamma[B^\pm \to K^{*\pm}\ell^+\ell^-]/dq^2} .$$
(537)

The following transversity observables are also defined for the high q^2 region [77]:

$$H_T^{(1)}(s) = \frac{\sqrt{2} \left(J_4 + \bar{J}_4\right)}{\sqrt{-(J_2^c + \bar{J}_2^c) \left[2 \left(J_2^s + \bar{J}_2^s\right) - (J_3 + \bar{J}_3)\right]}},$$
(538)

$$H_T^{(2)}(s) = \frac{\beta_l \left(J_5 + \bar{J}_5\right)}{\sqrt{-2(J_2^c + \bar{J}_2^c) \left[2\left(J_2^s + \bar{J}_2^s\right) + \left(J_3 + \bar{J}_3\right)\right]}},$$
(539)

$$H_T^{(3)}(s) = \frac{J_6 + \bar{J}_6}{2\sqrt{4(J_2^s + \bar{J}_2^s)^2 - (J_3 + \bar{J}_3)^2}} .$$
(540)

The $H_T^{(i)}$ are designed to have very small hadronic uncertainties at low recoil.

In addition, a set of *primary* (or *optimised*) observables have also been suggested in [78] which are appropriate ratios of angular coefficients, designed to cancel most of the dependence on the form factors. They read:

$$P_1(s) = \frac{J_3 + \bar{J}_3}{2\left(J_2^s + \bar{J}_2^s\right)} = A_T^{(2)} , \qquad (541)$$

$$P_2(s) = \frac{J_6^s + \bar{J}_6^s}{8\left(J_2^s + \bar{J}_2^s\right)},$$
(542)

$$P_3(s) = -\frac{J_9 + \bar{J}_9}{4\left(J_2^s + \bar{J}_2^s\right)}, \qquad (543)$$

$$P_4(s) = \frac{\sqrt{2} \left(J_4 + \bar{J}_4\right)}{\sqrt{-(J_2^c + \bar{J}_2^c) \left[2 \left(J_2^s + \bar{J}_2^s\right) - (J_3 + \bar{J}_3)\right]}} = H_T^{(1)} , \qquad (544)$$

$$P_5(s) = \frac{\beta_l \left(J_5 + \bar{J}_5\right)}{\sqrt{-2(J_2^c + \bar{J}_2^c) \left[2\left(J_2^s + \bar{J}_2^s\right) + (J_3 + \bar{J}_3)\right]}} = H_T^{(2)} , \qquad (545)$$

$$P_6(s) = -\frac{\beta_l \left(J_7 + \bar{J}_7\right)}{\sqrt{-2(J_2^c + \bar{J}_2^c) \left[2\left(J_2^s + \bar{J}_2^s\right) - \left(J_3 + \bar{J}_3\right)\right]}},$$
(546)

$$P_8(s) = -\frac{\sqrt{2} (J_8 + \bar{J}_8)}{\sqrt{-(J_2^c + \bar{J}_2^c) \left[2 (J_2^s + \bar{J}_2^s) + (J_3 + \bar{J}_3)\right]}} .$$
(547)

And the primed observables are given by:

$$P_4'(s) = \frac{J_4 + \bar{J}_4}{\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}}, \qquad (548)$$

$$P_5'(s) = \frac{J_5 + J_5}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}},$$
(549)

$$P_6'(s) = -\frac{J_7 + J_7}{2\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}},$$
(550)

$$P_8'(s) = -\frac{J_8 + \bar{J}_8}{\sqrt{-(J_2^c + \bar{J}_2^c)(J_2^s + \bar{J}_2^s)}} .$$
(551)

The functions J_{1-9} can be written in terms of the transversity amplitudes, A_0 , A_{\parallel} , A_{\perp} , A_t and A_S [79,80]:

$$J_{1}^{s} = \frac{(2+\beta_{\ell}^{2})}{4} \left[|A_{\perp}^{L}|^{2} + |A_{\parallel}^{L}|^{2} + (L \to R) \right] + \frac{4m_{\ell}^{2}}{q^{2}} \operatorname{Re} \left(A_{\perp}^{L} A_{\perp}^{R^{*}} + A_{\parallel}^{L} A_{\parallel}^{R^{*}} \right) , \qquad (552a)$$

$$J_1^c = |A_0^L|^2 + |A_0^R|^2 + \frac{4m_\ell^2}{q^2} \left[|A_t|^2 + 2\operatorname{Re}(A_0^L A_0^{R^*}) \right] + \beta_\ell^2 |A_S|^2 , \qquad (552b)$$

$$J_2^s = \frac{\beta_\ell^2}{4} \left[|A_\perp^L|^2 + |A_\parallel^L|^2 + (L \to R) \right] , \qquad (552c)$$

$$J_2^c = -\beta_\ell^2 \left[|A_0^L|^2 + (L \to R) \right] , \qquad (552d)$$

$$J_{3} = \frac{1}{2}\beta_{\ell}^{2} \left[|A_{\perp}^{L}|^{2} - |A_{\parallel}^{L}|^{2} + (L \to R) \right] , \qquad (552e)$$

$$J_{4} = \frac{1}{\sqrt{2}} \beta_{\ell}^{2} \left[\text{Re}(A_{0}^{L} A_{\parallel}^{L^{*}}) + (L \to R) \right] , \qquad (552f)$$

$$J_{5} = \sqrt{2}\beta_{\ell} \left[\operatorname{Re}(A_{0}^{L}A_{\perp}^{L^{*}}) - (L \to R) - \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Re}(A_{\parallel}^{L}A_{S}^{*} + A_{\parallel}^{R}A_{S}^{*}) \right] , \qquad (552g)$$

$$J_6^s = 2\beta_\ell \left[\operatorname{Re}(A_{\parallel}^L A_{\perp}^{L^*}) - (L \to R) \right] , \qquad (552h)$$

$$J_6^c = 4\beta_\ell \frac{m_\ell}{\sqrt{q^2}} \operatorname{Re} \left[A_0^L A_S^* + (L \to R) \right] , \qquad (552i)$$

$$J_{7} = \sqrt{2}\beta_{\ell} \left[\operatorname{Im}(A_{0}^{L}A_{\parallel}^{L^{*}}) - (L \to R) + \frac{m_{\ell}}{\sqrt{q^{2}}} \operatorname{Im}(A_{\perp}^{L}A_{S}^{*} + A_{\perp}^{R}A_{S}^{*}) \right] , \qquad (552j)$$

$$J_8 = \frac{1}{\sqrt{2}} \beta_\ell^2 \left[\text{Im}(A_0^L A_\perp^{L^*}) + (L \to R) \right],$$
 (552k)

$$J_9 = \beta_\ell^2 \left[\operatorname{Im}(A_{\parallel}^{L^*} A_{\perp}^L) + (L \to R) \right] , \qquad (5521)$$

where

$$\beta_{\ell} = \sqrt{1 - \frac{4m_{\ell}^2}{q^2}} , \qquad (553)$$

and

$$A_i A_j^* \equiv A_{iL}(q^2) A_{jL}^*(q^2) + A_{iR}(q^2) A_{jR}^*(q^2) \quad (i, j = 0, \|, \bot) .$$
(554)

The functions \overline{J}_{1-9} are obtained from J_{1-9} by replacing the weak phases by their conjugates.

E.4.2 Transversity amplitudes at NLO

In the following, unless stated otherwise, m_b denotes the potential subtracted (PS) bottom mass at the factorization scale $\mu_f \sim \sqrt{\Lambda_{QCD}m_b}$, which is related to the pole mass by:

$$m_b^{pole} = m_b^{PS}(\mu_f) + 4\frac{\alpha_s}{3\pi}\mu_f$$
 (555)

The transversity amplitudes at NLO within QCDf in the large recoil limit $(1 < q^2 < 6 \text{ GeV})$ are⁹ [73,79]:

$$A_{\perp}^{L,R} = N\sqrt{2}\sqrt{\lambda} \left[\left[(C_9 + C_9') \mp (C_{10} + C_{10}') \right] \frac{V(q^2)}{M_B + M_{K^*}} + \frac{2m_b}{q^2} \mathcal{T}_{\perp}^+ \right],$$
(556)

$$A_{\parallel}^{L,R} = -N\sqrt{2}(M_B^2 - M_{K^*}^2) \left[\left[(C_9 - C_9') \mp (C_{10} - C_{10}') \right] \frac{A_1(q^2)}{M_B - M_{K^*}} \right]$$
(557)

$$+\frac{4m_b}{M_B}\frac{E_{K^*}}{q^2}\mathcal{T}_{\perp}^{-}\right],$$

$$A_0^{L,R} = -\frac{N}{2M_{K^*}\sqrt{q^2}}\left\{\left[(C_9 - C_9') \mp (C_{10} - C_{10}')\right] \qquad (558)$$

$$\times \left[(M_B^2 - M_{K^*}^2 - q^2)(M_B + M_{K^*})A_1(q^2) - \lambda \frac{A_2(q^2)}{M_B + M_{K^*}}\right]$$

$$+ 2m_b \left[\frac{2E_{K^*}}{M_B}(M_B^2 + 3M_{K^*}^2 - q^2)\mathcal{T}_{\perp}^{-} - \frac{\lambda}{M_B^2 - M_{K^*}^2}\left(\mathcal{T}_{\perp}^{-} + \mathcal{T}_{\parallel}^{-}\right)\right]\right\},$$

$$A_t = \frac{N}{\sqrt{q^2}}\sqrt{\lambda} \left[2(C_{10} - C_{10}') + \frac{q^2}{m_\ell(m_b + m_s)}(C_{Q_2} - C_{Q_2}')\right]\frac{E_{K^*}}{M_{K^*}}\frac{\xi_{\parallel}}{\Delta_{\parallel}},$$

$$(559)$$

$$A_{S} = -\frac{2N}{m_{b} + m_{s}} \sqrt{\lambda} (C_{Q_{1}} - C_{Q_{1}}') \frac{E_{K^{*}}}{M_{K^{*}}} \frac{\xi_{\parallel}}{\Delta_{\parallel}} , \qquad (560)$$

⁹In QCD factorization to include NLO corrections in α_s to the transversity amplitudes at large recoil, the following replacements should be made in the leading order relations [73, 75]:

$$(C_7^{\text{eff}} + C_7')T_i(q^2) \to \mathcal{T}_i^+$$
, $(C_7^{\text{eff}} - C_7')T_i(q^2) \to \mathcal{T}_i^-$, $C_9^{\text{eff}}(q^2) \to C_9$,

where $\mathcal{T}_1^{\pm} = \mathcal{T}_{\perp}^{\pm}$, $\mathcal{T}_2^- = \frac{2E}{M_B} \mathcal{T}_{\perp}^-$, $\mathcal{T}_3^- = \mathcal{T}_{\perp}^- + \mathcal{T}_{\parallel}^-$. The functions $\mathcal{T}_{\perp,\parallel}^-$ can be obtained from the $\mathcal{T}_{\perp,\parallel}$ by substituting C_7^{eff} with $C_7^{\text{eff}} - C_7'$ whereas \mathcal{T}_{\perp}^+ is obtained from \mathcal{T}_{\perp} by replacing C_7^{eff} with $C_7^{\text{eff}} + C_7'$. where E_{K^*} is the energy of the final vector meson in the B rest frame

$$E_{K^*} = \frac{M_B^2 + m_{K^*}^2 - q^2}{2M_B} , \qquad (561)$$

and

$$N = \left[\frac{G_F^2 \alpha_{em}^2}{3 \cdot 2^{10} \pi^5 M_B} |V_{tb} V_{ts}^*|^2 \,\hat{s} \,\sqrt{\lambda} \,\beta_l\right]^{1/2},\tag{562}$$

and

$$\lambda = M_B^4 + m_{K^*}^4 + q^4 - 2(M_B^2 m_{K^*}^2 + m_{K^*}^2 q^2 + M_B^2 q^2) , \qquad (563)$$

and β_l is given in Eq. (553). We have also

$$\Delta_{\parallel}(q^2) = 1 + \frac{\alpha_s C_F}{4\pi} \left(-2 + 2L \right)$$

$$- \frac{\alpha_s C_F}{4\pi} \frac{2q^2}{E_{K^*}^2} \frac{\pi^2 f_B f_{K^* \parallel} \lambda_{B^+}^{-1}}{N_c M_B (E_{K^*}/m_{K^*}) \xi_{\parallel}(q^2)} \int_0^1 \frac{du}{\bar{u}} \Phi_{K^*,\parallel}$$
(564)

where

$$L \equiv -\frac{m_b^2 - q^2}{q^2} \ln\left(1 - \frac{q^2}{m_b^2}\right) , \qquad (565)$$

and $\Phi_{K^*,\parallel}$ will be given in Eq. (576).

The functions \mathcal{T}_a $(a = \perp, \parallel)$ are known at NLO in the framework of QCDf, and are given in the next subsection.

To calculate the universal form factors ξ_{\perp} and ξ_{\parallel} we use [73,81]:

$$\xi_{\perp} = \frac{M_B}{M_B + M_{K^*}} V , \qquad \qquad \xi_{\parallel} = \frac{M_B + M_{K^*}}{2E_{K^*}} A_1 - \frac{M_B - M_{K^*}}{M_B} A_2 . \tag{566}$$

The q^2 -dependence of the $B \to K^*$ form factors is parametrized by [82]:

$$F(q^2) = \frac{F(0)}{1 - q^2/m_{B_s(J^P)}^2} \left\{ 1 + b_1 \left(z(q^2, t_0) - z(0, t_0) + \frac{1}{2} \left[z(q^2, t_0)^2 - z(0, t_0)^2 \right] \right) \right\},$$
(567)

and

$$z(q^{2},\tau_{0}) = \frac{\sqrt{\tau_{+} - q^{2}} - \sqrt{\tau_{+} - \tau_{0}}}{\sqrt{\tau_{+} - q^{2}} + \sqrt{\tau_{+} - \tau_{0}}},$$

$$\tau_{+} = (m_{B} + m_{K^{*}})^{2}, \qquad \tau_{-} = (m_{B} - m_{K^{*}})^{2}$$

$$\tau_{0} = \tau_{+} - \sqrt{\tau_{+} - \tau_{-}}\sqrt{\tau_{+}}.$$
(568)

The numerical inputs are given in Table 15. The form factors A_1 and A_2 are then obtained by:

$$A_{1} = \frac{2m_{B} E_{K^{*}}}{(m_{B} + m_{K^{*}})^{2}} V , \qquad (569)$$
$$A_{2} = \left(\frac{m_{B} + m_{K^{*}}}{2 E_{K^{*}}} A_{1} - \frac{m_{K^{*}}}{E_{K^{*}}} A_{0}\right) \frac{m_{B}}{m_{B} + m_{K^{*}}} .$$

form factor	F(0)	b_1	$B_s(J^P)$	$m_{B_s}(J^P)$ (GeV)
V^{BK^*}	$0.36\substack{+0.23\\-0.12}$	$-4.8^{+0.8}_{-0.4}$	$B_{s}^{*}(1^{-})$	5.412
$A_0^{BK^*}$	$0.29\substack{+0.10 \\ -0.07}$	$0.3 \times (-18.2^{+1.3}_{-3.0})$	$B_{s}(0^{-})$	5.366

Table 15: The $B \to K^*$ form factors from LCSR.

E.4.3 Calculation of \mathcal{T}_a^{\pm}

In the heavy quark limit the matrix elements of $B \to K^*$ depend only on four independent functions \mathcal{T}_a^{\pm} corresponding to a transversely $(a = \perp)$ and longitudinally $(a = \parallel)$ polarized K^* . At next-to-leading order we have [84]:

$$\mathcal{T}_a = \xi_a C_a + \frac{\pi^2}{N_c} \frac{f_B f_{K^*,a}}{M_B} \Xi_a \sum_{\pm} \int \frac{d\omega}{\omega} \Phi_{B,\pm}(\omega) \int_0^1 du \Phi_{K^*,a}(u) T_{a,\pm}(u,\omega) , \qquad (570)$$

where $C_F = 4/3$, $N_c = 3$, $\Xi_{\perp} \equiv 1$, $\Xi_{\parallel} \equiv m_{K^*}/E_{K^*}$ and μ_f is the scale at which the typical virtualities of the hard scattering terms are $(\mu_f = \sqrt{\mu \times \Lambda_{\text{QCD}}})$ [81,84].

In practice, we need $\mathcal{T}_{\perp,\parallel}^{\pm}$ which can be obtained by:

$$\mathcal{T}_{\perp,\parallel}^{+} = (\mathcal{T}_{\perp,\parallel}, \text{ in which } C_7^{\text{eff}} \to C_7^{\text{eff}} + C_7^{\text{eff}'}) ,$$

$$\mathcal{T}_{\perp,\parallel}^{-} = (\mathcal{T}_{\perp,\parallel}, \text{ in which } C_7^{\text{eff}} \to C_7^{\text{eff}} - C_7^{\text{eff}'}) .$$
(571)

These replacements lead to:

$$\mathcal{T}_{\perp}^{+} = \xi_{\perp} C_{\perp}^{+} + \frac{\pi^2}{N_c} \frac{f_B f_{K^*,\perp}}{M_B} \sum_{\pm} \int \frac{d\omega}{\omega} \Phi_{B,\pm}(\omega) \int_0^1 du \Phi_{K^*,\perp}(u) T_{\perp,\pm}^+(u,\omega) , \quad (572)$$

$$\mathcal{T}_{\perp}^{-} = \xi_{\perp} C_{\perp}^{-} + \frac{\pi^2}{N_c} \frac{f_B f_{K^*,\perp}}{M_B} \sum_{\pm} \int \frac{d\omega}{\omega} \Phi_{B,\pm}(\omega) \int_0^1 du \Phi_{K^*,\perp}(u) T_{\perp,\pm}^{-}(u,\omega) , \qquad (573)$$

$$\mathcal{T}_{\parallel}^{+} = \xi_{\parallel} C_{\parallel}^{+} + \frac{\pi^{2}}{N_{c}} \frac{f_{B} f_{K^{*},\parallel}}{M_{B}} \frac{m_{K^{*}}}{E_{K^{*}}} \sum_{\pm} \int \frac{d\omega}{\omega} \Phi_{B,\pm}(\omega) \int_{0}^{1} du \Phi_{K^{*},\parallel}(u) T_{\parallel,\pm}^{+}(u,\omega) , \quad (574)$$

$$\mathcal{T}_{\parallel}^{-} = \xi_{\parallel} C_{\parallel}^{-} + \frac{\pi^2}{N_c} \frac{f_B f_{K^*,\parallel}}{M_B} \frac{m_{K^*}}{E_{K^*}} \sum_{\pm} \int \frac{d\omega}{\omega} \Phi_{B,\pm}(\omega) \int_0^1 du \Phi_{K^*,\parallel}(u) T_{\parallel,\pm}^{-}(u,\omega) .$$
(575)

 $f_{K^*,\perp}$, $f_{K^*,\parallel}$ and f_B can all be found in Table 16. $f_{K^*,\parallel}$ is scale dependent, but as its variation has a negligible effect therefore its scale dependency is usually ignored. However, f_{\perp} is evolved using $f_{\perp}(\mu) = f_{\perp}(\mu_0) \left(\alpha_s(\mu)/\alpha_s(\mu_0)\right)^{4/23}$, μ_0 being the scale at which it has been given (usually 1 GeV) and $\mu \simeq m_b$.

E.4.4 Light-cone-distribution amplitudes Φ

To compute the integrals, it is necessary to know the the light-cone-distribution amplitudes Φ . The K^* light-cone distribution amplitude can be written in terms of the Gegenbauer coefficients [84, 85]:

$$\Phi_{\bar{K}^*,a}(u) = 6u(1-u) \left\{ 1 + a_1(\bar{K}^*)_a C_1^{(3/2)}(2u-1) + a_2(\bar{K}^*)_a C_2^{(3/2)}(2u-1) \right\} .$$
(576)

The Gegenbauer polynomials are

$$C_1^{(3/2)}(x) = 3x$$
 $C_2^{(3/2)}(x) = -\frac{3}{2} + \frac{15}{2}x^2$, (577)

and the Gegenbauer coefficients $(a_1(\bar{K}^*)_a, a_2(\bar{K}^*)_a)$ are given in Table 16. They are scale dependent [85]:

$$a_n(\mu) = a_n(\mu_0) \left(\frac{\alpha_s(\mu)}{\alpha_s(\mu_0)}\right)^{(\gamma_{(n)} - \gamma_{(0)})/\beta_0} , \qquad (578)$$

with $\beta_0 = 11 - (2/3)n_f$. The one-loop anomalous dimensions are

$$\gamma_{(n)} = \gamma_{(n)}^{\parallel} = C_F \left(1 - \frac{2}{(n+1)(n+2)} + 4 \sum_{j=2}^{n+1} 1/j \right),$$

$$\gamma_{(n)}^{\perp} = C_F \left(1 + 4 \sum_{j=2}^{n+1} 1/j \right).$$
 (579)

 $\gamma_{(0)}$ is the anomalous dimension of the local current and vanishes for vector and axial vector currents.

The two *B* light-cone distribution amplitudes $(\Phi_{B,+}, \Phi_{B,-})$ are not used directly as they appear as moments [84]. When calculating \mathcal{T}_a where we have $T_{\perp,+}^{(1)}$, the moment

$$\lambda_{B,+}^{-1} = \int_0^\infty d\omega \frac{\Phi_{B,+}(\omega)}{\omega}$$
(580)

is needed. $\lambda_{B,+}^{-1}$ is given in Table 16 and it evolves using the following evolution relation [86]:

$$\lambda_B^{-1}(\mu) = \lambda_B^{-1}(\mu_0) \left\{ 1 + \frac{\alpha_s}{3\pi} \ln \frac{\mu^2}{\mu_0^2} \left(1 - 2\sigma_B(\mu_0) \right) \right\},\tag{581}$$

where $\sigma_B(1 \,\text{GeV}) = 1.4 \pm 0.4$.

When computing \mathcal{T}_a where we have $T_{\parallel,-}^{(1)}$ we will also need the moment

$$\lambda_{B,-}^{-1}(q^2) = \int_0^\infty d\omega \frac{\Phi_{B,-}(\omega)}{\omega - q^2/M_B - i\epsilon} , \qquad (582)$$

which can be expressed as:

$$\lambda_{B,-}^{-1}(q^2) = \frac{e^{-q^2/(M_B\omega_0)}}{\omega_0} \left[-\text{Ei}(q^2/M_B\omega_0) + i\pi \right] , \qquad (583)$$

where Ei(z) is the exponential integral function, and $\omega_0 = 2\bar{\Lambda}_{\text{HQET}}/3$ and $\bar{\Lambda}_{\text{HQET}} = M_B - m_b$.

E.4.5 Form factor correction C_a^{\pm}

The following formulas are taken from [84], in which we applied (571).

$$C_a^{\pm} = C_a^{\pm(0)} + \frac{\alpha_s(\mu_b)C_F}{4\pi}C_a^{\pm(1)} .$$
(584)

At leading-order for $C_a^{\pm(0)}$ we have:

$$C_{\perp}^{\pm(0)} = (C_7^{\text{eff}} \pm C_7^{\text{eff}'}) + \frac{q^2}{2m_b M_B} Y(q^2) , \qquad (585)$$

$$C_{\parallel}^{\pm(0)} = -(C_7^{\text{eff}} \pm C_7^{\text{eff}'}) - \frac{M_B}{2m_b} Y(q^2) , \qquad (586)$$

with

$$Y(q^{2}) = h(q^{2}, m_{c}) \left(\frac{4}{3}C_{1} + C_{2} + 6C_{3} + 60C_{5}\right)$$

$$-\frac{1}{2}h(q^{2}, m_{b}^{\text{pole}}) \left(7C_{3} + \frac{4}{3}C_{4} + 76C_{5} + \frac{64}{3}C_{6}\right)$$

$$-\frac{1}{2}h(q^{2}, 0) \left(C_{3} + \frac{4}{3}C_{4} + 16C_{5} + \frac{64}{3}C_{6}\right)$$

$$+\frac{4}{3}C_{3} + \frac{64}{9}C_{5} + \frac{64}{27}C_{6}.$$
(587)

The function

$$h(q^{2}, m_{q}) = -\frac{4}{9} \left(\ln \frac{m_{q}^{2}}{\mu^{2}} - \frac{2}{3} - z \right) - \frac{4}{9} (2+z)\sqrt{|z-1|} \times \begin{cases} \arctan \frac{1}{\sqrt{z-1}} & z > 1\\ \ln \frac{1+\sqrt{1-z}}{\sqrt{z}} - \frac{i\pi}{2} & z \le 1 \end{cases}$$
(588)

with $z = 4m_q^2/q^2$, is related to the basic fermion loop.

The next-to-leading order coefficients $C_a^{\pm(1)}$ contain a factorisable as well as non-factorisable part:

$$C_a^{\pm(1)} = C_a^{\pm(f)} + C_a^{\pm(nf)} , \qquad (589)$$

By "non-factorisable it's meant, all those corrections that are not contained in the definition of the QCD form factors for heavy-to-light transitions.

The factorisable corrections are [81,84]

$$C_{\perp}^{\pm(f)} = (C_7^{\text{eff}} \pm C_7^{\text{eff}'}) \left(\ln \frac{m_b^2}{\mu^2} - L + \Delta M \right) , \qquad (590)$$

$$C_{\parallel}^{\pm(f)} = -(C_7^{\text{eff}} \pm C_7^{\text{eff}'}) \left(\ln \frac{m_b^2}{\mu^2} + 2L + \Delta M \right) , \qquad (591)$$

where L is defined in Eq. (564) and ΔM depends on the mass renormalization convention for m_b :

$$\begin{cases} \Delta M = 0 , & \overline{MS} \text{ scheme} \\ \Delta M = 3\ln(m_b^2/\mu^2) - 4(1 - \mu_f/m_b) , & \text{Potential Subtracted scheme} \\ \Delta M = 3\ln(m_b^2/\mu^2) - 4 , & \text{Pole Mass scheme} \end{cases}$$
(592)

The non-factorisable correction is obtained by computing matrix elements of four-quark operators and the chromomagnetic dipole operator [84].

$$C_F C_{\perp}^{\pm(\mathrm{nf})} = -\bar{C}_2 F_2^{(7)} - C_8^{\mathrm{eff}} F_8^{(7)} - \frac{q^2}{2m_b M_B} \left[\bar{C}_2 F_2^{(9)} + 2\bar{C}_1 \left(F_1^{(9)} + \frac{1}{6} F_2^{(9)} \right) + C_8^{\mathrm{eff}} F_8^{(9)} \right] (593)$$

$$C_F C_{\parallel}^{\pm(\mathrm{nf})} = \bar{C}_2 F_2^{(7)} + C_8^{\mathrm{eff}} F_8^{(7)} + \frac{M_B}{2m_b} \left[\bar{C}_2 F_2^{(9)} + 2\bar{C}_1 \left(F_1^{(9)} + \frac{1}{6} F_2^{(9)} \right) + C_8^{\mathrm{eff}} F_8^{(9)} \right]. \quad (594)$$

The quantities $F_{1,2}^{(7,9)}$ and $F_8^{(7,9)}$ are those given in Eqs. (456)-(461).

The barred coefficients are related to the Wilson coefficients in our usual Standard Basis as [84]:

$$\bar{C}_{1} = \frac{1}{2}C_{1},$$
(595)
$$\bar{C}_{2} = C_{2} - \frac{1}{6}C_{1},$$

$$\bar{C}_{3} = C_{3} - \frac{1}{6}C_{4} + 16C_{5} - \frac{8}{3}C_{6},$$

$$\bar{C}_{4} = \frac{1}{2}C_{4} + 8C_{6},$$

$$\bar{C}_{5} = C_{3} - \frac{1}{6}C_{4} + 4C_{5} - \frac{2}{3}C_{6},$$

$$\bar{C}_{6} = \frac{1}{2}C_{4} + 2C_{6},$$

and the effective Wilson coefficients are

$$C_{7}^{\text{eff}} = C_{7} - \frac{1}{3}C_{3} - \frac{4}{9}C_{4} - \frac{20}{3}C_{5} - \frac{80}{9}C_{6} , \qquad (596)$$

$$C_{8}^{\text{eff}} = C_{8} + C_{3} - \frac{1}{6}C_{4} + 20C_{5} - \frac{10}{3}C_{6} ,$$

$$C_{9}^{\text{eff}} = C_{9} + Y(q^{2}) ,$$

$$C_{10}^{\text{eff}} = C_{10} .$$

E.4.6 Spectator scattering

$$T_{a,\pm}(u,\omega) = T_{a,\pm}^{(0)}(u,\omega) + \frac{\alpha_s(\mu_f)C_F}{4\pi}T_{a,\pm}^{(1)}(u,\omega) .$$
(597)

At leading-order we have the weak annihilation amplitude which has no analogue in the inclusive decay and generates the hard-(spectator)scattering term $T_{a,\pm}^{(0)}(u,\omega)$ [84]:

$$T_{\perp,+}^{(0)\pm}(u,\omega) = T_{\perp,-}^{(0)\pm}(u,\omega) = T_{\parallel,+}^{(0)\pm}(u,\omega) = 0 , \qquad (598)$$

$$T_{\parallel,-}^{(0)\pm}(u,\omega) = -e_q \frac{M_B\omega}{M_B\omega - q^2 - i\epsilon} \frac{4M_B}{m_b} (\bar{C}_3 + 3\bar{C}_4) .$$
(599)

The next-to-leading order coefficients $T_a^{(1)}$ contain a factorisable as well as non-factorisable part:

$$T_a^{(1)} = T_a^{(f)} + T_a^{(nf)} . ag{600}$$

The hard scattering functions $T_{a,\pm}^{(1)}$ contain a factorisable term from expressing the full QCD form factors in terms of ξ_a , related to the α_s -correction [81,84]:

$$T_{\perp,+}^{(f)\pm}(u,\omega) = (C_7^{\text{eff}} \pm C_7^{\text{eff}'}) \frac{2M_B}{\bar{u}E_{K^*}} , \qquad (601)$$

$$T_{\perp,-}^{(f)\pm}(u,\omega) = T_{\parallel,-}^{(f)\pm}(u,\omega) = 0 , \qquad (602)$$

$$T_{\parallel,+}^{(f)\pm}(u,\omega) = (C_7^{\text{eff}} \pm C_7^{\text{eff}'}) \frac{4M_B}{\bar{u}E_{K^*}} , \qquad (603)$$

where $\bar{u} = 1 - u$. The non-factorisable correction is obtained by computing matrix elements of four-quark operators and the chromomagnetic dipole operator [84].

$$T_{\perp,+}^{(\mathrm{nf})\pm}(u,\omega) = -\frac{4e_d C_8^{\mathrm{eff}}}{u + \bar{u}q^2/M_B^2} + \frac{M_B}{2m_b} \Big[e_u t_\perp(u,m_c)(\bar{C}_2 + \bar{C}_4 - \bar{C}_6) + e_d t_\perp(u,m_b)(\bar{C}_3 + \bar{C}_4 - \bar{C}_6 - 4m_b/M_B\bar{C}_5) + e_d t_\perp(u,0)\bar{C}_3 \Big] ,$$
(604)

$$T_{\perp,-}^{(\mathrm{nf})\pm}(u,\omega) = 0$$
, (605)

$$T_{\parallel,+}^{(\mathrm{nf})\pm}(u,\omega) = \frac{M_B}{m_b} \Big[e_u t_{\parallel}(u,m_c)(\bar{C}_2 + \bar{C}_4 - \bar{C}_6) + e_d t_{\parallel}(u,m_b)(\bar{C}_3 + \bar{C}_4 - \bar{C}_6) + e_d t_{\parallel}(u,0)\bar{C}_3 \Big] ,$$
(606)

$$T_{\parallel,-}^{(\mathrm{nf})\pm}(u,\omega) = e_q \frac{M_B \omega}{M_B \omega - q^2 - i\epsilon} \left[\frac{8C_8^{\mathrm{eff}}}{\bar{u} + uq^2/M_B^2} + \frac{6M_B}{m_b} \left(h(\bar{u}M_B^2 + uq^2, m_c)(\bar{C}_2 + \bar{C}_4 + \bar{C}_6) + h(\bar{u}M_B^2 + uq^2, m_b^{\mathrm{pole}})(\bar{C}_3 + \bar{C}_4 + \bar{C}_6) + h(\bar{u}M_B^2 + uq^2, 0)(\bar{C}_3 + 3\bar{C}_4 + 3\bar{C}_6) - \frac{8}{27}(\bar{C}_3 - \bar{C}_5 - 15\bar{C}_6) \right) \right].$$
(607)

Here $e_u = 2/3$, $e_d = -1/3$ and e_q is the electric charge of the spectator quark in the *B* meson. The functions $t_a(u, m_q)$ are given below

$$t_{\perp}(u, m_q) = \frac{2M_B}{\bar{u}E_{K^*}} I_1(m_q) + \frac{q^2}{\bar{u}^2 E_{K^*}^2} \left(B_0(\bar{u}M_B^2 + uq^2, m_q) - B_0(q^2, m_q) \right), \tag{608}$$

$$t_{\parallel}(u,m_q) = \frac{2M_B}{\bar{u}E_{K^*}}I_1(m_q) + \frac{\bar{u}M_B^2 + uq^2}{\bar{u}^2E_{K^*}^2}(B_0(\bar{u}M_B^2 + uq^2,m_q) - B_0(q^2,m_q)), \quad (609)$$

where B_0 and I_1 are defined as

$$B_0(s, m_q) = -2\sqrt{4m_q^2/s - 1} \arctan \frac{1}{\sqrt{4m_q^2/s - 1}} , \qquad (610)$$

$$I_1(m_q) = 1 + \frac{2m_q^2}{\bar{u}(M_B^2 - q^2)} \Big[L_1(x_+) + L_1(x_-) - L_1(y_+) - L_1(y_-) \Big] , \qquad (611)$$

and

$$x_{\pm} = \frac{1}{2} \pm \left(\frac{1}{4} - \frac{m_q^2}{\bar{u}M_B^2 + uq^2}\right)^{1/2} , \ y_{\pm} = \frac{1}{2} \pm \left(\frac{1}{4} - \frac{m_q^2}{q^2}\right)^{1/2} , \tag{612}$$

$$L_1(x) = \ln \frac{x-1}{x} \ln(1-x) - \frac{\pi^2}{6} + \text{Li}_2\left(\frac{x}{x-1}\right) .$$
(613)

It should be noted that m_q^2 can be treated as $m_q^2 - i\epsilon$ when imaginary parts are involved. The barred coefficients are given in Eq. (596).

From [81]

$$Y(s) \to Y^{(u)}(s) \equiv \left(\frac{4}{3}C_1 + C_2\right) \left[h(s, m_c) - h(s, 0)\right],$$
 (614)

where $h(s, m_q)$ is given in Eq. 588.

$$T_{\perp,+}^{(nf,u)}(u,\omega) = e_u \frac{M_B}{2m_b} \left(C_2 - \frac{1}{6}C_1 \right) \left[t_{\perp}(u,m_c) - t_{\perp}(u,0) \right],$$

$$T_{\parallel,+}^{(nf,u)}(u,\omega) = e_u \frac{M_B}{m_b} \left(C_2 - \frac{1}{6}C_1 \right) \left[t_{\parallel}(u,m_c) - t_{\parallel}(u,0) \right],$$

$$T_{\parallel,-}^{(nf,u)}(u,\omega) = e_q \frac{M_B\omega}{M_B\omega - q^2 - i\epsilon} \frac{6M_B}{m_b}$$

$$\times \left(C_2 - \frac{1}{6}C_1 \right) \left[h(\bar{u}M_B^2 + uq^2,m_c) - h(\bar{u}M_B^2 + uq^2,0) \right],$$

(615)

 $T_{\perp,-}^{(nf,u)}(u,\omega) = 0$, where the functions $t_{\perp,\parallel}(u,m)$ are defined in Eqs. (608-609).

Weak annihilation. Denoting the power-suppressed contributions to $\mathcal{T}_{\perp}^{(i)}$ defined in (572-573) by $\Delta \mathcal{T}_{\perp}^{(i)}$, we find for the annihilation terms at order α_s^0 ($\hat{s} = q^2/M_B^2$)

$$\Delta \mathcal{T}_{\perp}^{(t)}\Big|_{\text{ann}} = -e_q \, \frac{4\pi^2}{3} \, \frac{f_B f_{\perp}}{m_b M_B} \left[C_3 + \frac{4}{3} \left(C_4 + 3C_5 + 4C_6 \right) \right] \, \int_0^1 du \, \frac{\phi_{\perp}(u)}{\bar{u} + u\hat{s}} \\ + e_q \, \frac{2\pi^2}{3} \, \frac{f_B f_{\parallel}}{m_b M_B} \, \frac{m_V}{(1-\hat{s}) \, \lambda_{B,+}(q^2)} \, C_q^{34} \,, \tag{616}$$

$$\Delta \mathcal{T}_{\perp}^{(u)}\Big|_{\text{ann}} = -e_q \, \frac{2\pi^2}{3} \, \frac{f_B f_{\parallel}}{m_b M_B} \, \frac{m_V}{(1-\hat{s}) \, \lambda_{B,+}(q^2)} \, C_q^{12} \,,$$

The inverse moments of the *B* meson distribution amplitudes, $\lambda_{B,\pm}(q^2)$, are defined in Eq. (49,50) of [84].

Hard spectator scattering. The power-suppressed hard scattering terms at order α_s read [59, 76]

$$\begin{split} \Delta \mathcal{T}_{\perp}^{(t)} \Big|_{\text{hsa}} &= e_q \, \frac{\alpha_s C_F}{4\pi} \, \frac{\pi^2 f_B}{N_c m_b M_B} \bigg[12 C_8^{\text{eff}} \, \frac{m_b}{M_B} \, f_{\perp} X_{\perp} (q^2/M_B^2) \\ &+ 8 f_{\perp} \int_0^1 du \, \frac{\phi_{\perp}(u)}{\bar{u} + u\hat{s}} \, F_V^{(t)} (\bar{u} M_B^2 + uq^2) \\ &- \frac{4m_V f_{\parallel}}{(1-\hat{s}) \, \lambda_{B,+}(q^2)} \int_0^1 du \int_0^u dv \, \frac{\phi_{\parallel}(v)}{\bar{v}} \, F_V^{(t)} (\bar{u} M_B^2 + uq^2) \bigg] \,. \end{split}$$
(617)

The quark-loop function $F_V^{(t)}(s)$

$$F_V^{(u)}(s) = \frac{3}{4} \left(C_2 - \frac{1}{6} C_1 \right) \left[h(s, m_c) - h(s, 0) \right].$$
(618)

$$\lambda(q^2, m_V^2) = \left[\left(1 - \frac{q^2}{M_B^2} \right)^2 - \frac{2m_V^2}{M_B^2} \left(1 + \frac{q^2}{M_B^2} \right) + \frac{m_V^4}{M_B^4} \right]^{1/2}, \tag{619}$$

$$\frac{(\mathcal{C}_{7}^{(u)})^{\rho^{0}}}{(\mathcal{C}_{7}^{(t)})^{\rho^{0}}} \equiv \epsilon_{0} e^{i\theta_{0}} \simeq -0.06 - 0.11i, \qquad \frac{(\mathcal{C}_{7}^{(u)})^{\rho^{+}}}{(\mathcal{C}_{7}^{(t)})^{\rho^{+}}} \equiv \epsilon_{+} e^{i\theta_{+}} \simeq 0.24 - 0.12i.$$
(620)

From [87]

$$F_{1,u}^{(7)} = A(s) , (621)$$

$$F_{2,u}^{(7)} = -6A(s) , \qquad (622)$$

$$F_{1,u}^{(9)} = B(s) + 4C(s) , \qquad (623)$$

$$F_{2,u}^{(9)} = -6B(s) + 3C(s) , \qquad (624)$$

where the functions A(s), B(s) and C(s) are given below.

The following definitions are used in the formulae:

$$s = q^2$$
, $\hat{s} = \frac{s}{m_b^2}$, $z = \frac{4m_b^2}{s}$, (625)

$$x_1 = \frac{1}{2} + \frac{i}{2}\sqrt{z-1} , \qquad (626)$$

$$x_2 = \frac{1}{2} - \frac{i}{2}\sqrt{z-1} , \qquad (627)$$

$$x_3 = \frac{1}{2} + \frac{i}{2\sqrt{z-1}} , \qquad (628)$$

$$x_4 = \frac{1}{2} - \frac{i}{2\sqrt{z-1}} . (629)$$

 $\mu \sim m_b$ denotes the renormalization scale, ζ the Riemannian Zeta function and

$$\operatorname{Li}_{2}(x) = -\int_{0}^{x} dt \, \frac{\ln(1-t)}{t} , \qquad (630)$$

is the Dilogarithm.

The functions A(s), B(s), C(s) are as follows:

$$A(s) = -\frac{104}{243} \ln\left(\frac{m_b^2}{\mu^2}\right) + \frac{4\hat{s}}{27(1-\hat{s})} \left[\operatorname{Li}_2(\hat{s}) + \ln(\hat{s})\ln(1-\hat{s})\right]$$

$$+\frac{1}{729(1-\hat{s})^2} \left[6\hat{s}\left(29 - 47\hat{s}\right)\ln(\hat{s}) + 785 - 1600\hat{s} + 833\hat{s}^2 + 6\pi i\left(20 - 49\hat{s} + 47\hat{s}^2\right)\right]$$

$$-\frac{2}{243(1-\hat{s})^3} \left[2\sqrt{z-1}\left(-4 + 9\hat{s} - 15\hat{s}^2 + 4\hat{s}^3\right)\operatorname{arccot}(\sqrt{z-1}) + 9\hat{s}^3\ln^2(\hat{s})$$

$$+18\pi i\hat{s}\left(1-2\hat{s}\right)\ln(\hat{s})\right]$$

$$+\frac{2\hat{s}}{243(1-\hat{s})^4} \left[36\operatorname{arccot}^2(\sqrt{z-1}) + \pi^2\left(-4 + 9\hat{s} - 9\hat{s}^2 + 3\hat{s}^3\right)\right],$$
(631)

$$\begin{split} B(s) &= \frac{8}{243\hat{s}} \Big[\Big(4 - 34\hat{s} - 17\pi i\hat{s} \Big) \ln \left(\frac{m_b^2}{\mu^2} \right) + 8\hat{s} \ln^2 \left(\frac{m_b^2}{\mu^2} \right) + 17\hat{s} \ln(\hat{s}) \ln \left(\frac{m_b^2}{\mu^2} \right) \Big] \quad (632) \\ &+ \frac{(2 + \hat{s})\sqrt{z - 1}}{729\hat{s}} \left\{ -48 \ln \left(\frac{m_b^2}{\mu^2} \right) \arccos(\sqrt{z - 1}) - 18\pi \ln(z - 1) + 3i \ln^2(z - 1) \right. \\ &- 24i \operatorname{Li}_2\left(\frac{-x_2}{x_1} \right) - 5\pi^2 i - 12\pi \Big[2\ln(x_1) + \ln(x_3) + \ln(x_4) \Big] \\ &+ 6i \Big[-9 \ln^2(x_1) + \ln^2(x_2) - 2\ln^2(x_4) + 6\ln(x_1)\ln(x_2) - 4\ln(x_1)\ln(x_3) + 8\ln(x_1)\ln(x_4) \Big] \Big\} \\ &- \frac{2}{243\hat{s}(1 - \hat{s})} \left\{ 4\hat{s} \Big(-8 + 17\hat{s} \Big) \Big[\operatorname{Li}_2(\hat{s}) + \ln(\hat{s})\ln(1 - \hat{s}) \Big] \\ &+ 3(2 + \hat{s}) (3 - \hat{s}) \ln^2 \left(\frac{x_2}{x_1} \right) + 12\pi \Big(-6 - \hat{s} + \hat{s}^2 \Big) \operatorname{arccot}(\sqrt{z - 1}) \right\} \\ &+ \frac{2}{2187\hat{s}(1 - \hat{s})^2} \Big[-18\hat{s} \Big(120 - 211\hat{s} + 73\hat{s}^2 \Big) \ln(\hat{s}) \\ &- 288 - 8\hat{s} + 934\hat{s}^2 - 692\hat{s}^3 + 18\pi i\hat{s} \Big(82 - 173\hat{s} + 73\hat{s}^2 \Big) \Big] \\ &- \frac{4}{243\hat{s}(1 - \hat{s})^3} \Big[-2\sqrt{z - 1} \Big(4 - 3\hat{s} - 18\hat{s}^2 + 16\hat{s}^3 - 5\hat{s}^4 \Big) \operatorname{arccot}(\sqrt{z - 1}) \\ &- 9\hat{s}^3 \ln^2(\hat{s}) + 2\pi i\hat{s} \Big(8 - 33\hat{s} + 51\hat{s}^2 - 17\hat{s}^3 \Big) \ln(\hat{s}) \Big] \\ &+ \frac{2}{729\hat{s}(1 - \hat{s})^4} \Big[72(3 - 8\hat{s} + 2\hat{s}^2) \operatorname{arccot}^2(\sqrt{z - 1}) \\ &- \pi^2 \Big(54 - 53\hat{s} - 286\hat{s}^2 + 612\hat{s}^3 - 446\hat{s}^4 + 113\hat{s}^5 \Big) \Big] , \\ C(s) &= -\frac{16}{81} \ln(\frac{s}{\mu^2}) + \frac{428}{243} - \frac{64}{27} \zeta(3) + \frac{16}{81}\pi i , \end{aligned}$$

E.4.7 Low recoil region

The predictions for $\bar{B}^0 \to \bar{K}^{*0} \ell^+ \ell^-$ are worked out in [77] using the heavy quark effective theory (HQET) framework by Grinstein and Pirjol [88].

The low recoil transversity amplitudes to leading order in $1/m_b$ are given as [77]:

$$A_{\perp}^{L,R} = +i \left\{ (C_9^{\text{eff}} \mp C_{10}) + \kappa \frac{2\hat{m}_b}{\hat{s}} C_7^{\text{eff}} \right\} f_{\perp} , \qquad (634)$$

$$A_{\parallel}^{L,R} = -i \Big\{ (C_9^{\text{eff}} \mp C_{10}) + \kappa \frac{2\hat{m}_b}{\hat{s}} C_7^{\text{eff}} \Big\} f_{\parallel} , \qquad (635)$$

$$A_0^{L,R} = -i \left\{ (C_9^{\text{eff}} \mp C_{10}) + \kappa \frac{2\hat{m}_b}{\hat{s}} C_7^{\text{eff}} \right\} f_0 , \qquad (636)$$

where

$$\kappa = 1 - 2 \frac{\alpha_s}{3\pi} \ln\left(\frac{\mu}{m_b}\right) , \qquad (637)$$

and the form factors read

$$f_{\perp} = Nm_B \frac{\sqrt{2\hat{\lambda}}}{1 + \hat{m}_{K^*}} V , \qquad (638)$$

$$f_{\parallel} = N m_B \sqrt{2} \left(1 + \hat{m}_{K^*} \right) A_1 , \qquad (639)$$

$$f_0 = Nm_B \frac{(1 - \hat{s} - \hat{m}_{K^*}^2)(1 + \hat{m}_{K^*})^2 A_1 - \hat{\lambda} A_2}{2\,\hat{m}_{K^*}(1 + \hat{m}_{K^*})\sqrt{\hat{s}}}, \qquad (640)$$

with the normalization factor:

$$N = \left[\frac{G_F^2 \alpha_{em}^2 |\lambda_t|^2 m_B \,\hat{s} \sqrt{\hat{\lambda}}}{3 \cdot 2^{10} \, \pi^5}\right]^{1/2} \,. \tag{641}$$

In the above equation $\hat{s} = q^2/m_B^2$, $\hat{m}_i = m_i/m_B$ and $\hat{\lambda} = 1 + \hat{s}^2 + \hat{m}_{K^*}^4 - 2\left(\hat{s} + \hat{s}\hat{m}_{K^*}^2 + \hat{m}_{K^*}^2\right)$ are dimensionless variables.

The effective coefficients C_9 and C_{10} take the form:

$$C_{9}^{\text{eff}} = C_{9} + h(0,q^{2}) \left[\frac{4}{3} C_{1} + C_{2} + \frac{11}{2} C_{3} - \frac{2}{3} C_{4} + 52 C_{5} - \frac{32}{3} C_{6} \right]$$

$$- \frac{1}{2} h(m_{b},q^{2}) \left[7 C_{3} + \frac{4}{3} C_{4} + 76 C_{5} + \frac{64}{3} C_{6} \right] + \frac{4}{3} \left[C_{3} + \frac{16}{3} C_{5} + \frac{16}{9} C_{6} \right]$$

$$+ \frac{\alpha_{s}}{4\pi} \left[C_{1} \left(B(q^{2}) + 4 C(q^{2}) \right) - 3 C_{2} \left(2 B(q^{2}) - C(q^{2}) \right) - C_{8} F_{8}^{(9)}(q^{2}) \right]$$

$$+ \frac{8 m_{c}^{2}}{q^{2}} \left[\left(\frac{4}{9} C_{1} + \frac{1}{3} C_{2} \right) (1 + \lambda_{u}) + 2 C_{3} + 20 C_{5} \right] ,$$

$$C_{7}^{\text{eff}} = C_{7} - \frac{1}{3} \left[C_{3} + \frac{4}{3} C_{4} + 20 C_{5} + \frac{80}{3} C_{6} \right]$$

$$+ \frac{\alpha_{s}}{4\pi} \left[\left(C_{1} - 6 C_{2} \right) A(q^{2}) - C_{8} F_{8}^{(7)}(q^{2}) \right] ,$$

$$(642)$$

The charm loop function read

$$h(0,q^2) = \frac{8}{27} + \frac{4}{9} \left(\ln \frac{\mu^2}{q^2} + i\pi \right) , \qquad (644)$$

while the b quarks loops from penguin operators are taken into account by the function

$$h(m_b, q^2) = \frac{4}{9} \left(\ln \frac{\mu^2}{m_b^2} + \frac{2}{3} + z \right) - \frac{4}{9} (2+z)\sqrt{z-1} \arctan \frac{1}{\sqrt{z-1}} , \qquad (645)$$

with $z = 4m_b^2/q^2$.

E.5 Branching ratio of $B_{s,d} \rightarrow \mu^+ \mu^-$

E.5.1 CP-averaged branching ratio

The rare decay $B_s \to \mu^+ \mu^-$ proceeds via Z^0 penguin and box diagrams in the SM, and the branching ratio is therefore highly suppressed. In supersymmetry, for large values of tan β this decay can receive large contributions from neutral Higgs bosons in chargino, charged Higgs and W-mediated penguins.

The branching fraction for BR $(B_s \to \mu^+ \mu^-)$ is given by [89, 90]

$$BR(B_s \to \mu^+ \mu^-) = \frac{G_F^2 \alpha^2}{64\pi^3} f_{B_s}^2 \tau_{B_s} m_{B_s}^3 |V_{tb} V_{ts}^*|^2 \sqrt{1 - \frac{4m_\mu^2}{m_{B_s}^2}}$$
(646)

$$\times \left\{ \left(1 - \frac{4m_{\mu}^2}{m_{B_s}^2}\right) \left| \left(\frac{m_{B_s}}{m_b + m_s}\right) (C_{Q_1} - C'_{Q_1}) \right|^2 + \left| \left(\frac{m_{B_s}}{m_b + m_s}\right) (C_{Q_2} - C'_{Q_2}) + 2 (C_{10} - C'_{10}) \frac{m_{\mu}}{m_{B_s}} \right|^2 \right\}$$

where f_{B_s} is the B_s decay constant, m_{B_s} is the B_s meson mass and τ_{B_s} is the B_s mean life, all given in Appendix G. The involved Wilson coefficients can be found in Appendix C.

Similarly, the branching fraction for $BR(B_d \to \mu^+ \mu^-)$ can be obtained from:

$$BR(B_{d} \to \mu^{+} \mu^{-}) = \frac{G_{F}^{2} \alpha^{2}}{64\pi^{3}} f_{B}^{2} \tau_{B_{d}} m_{B_{d}}^{3} |V_{tb} V_{td}^{*}|^{2} \sqrt{1 - \frac{4m_{\mu}^{2}}{m_{B_{d}}^{2}}} \qquad (647)$$

$$\times \left\{ \left(1 - \frac{4m_{\mu}^{2}}{m_{B_{d}}^{2}} \right) |\left(\frac{m_{B_{d}}}{m_{b} + m_{d}} \right) C_{Q_{1}}|^{2} + \left| \left(\frac{m_{B_{d}}}{m_{b} + m_{d}} \right) C_{Q_{2}} + 2 C_{10} \frac{m_{\mu}}{m_{B_{d}}} \right|^{2} \right\},$$

In SuperIso, first all the Wilson coefficients are calculated numerically, and then the branching ratios of $B_s \to \mu^+ \mu^-$ and $B_d \to \mu^+ \mu^-$ are evaluated.

E.5.2 Untagged Branching ratio

The branching ratio of $B_s \to \mu^+ \mu^-$ described in the previous section is CP-averaged, while the experimental value is untagged. The untagged branching ratio is related to the CPaveraged one by [91]:

$$BR^{untag}(B_s \to \mu^+ \mu^-) = \left[\frac{1 + \mathcal{A}_{\Delta\Gamma} y_s}{1 - y_s^2}\right] BR(B_s \to \mu^+ \mu^-) , \qquad (648)$$

where

$$y_s \equiv \frac{1}{2} \tau_{B_s} \Delta \Gamma_s = 0.088 \pm 0.014 ,$$
 (649)

and

$$\mathcal{A}_{\Delta\Gamma} = \frac{|P|^2 \cos(2\varphi_P) - |S|^2 \cos(2\varphi_S)}{|P|^2 + |S|^2} , \qquad (650)$$

with

$$S \equiv \sqrt{1 - 4\frac{m_{\mu}^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_{\mu}} \frac{1}{m_b + m_s} \frac{C_{Q_1} - C'_{Q_1}}{C_{10}^{SM}} , \qquad (651)$$

$$P \equiv \frac{C_{10} - C'_{10}}{C_{10}^{SM}} + \frac{M_{B_s}^2}{2m_{\mu}} \frac{1}{m_b + m_s} \frac{C_{Q_2} - C'_{Q_2}}{C_{10}^{SM}} , \qquad (652)$$

and

$$\varphi_S = \arg(S) , \qquad \varphi_P = \arg(P) .$$
 (653)

The obtained value can then be directly compared to the experimental one.

E.6 Branching ratio of $B_u \to \tau \nu_{\tau}$

The purely leptonic decay $B_u \to \tau \nu_{\tau}$ occurs via W^+ and H^+ mediated annihilation processes. This decay is helicity suppressed in the SM, but there is no such suppression for the charged Higgs exchange at high $\tan \beta$, and the two contributions can therefore be of similar magnitudes. This decay is thus very sensitive to charged Higgs boson and provide important constraints.

The branching ratio of $B_u \to \tau \nu_{\tau}$ in Supersymmetry is given by [92]

$$BR(B_u \to \tau \nu_\tau) = \frac{G_F^2 f_B^2 |V_{ub}|^2}{8\pi} \tau_B m_B m_\tau^2 \left(1 - \frac{m_\tau^2}{m_B^2}\right)^2 \left[1 - \left(\frac{m_B^2}{M_{H^+}^2}\right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right]^2, \quad (654)$$

where ϵ_0 is given in Eq. (95), and τ_B is the B^{\pm} meson lifetime which is given in Appendix G together with the other constants in this equation.

The following ratio is usually considered to express the new physics contributions:

$$R_{\tau\nu_{\tau}}^{\text{MSSM}} = \frac{\text{BR}(B_u \to \tau\nu_{\tau})_{\text{MSSM}}}{\text{BR}(B_u \to \tau\nu_{\tau})_{\text{SM}}} = \left[1 - \left(\frac{m_B^2}{M_{H^+}^2}\right)\frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta}\right]^2 , \quad (655)$$

which is also implemented in SuperIso.

In the 2HDM, Eq. (654) takes the form

$$BR(B_u \to \tau \nu_{\tau}) = \frac{G_F^2 f_B^2 |V_{ub}|^2}{8\pi} \tau_B m_B m_{\tau}^2 \left(1 - \frac{m_{\tau}^2}{m_B^2}\right)^2 \left[1 - \left(\frac{m_B^2}{M_{H^+}^2}\right) \lambda_{bb} \lambda_{\tau\tau}\right]^2 , \quad (656)$$

where the Yukawa couplings λ_{bb} , $\lambda_{\tau\tau}$ can be found in Table 2 for the four types of 2HDM Yukawa sectors.

E.7 Branching ratio of $B \rightarrow D\tau \nu_{\tau}$

The semileptonic decay $B \to D\tau\nu_{\tau}$ is similar to $B_u \to \tau\nu_{\tau}$. The SM helicity suppression here occurs only near the kinematic endpoint. The branching ratio of $B \to D\tau\nu_{\tau}$ on the other hand is about 50 times larger that the branching ratio of $B_u \to \tau\nu_{\tau}$ in the SM.

In Supersymmetry, the partial rate of the transition $B \to D\ell\nu_{\ell}$ (where $\ell = e, \mu$ or τ) can be written in function of w as [93]

$$\frac{d\Gamma(B \to D\ell\nu_{\ell})}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} \rho_V(w) \qquad (657)$$
$$\times \left[1 - \frac{m_{\ell}^2}{m_B^2} \left| 1 - t(w) \frac{m_b}{(m_b - m_c)M_{H^+}^2} \frac{\tan^2\beta}{1 + \epsilon_0 \tan\beta} \right|^2 \rho_S(w) \right] ,$$

where w is a kinematic variable defined as:

$$w = \frac{1 + (m_D/m_B)^2 - (p_B - p_D)^2/m_B^2}{2m_D/m_B},$$
(658)

with p_D and p_B the meson four-momenta, and $t(w) = m_B^2 + m_D^2 - 2w m_D m_B$. Again, ϵ_0 is given in Eq. (95), and

$$t(w) = m_B^2 + m_D^2 - 2wm_D m_B . (659)$$

In general 2HDM, Eq. (657) is replaced by

$$\frac{d\Gamma(B \to D\ell\nu_{\ell})}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{192\pi^3} \rho_V(w) \qquad (660)$$
$$\times \left[1 - \frac{m_{\ell}^2}{m_B^2} \left| 1 - t(w) \frac{m_b \lambda_{bb} - m_c \lambda_{cc}}{(m_b - m_c) M_{H^+}^2} \lambda_{\ell\ell} \right|^2 \rho_S(w) \right] ,$$

where the Yukawa couplings λ_{bb} , $\lambda_{\ell\ell}$ can be found in Table 2 for the four types of 2HDM Yukawa sectors.

The vector and scalar Dalitz density contributions read [93]

$$\rho_V(w) = 4 \left(1 + \frac{m_D}{m_B}\right)^2 \left(\frac{m_D}{m_B}\right)^3 \left(w^2 - 1\right)^{\frac{3}{2}} \left(1 - \frac{m_\ell^2}{t(w)}\right)^2 \left(1 + \frac{m_\ell^2}{2t(w)}\right) G(w)^2 , \ (661)$$

$$\rho_S(w) = \frac{3}{2} \frac{m_B^2}{t(w)} \left(1 + \frac{m_\ell^2}{2t(w)} \right)^{-1} \frac{1+w}{1-w} \Delta(w)^2 , \qquad (662)$$

where G(w) and $\Delta(w)$ are hadronic form factors. G(w) can be parametrized as

$$G(w) = G(1) \times \left[1 - 8\rho^2 z(w) + (51\rho^2 - 10)z(w)^2 - (252\rho^2 - 84)z(w)^3\right],$$
(663)

with

$$z(w) = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} , \qquad (664)$$

and $\Delta(w)$ is [94]

$$\Delta(w) = 0.46 \pm 0.02 \ . \tag{665}$$

The parameters G(1) and ρ^2 are given in Appendix G. Integrating Eq. (657) over w leads as a result to the value of the branching ratio.

The following ratio

$$\xi_{D\ell\nu} = \frac{\mathrm{BR}(B \to D^0 \tau \nu_{\tau})}{\mathrm{BR}(B \to D^0 e \nu_e)} \tag{666}$$

is also considered in order to reduce some of the theoretical uncertainties. It can be calculated using Eq. (657).

E.8 Branching ratio of $K \to \mu \nu_{\mu}$

The leptonic kaon decay $K \to \mu \nu_{\mu}$ is also very similar to $B_u \to \tau \nu_{\tau}$, and is mediated via W^+ and H^+ annihilation processes. The charged Higgs contribution is however reduced as H^+ couples to lighter quarks in this case.

We consider the following ratio in SuperIso in order to reduce the theoretical uncertainties from f_K [95], which reads in Supersymmetry

$$\frac{\mathrm{BR}(K \to \mu \nu_{\mu})}{\mathrm{BR}(\pi \to \mu \nu_{\mu})} = \frac{\tau_{K}}{\tau_{\pi}} \left| \frac{V_{us}}{V_{ud}} \right|^{2} \frac{f_{K}^{2}}{f_{\pi}^{2}} \frac{m_{K}}{m_{\pi}} \left(\frac{1 - m_{\ell}^{2}/m_{K}^{2}}{1 - m_{\ell}^{2}/m_{\pi}^{2}} \right)^{2} \times \left[1 - \frac{m_{K^{+}}^{2}}{M_{H^{+}}^{2}} \left(1 - \frac{m_{d}}{m_{s}} \right) \frac{\tan^{2}\beta}{1 + \epsilon_{0} \tan\beta} \right]^{2} (1 + \delta_{\mathrm{em}}) , \qquad (667)$$

where $\delta_{\rm em} = 0.0070 \pm 0.0035$ is a long distance electromagnetic correction factor, the ratio f_K/f_{π} is given in Appendix G, and ϵ_0 for the second generation of quarks reads:

$$\epsilon_0 = -\frac{2 \,\alpha_s \,\mu}{3 \,\pi \,m_{\tilde{g}}} H_2\left(\frac{m_{\tilde{q}_L}^2}{m_{\tilde{g}}^2}, \frac{m_{\tilde{d}_R}^2}{m_{\tilde{g}}^2}\right) \,, \tag{668}$$

where $H_2(x, y)$ is given in Eq. (97).

The additional quantity $R_{\mu 23}$ [95] is also implemented in SuperIso

$$R_{\mu23} = \left| \frac{V_{us}(K_{\ell2})}{V_{us}(K_{\ell3})} \times \frac{V_{ud}(0^+ \to 0^+)}{V_{ud}(\pi_{\ell2})} \right| = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \frac{\tan^2 \beta}{1 + \epsilon_0 \tan \beta} \right| , \qquad (669)$$

where ℓi refers to leptonic decays with *i* particles in the final state, and $0^+ \rightarrow 0^+$ corresponds to nuclear beta decay.

In general 2HDM, Eq. (669) reads

$$R_{\mu 23} = \left| 1 - \frac{m_{K^+}^2}{M_{H^+}^2} \left(1 - \frac{m_d}{m_s} \right) \lambda_{ss} \lambda_{\mu\mu} \right| , \qquad (670)$$

where the Yukawa couplings λ_{ss} , $\lambda_{\mu\mu}$ can be found in Table 2 for the four types of 2HDM Yukawa sectors.

E.9 Branching ratio of $D_s \to \ell \nu_\ell$

The purely leptonic decays $D_s \to \ell \nu_{\ell}$ are very similar to $K \to \mu \nu_{\mu}$ and proceed via annihilation of the heavy meson into W^+ and H^+ . The charged Higgs boson contribution can only suppress the branching ratio and is therefore slightly disfavoured. In Supersymmetry the branching fraction is given by (where $\ell = e, \mu$ or τ) [96,97]:

$$BR(D_{s} \to \ell \nu_{\ell}) = \frac{G_{F}^{2}}{8\pi} |V_{cs}|^{2} f_{D_{s}}^{2} m_{\ell}^{2} m_{D_{s}} \tau_{D_{s}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}\right)^{2}$$

$$\times \left[1 + \left(\frac{1}{m_{c} + m_{s}}\right) \left(\frac{m_{D_{s}}}{M_{H^{+}}}\right)^{2} \left(m_{c} - \frac{m_{s} \tan^{2} \beta}{1 + \epsilon_{0} \tan \beta}\right)\right]^{2},$$
(671)

where τ_{D_s} and f_{D_s} are the D_s^{\pm} meson lifetime and decay constant respectively, which are given in Appendix G together with the other constants in this equation, and

$$\epsilon_0 = -\frac{2\,\alpha_s\,\mu}{3\,\pi\,m_{\tilde{g}}} H_2\left(\frac{m_{\tilde{q}_L}^2}{m_{\tilde{g}}^2}, \frac{m_{\tilde{u}_R}^2}{m_{\tilde{g}}^2}\right) \,, \tag{672}$$

with $H_2(x, y)$ given in Eq. (97).

In general 2HDM, Eqs. (672) becomes

$$BR(D_{s} \to \ell \nu_{\ell}) = \frac{G_{F}^{2}}{8\pi} |V_{cs}|^{2} f_{D_{s}}^{2} m_{\ell}^{2} m_{D_{s}} \tau_{D_{s}} \left(1 - \frac{m_{\ell}^{2}}{m_{D_{s}}^{2}}\right)^{2} \times \left[1 - \left(\frac{m_{D_{s}}}{M_{H^{+}}}\right)^{2} \frac{m_{s} \lambda_{ss} - m_{c} \lambda_{cc}}{(m_{c} + m_{s})} \lambda_{\ell \ell}\right]^{2}, \qquad (673)$$

where the Yukawa couplings λ_{cc} , λ_{ss} , $\lambda_{\ell\ell}$ can be found in Table 2 for the four types of 2HDM Yukawa sectors.

E.10 Branching ratio of $D \rightarrow \mu \nu_{\mu}$

The decay $D \rightarrow \mu \nu_{\mu}$ is also measured experimentally. In Supersymmetry the branching fraction is given by:

$$BR(D \to \mu \nu_{\mu}) = \frac{G_F^2}{8\pi} |V_{cd}|^2 f_D^2 m_\ell^2 m_D \tau_D \left(1 - \frac{m_{\mu}^2}{m_D^2}\right)^2$$

$$\times \left[1 + \left(\frac{1}{m_c + m_d}\right) \left(\frac{m_D}{M_{H^+}}\right)^2 \left(m_c - \frac{m_d \tan^2 \beta}{1 + \epsilon_0 \tan \beta}\right)\right]^2,$$
(674)

where τ_D and f_D are the D^{\pm} meson lifetime and decay constant respectively, which are given in Appendix G together with the other constants in this equation, and ϵ_0 is given in Eq. (672) and $H_2(x, y)$ in Eq. (97). Contrary to $D_s \to \ell \nu_{\ell}$, the tan β terms are suppressed in this decay.

In general 2HDM, Eqs. (675) becomes

$$BR(D \to \mu \nu_{\mu}) = \frac{G_F^2}{8\pi} |V_{cd}|^2 f_D^2 m_{\ell}^2 m_D \tau_D \left(1 - \frac{m_{\ell}^2}{m_D^2}\right)^2$$

$$\times \left[1 - \left(\frac{m_D}{M_{H^+}}\right)^2 \frac{m_d \lambda_{dd} - m_c \lambda_{cc}}{(m_c + m_d)} \lambda_{\mu\mu}\right]^2,$$
(675)

where the Yukawa couplings λ_{cc} , λ_{dd} , $\lambda_{\mu\mu}$ can be found in Table 2 for the four types of 2HDM Yukawa sectors.

Appendix F Muon anomalous magnetic moment

The magnetic moment of the muon can be written as

$$M = \frac{e\hbar}{2m_{\mu}} (1 + a_{\mu}) , \qquad (676)$$

where $e\hbar/2m_{\mu}$ is the Dirac moment and the small higher order correction to the tree level is called the anomalous magnetic moment $a_{\mu} = (g_{\mu} - 2)/2$.

F.1 Supersymmetry

Supersymmetry can contribute to this anomaly through chargino-sneutrino and neutralinosmuon loops. The one-loop SUSY contributions to a_{μ} are [98]

$$\delta a_{\mu}^{\chi^{0}} = \frac{m_{\mu}}{16\pi^{2}} \sum_{i=1}^{n_{\chi^{0}}} \sum_{m=1}^{2} \left\{ -\frac{m_{\mu}}{12m_{\tilde{\mu}m}^{2}} (|n_{im}^{L}|^{2} + |n_{im}^{R}|^{2}) F_{1}^{N}(x_{im}) + \frac{m_{\chi^{0}_{i}}}{3m_{\tilde{\mu}m}^{2}} \operatorname{Re}[n_{im}^{L}n_{im}^{R}] F_{2}^{N}(x_{im}) \right\},$$
(677)

and

$$\delta a_{\mu}^{\chi^{\pm}} = \frac{m_{\mu}}{16\pi^2} \sum_{k=1}^{2} \left\{ \frac{m_{\mu}}{12m_{\tilde{\nu}_{\mu}}^2} \left(|c_k^L|^2 + |c_k^R|^2 \right) F_1^C(x_k) + \frac{2m_{\chi_k^{\pm}}}{3m_{\tilde{\nu}_{\mu}}^2} \operatorname{Re}[c_k^L c_k^R] F_2^C(x_k) \right\} , \quad (678)$$

where n_{χ^0} is 4 in the MSSM and 5 in the NMSSM. *i*, *m* and *k* are neutralino, smuon and chargino mass eigenstate labels respectively, and

$$n_{im}^R = \sqrt{2}g' N_{i1} X_{m2} + y_\mu N_{i3} X_{m1} , \qquad (679)$$

$$n_{im}^{L} = \frac{1}{\sqrt{2}} \left(g N_{i2} + g' N_{i1} \right) X_{m1}^{*} - y_{\mu} N_{i3} X_{m2}^{*} , \qquad (680)$$

$$c_k^R = y_\mu U_{k2} , (681)$$

$$c_k^L = -gV_{k1},$$
 (682)

where $y_{\mu} = gm_{\mu}/\sqrt{2}M_W \cos\beta$ is the muon Yukawa coupling, and the X is the smuon mixing matrix. The functions F_i^N and F_i^C depend respectively on $x_{im} = m_{\chi_i^0}^2/m_{\tilde{\mu}_m}^2$ and $x_k = m_{\chi_k^\pm}^2/m_{\tilde{\nu}_{\mu}}^2$ as

$$F_1^N(x) = \frac{2}{(1-x)^4} \left(1 - 6x + 3x^2 + 2x^3 - 6x^2 \ln x \right), \qquad (683)$$

$$F_2^N(x) = \frac{3}{(1-x)^3} \left(1 - x^2 + 2x \ln x \right), \qquad (684)$$

$$F_1^C(x) = \frac{2}{(1-x)^4} \left(2 + 3x - 6x^2 + x^3 + 6x \ln x \right), \tag{685}$$

$$F_2^C(x) = -\frac{3}{2(1-x)^3} \left(3 - 4x + x^2 + 2\ln x \right).$$
(686)

The muon anomalous magnetic moment can also receive at one loop contributions from the Higgs bosons, which can be large in the NMSSM [99]:

$$\delta a_{\mu}^{H^{0}} = \frac{G_{\mu}m_{\mu}^{2}}{4\sqrt{2}\pi^{2}} \sum_{i=1}^{3} \frac{(U_{i2}^{H})^{2}}{\cos^{2}\beta} \int_{0}^{1} \frac{x^{2}(2-x) dx}{x^{2} + \left(\frac{M_{h_{i}}}{m_{\mu}}\right)^{2} (1-x)}, \qquad (687)$$

$$\delta a_{\mu}^{A^{0}} = -\frac{G_{\mu}m_{\mu}^{2}}{4\sqrt{2}\pi^{2}} \sum_{i=1}^{2} (U_{i1}^{A})^{2} \tan^{2}\beta \int_{0}^{1} \frac{x^{3} dx}{x^{2} + \left(\frac{M_{a_{i}}}{m_{\mu}}\right)^{2} (1-x)}, \qquad (688)$$

$$\delta a_{\mu}^{H^{+}} = \frac{G_{\mu}m_{\mu}^{2}}{4\sqrt{2}\pi^{2}} \tan^{2}\beta \int_{0}^{1} \frac{x(x-1)\,dx}{x-1+\left(\frac{M_{H^{\pm}}}{m_{\mu}}\right)^{2}}, \qquad (689)$$

where $G_{\mu} = g/4\sqrt{2}M_W^2$, and U^H and U^A are respectively the CP-even and CP-odd Higgs mixing matrices given in Eqs. (108) and (109), and M_{h_i} and M_{a_i} refer respectively to the masses of the three CP-even and the two CP-odd Higgs bosons.
In addition to these contributions, we also consider the leading logarithm QED correction from two-loop evaluation [100]:

$$a_{\mu,2\,\text{loop}}^{\text{SUSY}} = a_{\mu,1\,\text{loop}}^{\text{SUSY}} \left(1 - \frac{4\alpha}{\pi} \ln \frac{M_{\text{SUSY}}}{m_{\mu}} \right) , \qquad (690)$$

where M_{SUSY} is a typical superpartner mass scale.

The dominant two loop contributions from the photonic Barr-Zee diagrams with physical Higgs bosons are as follows [101]

$$a_{\mu}^{(\chi\gamma H)} = \frac{\alpha^2 m_{\mu}^2}{8\pi^2 M_W^2 s_W^2} \sum_{k=1,2} \left\{ \sum_{a_i} \operatorname{Re}[\lambda_{\mu}^{a_i} \lambda_{\chi_k^{\pm}}^{a_i}] f_{PS}(m_{\chi_k^{\pm}}^2/M_{a_i}^2) + \sum_{h_i} \operatorname{Re}[\lambda_{\mu}^{h_i} \lambda_{\chi_k^{\pm}}^{h_i}] f_S(m_{\chi_k^{\pm}}^2/M_{h_i}^2) \right\},$$

$$a_{\mu}^{(\tilde{f}\gamma H)} = \frac{\alpha^2 m_{\mu}^2}{8\pi^2 M_W^2 s_W^2} \sum_{\tilde{f}=\tilde{t},\tilde{b},\tilde{\tau}} (N_c Q^2)_{\tilde{f}} \sum_{j=1,2} \sum_{h_i} \operatorname{Re}[\lambda_{\mu}^{h_i} \lambda_{\tilde{f}_j}^{h_i}] f_{\tilde{f}}(m_{\tilde{f}_j}^2/M_{h_i}^2), \quad (692)$$

where h_i and a_i stand respectively for (h^0, H^0) and A^0 in the MSSM, and (h^0, H^0, H_3^0) and (A_1^0, A_2^0) in the NMSSM. N_c is the colour number and Q the electric charge.

The couplings of the Higgs to muon, charginos and sfermions in the MSSM are given by:

$$\lambda_{\mu}^{[h^0, H^0, A^0]} = \left[-\frac{\sin \alpha}{\cos \beta}, \frac{\cos \alpha}{\cos \beta}, \tan \beta \right] , \qquad (693)$$

$$\lambda_{\chi_{k}^{\pm}}^{[h^{0},H^{0},A^{0}]} = \frac{\sqrt{2}M_{W}}{m_{\chi_{k}^{\pm}}} \Big\{ U_{k1}V_{k2} \big[\cos\alpha, \sin\alpha, -\cos\beta \big]$$
(694)

$$+U_{k2}V_{k1}\left[-\sin\alpha,\cos\alpha,-\sin\beta\right]\right\},$$

$$\lambda_{\tilde{t}_{i}}^{[h^{0},H^{0}]} = \frac{2m_{t}}{m_{\tilde{t}_{i}}^{2}\sin\beta} \Big\{ +\mu^{*} \big[\sin\alpha, -\cos\alpha\big] + A_{t} \big[\cos\alpha, \sin\alpha\big] \Big\} \ (D_{i1}^{\tilde{t}})^{*} D_{i2}^{\tilde{t}} \ , \ (695)$$

$$\lambda_{\tilde{b}_{i}}^{[h^{0},H^{0}]} = \frac{2m_{b}}{m_{\tilde{b}_{i}}^{2}\cos\beta} \Big\{ -\mu^{*} \big[\cos\alpha,\sin\alpha\big] + A_{b} \big[-\sin\alpha,\cos\alpha\big] \Big\} (D_{i1}^{\tilde{b}})^{*} D_{i2}^{\tilde{b}} , \quad (696)$$

$$\lambda_{\tilde{\tau}_i}^{[h^0, H^0]} = \frac{2m_\tau}{m_{\tilde{\tau}_i}^2 \cos\beta} \left\{ -\mu^* \left[\cos\alpha, \sin\alpha \right] + A_\tau \left[-\sin\alpha, \cos\alpha \right] \right\} (D_{i1}^{\tilde{\tau}})^* D_{i2}^{\tilde{\tau}} , (697)$$

where U and V are the chargino mixing matrices, and $D_{\tilde{f}}$ is the sfermion \tilde{f} mixing matrix. In the NMSSM, these couplings can be generalized as [99]:

$$\lambda_{\mu}^{h_i} = \frac{U_{i2}^H}{\cos\beta} , \qquad (698)$$

$$\lambda_{\mu}^{a_i} = U_{i2}^A \tan\beta , \qquad (699)$$

$$\lambda_{\chi_{k}^{\pm}}^{h_{i}} = \frac{\sqrt{2}M_{W}}{g m_{\chi_{k}^{\pm}}} \Big[\lambda U_{k2} V_{k2} U_{i3}^{H} + g \left(U_{k1} V_{k2} U_{i1}^{H} + U_{k2} V_{k1} U_{i2}^{H} \right) \Big], \qquad (700)$$

$$\lambda_{\chi_{k}^{\pm}}^{a_{i}} = \frac{\sqrt{2}M_{W}}{g m_{\chi_{k}^{\pm}}} \left[\lambda U_{k2} V_{k2} U_{i2}^{A} - g \left(U_{k1} V_{k2} \cos \beta + U_{k2} V_{k1} \sin \beta \right) U_{i1}^{A} \right], \quad (701)$$

$$\lambda_{\tilde{t}_{k}}^{h_{i}} = \frac{2\sqrt{2}M_{W}}{gm_{\tilde{t}_{i}}^{2}} \Biggl\{ h_{t} \Bigl[A_{t}U_{i1}^{H} - \lambda (xU_{i2}^{H} + v_{d}U_{i3}^{H}) \Bigr] \operatorname{Re}[(D_{k1}^{\tilde{t}})^{*}D_{k2}^{\tilde{t}}] + \Bigl[h_{t}^{2}v_{u}U_{i1}^{H} - \frac{g'^{2}}{3} \left(v_{u}U_{i1}^{H} - v_{d}U_{i2}^{H} \right) \Bigr] \Bigl| D_{k2}^{\tilde{t}} \Bigr|^{2} + \Bigl[h_{t}^{2}v_{u}U_{i1}^{H} - \frac{3g^{2} - g'^{2}}{12} \left(v_{u}U_{i1}^{H} - v_{d}U_{i2}^{H} \right) \Bigr] \Bigl| D_{k1}^{\tilde{t}} \Bigr|^{2} \Biggr\},$$

$$(702)$$

(703)

$$\lambda_{\tilde{b}_{k}}^{h_{i}} = \frac{2\sqrt{2}M_{W}}{gm_{\tilde{b}_{i}}^{2}} \left\{ h_{b} \left[A_{b} U_{i2}^{H} - \lambda (xU_{i1}^{H} + v_{u}U_{i3}^{H}) \right] \operatorname{Re}[(D_{k1}^{\tilde{b}})^{*} D_{k2}^{\tilde{b}}] + \left[h_{b}^{2} v_{d} U_{i2}^{H} + \frac{g'^{2}}{6} \left(v_{u} U_{i1}^{H} - v_{d} U_{i2}^{H} \right) \right] \left| D_{k2}^{\tilde{b}} \right|^{2} + \left[h_{b}^{2} v_{d} U_{i2}^{H} + \frac{3g^{2} + g'^{2}}{12} \left(v_{u} U_{i1}^{H} - v_{d} U_{i2}^{H} \right) \right] \left| D_{k1}^{\tilde{b}} \right|^{2} \right\},$$

$$(704)$$

$$\lambda_{\tilde{\tau}_{k}}^{h_{i}} = \frac{2\sqrt{2}M_{W}}{gm_{\tilde{\tau}_{i}}^{2}} \Biggl\{ h_{\tau} \left[A_{\tau}U_{i2}^{H} - \lambda \left(xU_{i1}^{H} + v_{u}U_{i3}^{H} \right) \right] \operatorname{Re}[(D_{k1}^{\tilde{\tau}})^{*}D_{k2}^{\tilde{\tau}}] \qquad (705)$$
$$+ \left[h_{\tau}^{2}v_{d}U_{i2}^{H} + \frac{g'^{2}}{2} \left(v_{u}U_{i1}^{H} - v_{d}U_{i2}^{H} \right) \right] \left| D_{k2}^{\tilde{\tau}} \right|^{2}$$
$$+ \left[h_{\tau}^{2}v_{d}U_{i2}^{H} + \frac{g^{2} - g'^{2}}{4} \left(v_{u}U_{i1}^{H} - v_{d}U_{i2}^{H} \right) \right] \left| D_{k1}^{\tilde{\tau}} \right|^{2} \Biggr\},$$

where v_u, v_d and x are the VEV of H_u, H_d and S such as

$$v_u^2 = \frac{\sin^2 \beta}{\sqrt{2}G_F} \qquad , \qquad \tan \beta = \frac{v_u}{v_d} . \tag{706}$$

The loop integral function f_{PS} is given by:

$$f_{PS}(x) = x \int_0^1 \mathrm{d}z \frac{1}{z(1-z) - x} \ln \frac{z(1-z)}{x} = \frac{2x}{y} \left[\mathrm{Li}_2 \left(1 - \frac{1-y}{2x} \right) - \mathrm{Li}_2 \left(1 - \frac{1+y}{2x} \right) \right], \quad (707)$$

with $y = \sqrt{1 - 4x}$. The other loop functions are related to f_{PS} as

$$f_S(x) = (2x-1)f_{PS}(x) - 2x(2+\log x)$$
, (708)

$$f_{\tilde{f}}(x) = \frac{x}{2} \left[2 + \log x - f_{PS}(x) \right].$$
(709)

The contribution from the bosonic electroweak two loop diagrams can be written as [99,102]:

$$\delta a_{\mu}^{bos} = \frac{5 G_F m_{\mu}^2 \alpha}{24\sqrt{2} \pi^3} \left(c_L \ln \frac{m_{\mu}^2}{M_W^2} + c_0 \right) , \qquad (710)$$

where

$$c_L = \frac{1}{30} \left[98 + 9c_L^h + 23 \left(1 - 4s_W^2 \right)^2 \right] .$$
(711)

 c^h_L in the MSSM is given by

$$c_L^h = \frac{\cos 2\beta M_Z^2}{\cos \beta} \left[\frac{\cos \alpha \cos(\alpha + \beta)}{M_{H^0}^2} + \frac{\sin \alpha \sin(\alpha + \beta)}{M_{h^0}^2} \right] , \qquad (712)$$

and in the NMSSM is extended to:

$$c_L^h = \cos 2\beta M_Z^2 \left[\sum_{i=1}^3 \frac{U_{i2}^H (U_{i2}^H - \tan \beta U_{i1}^H)}{M_{h_i}^2} \right] , \qquad (713)$$

from which the SM bosonic electroweak two loop contributions have to be deduced:

$$\delta a_{\mu}^{SM} = \frac{5 G_F m_{\mu}^2 \alpha}{24\sqrt{2} \pi^3} \left(c_L^{SM} \ln \frac{m_{\mu}^2}{M_W^2} + c_0^{SM} \right) , \qquad (714)$$

with

$$c_L^{SM} = \frac{1}{30} \left[107 + 23 \left(1 - 4s_W^2 \right)^2 \right] , \qquad (715)$$

and c_0 and c_0^{SM} are neglected.

F.2 2HDM

In the 2HDM the dominant contribution can be obtained by generalizing the results of [103]:

$$\delta a^{H}_{\mu} = \sum_{f} \frac{\alpha \, m_{\mu} m_{f}}{8\pi^{3}} (N_{c} Q^{2})_{f} \Biggl\{ -\frac{2 \, T_{3}^{f}}{M_{A^{0}}^{2}} \rho^{f} \rho^{\mu} g \left(x_{fA_{0}} \right)$$

$$-\frac{1}{M_{h^{0}}^{2}} \Biggl[\kappa^{f} \sin(\beta - \alpha) + \rho^{f} \cos(\beta - \alpha) \Biggr] \Biggl[\kappa^{\mu} \sin(\beta - \alpha) + \rho^{\mu} \cos(\beta - \alpha) \Biggr] f \left(x_{fh_{0}} \right)$$

$$-\frac{1}{M_{H^{0}}^{2}} \Biggl[\kappa^{f} \cos(\beta - \alpha) - \rho^{f} \sin(\beta - \alpha) \Biggr] \Biggl[\kappa^{\mu} \cos(\beta - \alpha) - \rho^{\mu} \sin(\beta - \alpha) \Biggr] f \left(x_{fH_{0}} \right) \Biggr\}$$

$$(716)$$

where $\kappa^f = \sqrt{2}m_f/v$, $\rho^f = \lambda_{ff}\kappa^f$, $x_{fX} = m_f^2/m_X^2$, and T_3^f is the third component of the weak isospin, -1/2 for down-type fermions and 1/2 for up-type fermions. Finally, the f and g functions are given by

$$f(x) = \int_0^1 \mathrm{d}y \frac{1 - 2y(1 - y)}{y(1 - y) - x} \ln \frac{y(1 - y)}{x} , \qquad (717)$$

and

$$g(x) = \int_0^1 \mathrm{d}y \frac{1}{y(1-y) - x} \ln \frac{y(1-y)}{x} \,. \tag{718}$$

Appendix G Useful parameters

The masses of quarks and mesons, as well as some other useful parameters such as lifetimes, CKM matrix elements and decay constants, are given in Table 16.

Appendix H Suggested limits

In Table 17, we present our suggested limits for each observable, which can be used to constrain SUSY parameters.

We would like to stress however that some of the inputs in this table suffer from large uncertainties from the determination of CKM matrix elements and/or hadronic parameters. The constraints obtained using these observables should therefore not be over-interpreted (see [21] for more details).

The limits on the masses of Higgs and SUSY particles from direct searches at colliders are given in Table 19. Some of the limits are subject to auxiliary conditions (see [15]) which are also taken into account in the program. These values are encoded in src/excluded_masses.c and can be updated by the user if necessary.

Appendix I LHA file format for 2HDM

SuperIso needs a Les Houches Accord (LHA) inspired input file for the calculations in 2HDM. This file, in addition to the usual MODSEL, SMINPUTS, GAUGE, MASS and ALPHA blocks of SLHA format, needs three additional blocks to specify the Yukawa coupling matrices for up-type and down-type quarks and for leptons. Also, the 2HDM model must be specified in the MODSEL block with the entry 0 followed by a positive integer. Such a file can be generated by 2HDMC. An example is given in the following:

Block	MODSEL	. #	Sel	.ect Mo	odel							
0	10		#	10 = 1	THDM							
Block	SMINPU	JTS	#	Standa	ard Mod	del	. in	put	ts			
1		1.	279	910000€	e+02	#	1/a	lpł	na_em(MZ)	SM MSbar	5
2		1.	166	37000€	e-05	#	GF	ern	ni			
3		1.	176	\$00000€	e-01	#	alp	ha_	_s(MZ)	\mathtt{SM}	MSbar	
4		9.	118	876000@	e+01	#	MZ					
5		4.	246	80224	e+00	#	mb(mb))			
6		1.	712	200000€	e+02	#	mt	(po	ole)			
7		1.	777	00000€	e+00	#	mta	u(p	pole)			
Block	GAUGE	#	\mathtt{SM}	Gauge	coupl	ing	gs					
1		3.	580)51564@	e-01	#	g'					
2		6.	484	£08288€	e-01	#	g					
3		1.	477	′80518€	e+00	#	g_3					
Block	MASS		#	Mass	specti	run	ı (k	ine	ematic	mas	sses)	
# PDC	3	Mas	ss									
25	5	ç	9.11	123204	le+01	#	ŧ Mh	1,	light	est	CP-even	Higgs
35	5	5	5.00	013710)e+02	#	⊧ Mh	2.	heavi	est	CP-even	Higgs

Meson masses in MeV [15]								
m_{π}	m_K	m_{K^*}	m_{D^0}	m_D	m_{D_s}	m_B	m_{B_s}	m_{B_d}
139.57	493.677	895.81	1864.84	1869.61	1968.30	5279.26	5366.77	5279.58

Meson lifetimes in ps [15]							
$ au_{\pi}$	$ au_K$	$ au_B$	$ au_{B_s}$	$ au_{B_d}$	$ au_D$	$ au_{D_s}$	
26033	12380	1.638	1.512	1.519	1.040	0.500	

Quark masses in GeV and α_s [15]						
$\overline{m}_b(\overline{m}_b)$	$\overline{m}_c(\overline{m}_c)$	m_s	$m_t^{ m pole}$	$\alpha_s(M_Z)$		
4.18 ± 0.03	1.275 ± 0.025	0.095 ± 0.005	$173.34 \pm 0.27 \pm 0.71$	0.1184 ± 0.0008		

Hadronic parameters in MeV ($\mu = 1 \text{ GeV}$)								
f_K/f_{π} [104]	f_{K^*} [105]	$f_{K^*}^{\perp}$ [105]	f_B [50]	$\lambda_B [86]$	f_{B_s} [50]	f_{D_s} [106]		
1.193 ± 0.006	220 ± 5	185 ± 9	194 ± 10	460 ± 110	234 ± 10	248 ± 2.5		

Meson mass and coupling parameters $(\mu = 1 \text{ GeV})$ [61]						
ζ_3^A	ζ_3^V	ζ_3^T	$\omega^A_{1,0}$	$\tilde{\delta}_+$	$ ilde{\delta}_{-}$	
0.032	0.013	0.024	-2.1	0.16	-0.16	

Meson related parameters $(\mu = 1 \text{ GeV})$							
$a_1^{\perp}(K^*)$ [83]	$a_2^{\perp}(K^*)$ [83]	$a_1^{\parallel}(K^*)$ [83]	$a_2^{\parallel}(K^*)$ [83]				
0.10 ± 0.07	0.13 ± 0.08	0.10 ± 0.07	0.09 ± 0.05				
G(1) [94]	$\rho^2 \ [93]$	$\Delta(w)$ [94]	$T_1^{B \to K^*}$ [80]				
1.026 ± 0.017	1.17 ± 0.18	0.46 ± 0.02	0.268 ± 0.032				

CKM matrix elements [15]							
$ V_{ud} $	$ V_{us} $ [15]		$ V_{ub} $		$ V_{cd} $		$ V_{cs} $
0.97427 ± 0.00015	0.25	2537 ± 0.0007	$(3.55\pm0.02)10^{-3}$		0.2252 ± 0.00	007	$0.97343 {\pm} 0.00016$
$ V_{cb} $ $ V_{td} $				$ V_{ts} $		$ V_{tb} $	
$(4.13 \pm 0.11) \times 10^{-2} \qquad (8.86 \pm 0.26)$		$\times 10^{-3}$	$(4.05 \pm$	$0.11) \times 10^{-2}$	0.9	099139 ± 0.000045	

$b ightarrow s \gamma ~{ m and}~ b ightarrow s \ell^+ \ell^-$ related parameters							
$\mu_G^2 \ [54]$	$ ho_{D}^{3} \ [54]$	$ \rho_{LS}^3 [54] $	$\lambda_2 \; ({\rm GeV^2}) \; [15, 53]$	$BR(B \to X_c e \bar{\nu})_{exp} [54]$			
0.336 ± 0.064	0.153 ± 0.45	-0.145 ± 0.098	0.12	0.1065 ± 0.0016			

Table 16: Input parameters.

Observable	Combined experimental value	95% C.L. Bound
$\mathrm{BR}(B \to X_s \gamma)$	$(3.43 \pm 0.21 \pm 0.07) \times 10^{-4} [109]$	$2.63 \times 10^{-4} \le BR(b \to s\gamma) \le 4.23 \times 10^{-4}$
$\Delta_0(B\to K^*\gamma)$	$(5.2 \pm 2.6) \times 10^{-2}$ (a)	$-1.7\times 10^{-2} < \Delta_0 < 8.9\times 10^{-2}$
$\begin{array}{c} \mathrm{BR}(B_u \to \tau \nu_\tau) \\ R_{\tau \nu_\tau} \end{array}$	$(1.64 \pm 0.34) \times 10^{-4}$ [109] 1.63 ± 0.54 (b)	$\begin{array}{c} 0.71 \times 10^{-4} < {\rm BR}(B_u \to \tau \nu_\tau) < 2.57 \times 10^{-4} \\ 0.56 < R_{\tau \nu_\tau} < 2.70 \end{array}$
$BR(B \to D^0 \tau \nu_{\tau})$ $\xi_{D\ell\nu}$	$(8.6 \pm 2.4 \pm 1.1 \pm 0.6) \times 10^{-3} [112]$ $0.416 \pm 0.117 \pm 0.052 [112]$	$2.9 \times 10^{-3} < \text{BR}(B \to D^0 \tau \nu_\tau) < 14.2 \times 10^{-3}$ $0.151 < \xi_{D\ell\nu} < 0.681$
$BR(B_s \to \mu^+ \mu^-)$	$(2.9 \pm 0.7) \times 10^{-9} \ [113]$	$1.3 \times 10^{-9} < BR(B_s \to \mu^+ \mu^-) < 4.5 \times 10^{-9}$
$BR(B_d \to \mu^+ \mu^-)$	$(3.6^{+1.6}_{-1.4}) \times 10^{-10} \ [113]$	${\rm BR}(B_d \to \mu^+ \mu^-) < 1.1 \times 10^{-9}$
$\frac{\text{BR}(K \to \mu\nu)}{\text{BR}(\pi \to \mu\nu)}$ $R_{\mu23}$	0.6358 ± 0.0011 (c) 0.999 ± 0.007 [104]	$0.6257 < \frac{\text{BR}(K \to \mu\nu)}{\text{BR}(\pi \to \mu\nu)} < 0.6459$ $0.985 < R_{\mu23} < 1.013 \text{ (d)}$
$\begin{array}{c} {\rm BR}(D_s \to \tau \nu_{\tau}) \\ {\rm BR}(D_s \to \mu \nu_{\mu}) \\ {\rm BR}(D \to \mu \nu_{\mu}) \end{array}$	$(5.38 \pm 0.32) \times 10^{-2}$ [97] $5.81 \pm 0.43 \times 10^{-3}$ [97] $(3.82 \pm 0.33) \times 10^{-4}$ [15]	$\begin{split} & 4.7\times 10^{-2} < \mathrm{BR}(D_s\to \tau\nu_{\tau}) < 6.1\times 10^{-2} \\ & 4.9\times 10^{-3} < \mathrm{BR}(D_s\to \mu\nu_{\mu}) < 6.7\times 10^{-3} \\ & 3.0\times 10^{-4} < \mathrm{BR}(D\to \mu\nu_{\mu}) < 4.6\times 10^{-4} \end{split}$
δa_{μ}	$(2.55 \pm 0.80) \times 10^{-9} [114]$	$-2.4 \times 10^{-10} < \delta a_{\mu} < 5.0 \times 10^{-9}$

Table 17: Suggested limits for the observables implemented in SuperIso v3.4. The 95% C.L. bounds presented in this table include both the experimental and the theoretical uncertainties.

(a) Value obtained combining the Babar measurement [110] with the results of [15,111].

- (b) Value deduced from [109].
- (c) Value obtained combining the results of [15,95].
- (d) See [21] for a discussion on the uncertainties.

Observable	Experiment [115–117]	SM prediction
$BR(B \to X_s \ell^+ \ell^-)_{a^2 \in [1.6]GeV^2}$	$(1.56 \pm 0.39) \times 10^{-6}$	$(1.73 \pm 0.16) \times 10^{-6}$
$BR(B \to X_s \ell^+ \ell^-)_{a^2 > 14 \text{ GeV}^2}$	$(4.79 \pm 1.04) \times 10^{-7}$	$(2.20 \pm 0.44) \times 10^{-7}$
$\langle dBR/dq^2(B \to K^* \mu^+ \mu^-) \rangle_{q^2 \in [0, 1, 2] \text{GeV}^2}$	$(0.60 \pm 0.06 \pm 0.05 \pm 0.04 \pm 0.05) \times 10^{-7}$	$(0.70 \pm 0.81) \times 10^{-7}$
$\langle F_L(B \to K^* \mu^+ \mu^-) \rangle_{q^2 \in [0, 1, 2] \text{GeV}^2}$	$0.37 \pm 0.10 \pm 0.04$	0.32 ± 0.20
$\langle P_1(B \to K^* \mu^+ \mu^-) \rangle_{a^2 \in [0, 1, 2] \text{GeV}^2}$	$-0.19 \pm 0.40 \pm 0.02$	-0.01 ± 0.04
$\langle P_2(B \to K^* \mu^+ \mu^-) \rangle_{a^2 \in [0, 1, 2] \text{GeV}^2}$	$0.03 \pm 0.15 \pm 0.01$	0.17 ± 0.02
$\langle P_{4}'(B \to K^* \mu^+ \mu^-) \rangle_{a^2 \in [0, 1, 2] \text{GeV}^2}$	$0.00 \pm 0.52 \pm 0.06$	-0.37 ± 0.03
$\langle P_5'(B \to K^* \mu^+ \mu^-) \rangle_{\sigma^2 \in [0, 1, 2] \text{GeV}^2}$	$0.45 \pm 0.22 \pm 0.09$	0.52 ± 0.04
$\langle P'_{c}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle_{c^{2}C[0,1,2]GeV}$	$0.24 \pm 0.22 \pm 0.05$	-0.05 ± 0.04
$\langle P'_{2}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle_{q^{2} \in [0,1,2] \text{GeV}}$	$-0.12 \pm 0.56 \pm 0.04$	0.02 ± 0.04
$\frac{\langle dBR/da^2(B \to K^* \mu^+ \mu^-) \rangle_{a^2 \in [2,4,3]C_0 V^2}}{\langle dBR/da^2(B \to K^* \mu^+ \mu^-) \rangle_{a^2 \in [2,4,3]C_0 V^2}}$	$(0.30 \pm 0.03 \pm 0.03 \pm 0.02 \pm 0.02) \times 10^{-7}$	$(0.35 \pm 0.29) \times 10^{-7}$
$\langle F_L(B \to K^* \mu^+ \mu^-) \rangle_{q^2 \in [2,4,2] C \circ V^2}$	$0.74 \pm 0.10 \pm 0.03$	0.76 ± 0.20
$\langle P_1(B \rightarrow K^* \mu^+ \mu^-) \rangle_{c^2 \in [2,4,3] \text{GeV}}$	$-0.29 \pm 0.65 \pm 0.03$	-0.05 ± 0.05
$\langle P_2(B \to K^* \mu^+ \mu^-) \rangle_{-2} = (2.4.3) \text{GeV}^2$	$0.50 \pm 0.08 \pm 0.02$	0.25 ± 0.09
$\langle P'_{4}(B \to K^{*}\mu^{+}\mu^{-}) \rangle_{q^{2} \in [2,4,3] \text{GeV}^{2}}$	$0.74 \pm 0.58 \pm 0.16$	0.54 ± 0.07
$\langle P'_{4}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle_{2} \leq [2,4,3] \text{GeV}^{2}$	$0.29 \pm 0.39 \pm 0.07$	-0.33 ± 0.11
$\langle P'_{2}(B \to K^{*}\mu^{+}\mu^{-}) \rangle_{q^{2} \in [2,4,3] \text{GeV}^{2}}$	$-0.15 \pm 0.38 \pm 0.05$	-0.06 ± 0.06
$ \langle P_0'(B \to K^* \mu^+ \mu^-) \rangle \gtrsim (0.42) GeV^2 $	$-0.3 \pm 0.58 \pm 0.14$	0.04 ± 0.05
$\frac{(48R)/da^2(R \rightarrow K^* \mu^+ \mu^-)}{(48R)/da^2(R \rightarrow K^* \mu^+ \mu^-)} \gtrsim 2.54 \times 0.001 \text{ m}^2$	$(0.49 \pm 0.04 \pm 0.04 \pm 0.03 \pm 0.04) \times 10^{-7}$	$(0.48 \pm 0.53) \times 10^{-7}$
$\langle E_T(B \to K^* \mu^+ \mu^-) \rangle \approx (14.3, 8.68) \text{GeV}^2$	$(0.10 \pm 0.01 \pm 0.01 \pm 0.00 \pm 0.01) \times 10^{-10}$ 0.57 + 0.07 + 0.03	$(0.10 \pm 0.00) \times 10^{-10}$
$\langle P_1(B \to K^* \mu^+ \mu^-) \rangle = [4.3, 8.68] \text{GeV}^2$	$0.36 \pm 0.31 \pm 0.03$	-0.11 ± 0.06
$\langle P_2(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [4.3, 8.68] \text{GeV}^2}$	$-0.25 \pm 0.08 \pm 0.02$	-0.36 ± 0.05
$\langle P'_{2}(B \rightarrow K^{*}\mu^{+}\mu^{-})\rangle \approx [4.3,8.68] \text{GeV}^{2}$	$1.18 \pm 0.30 \pm 0.02$	0.00 ± 0.00 0.99 ± 0.03
$ \langle P_4'(B \rightarrow K^* \mu^+ \mu^-) \rangle = [4.3, 8.68] \text{GeV}^2 $	$-0.19 \pm 0.16 \pm 0.03$	-0.83 ± 0.05
$\langle P_{1}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle = [4.3,8.68] \text{GeV}^{2}$	$0.04 \pm 0.15 \pm 0.05$	-0.02 ± 0.06
$(P_{6}^{(B)}, P_{4}^{(B)}, \mu^{(\mu)})/q^{2} \in [4.3, 8.68] \text{ GeV}^{2}$	$0.58 \pm 0.38 \pm 0.06$	0.02 ± 0.00 0.02 ± 0.06
$\frac{\langle R_{g}(D), R_{\mu}, \mu, \mu, \mu^{2} \rangle}{\langle dRB / da^{2}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle} \approx [a + a + a + a + a + a + a + a + a + a $	$(0.56 \pm 0.06 \pm 0.04 \pm 0.04 \pm 0.05) \times 10^{-7}$	$(0.67 \pm 1.17) \times 10^{-7}$
$\langle B D U aq (D + H \mu \mu) / q^2 \in [14.18, 16] \text{GeV}^2$ $\langle F_T (B \rightarrow K^* \mu^+ \mu^-) \rangle_{2} = [14.18, 16] \text{GeV}^2$	$(0.00 \pm 0.00 \pm 0.01 \pm 0.01 \pm 0.00) \times 10^{-10}$	$(0.01 \pm 1.11) \times 10$ 0.39 ± 0.24
$\langle P_1(B \to K^* \mu^+ \mu^-) \rangle \approx [14.18,16] \text{GeV}^2$	$0.05 \pm 0.05 \pm 0.05$	-0.32 ± 0.24
$\langle P_{\mathrm{r}}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{2} = \langle P_{\mathrm{r}}(B \rightarrow K^* \mu^+ \mu^-) \rangle_{2}$	$-0.50 \pm 0.03 \pm 0.01$	-0.47 ± 0.14
$\langle P'_{2}(B \rightarrow K^{*}\mu^{+}\mu^{-})\rangle \approx [4 + 10 + 6] \text{GeV}^{2}$	$-0.18 \pm 0.70 \pm 0.08$	1.15 ± 0.33
$ \langle P'(B \rightarrow K^* \mu^+ \mu^-) \rangle_{q^2 \in [14.18,16] \text{GeV}^2 } $	$-0.79 \pm 0.20 \pm 0.18$	-0.82 ± 0.36
$ \langle I_5(D) \rangle \langle II \mu \mu \rangle / q^2 \in [14.18,16] \text{GeV}^2 $ $ \langle P'(B \rightarrow K^* \mu^+ \mu^-) \rangle \approx [14.18,16] \text{GeV}^2 $	$0.13 \pm 0.25 \pm 0.03$	0.02 ± 0.00
$ \langle I_{6}(D \rightarrow I \mu \mu)/q^{2} \in [14.18,16] \text{GeV}^{2} $ $ \langle P'(B \rightarrow K^{*} \mu^{+} \mu^{-}) \rangle $	$-0.40 \pm 0.60 \pm 0.06$	0.00 ± 0.00
(1800 - 100 -	$(0.40 \pm 0.00 \pm 0.00)$	$(0.43 \pm 0.78) \times 10^{-7}$
$ \langle uDR/uq \ (D \to R \ \mu^{-} \mu^{-}) \rangle_{q^{2} \in [16,19] \text{GeV}^{2} } $	$(0.41 \pm 0.04 \pm 0.04 \pm 0.03 \pm 0.03) \times 10$ 0.38 ± 0.00 ± 0.03	$(0.45 \pm 0.18) \times 10$ 0.36 ± 0.13
$ \langle \Gamma_L(D \to K \ \mu \ \mu \)/q^2 \in [16,19] \text{GeV}^2 $	$-0.71 \pm 0.35 \pm 0.05$	-0.55 ± 0.13
$ \langle I_1(D \to K \mu \mu)/q^2 \in [16,19] \text{GeV}^2 $ $ \langle P_2(B \to K^* \mu^+ \mu^-) \rangle $	$-0.32 \pm 0.08 \pm 0.01$	-0.03 ± 0.03
$ \langle I^{2}(D \rightarrow I \mu^{\mu} \mu^{\mu})/q^{2} \in [16, 19] \text{GeV}^{2} $ $ \langle D^{\prime}(B \rightarrow K^{*} \mu^{+} \mu^{-}) \rangle = (1 - 1) \langle I^{2} I^{$	$-0.52 \pm 0.08 \pm 0.01$ 0.70 ± 0.52 ± 0.06	-0.41 ± 0.15 1 24 \pm 0 25
$(I_4(D \rightarrow K \mu \mu)/q^2 \in [16,19] \text{GeV}^2$ $/P'(B \rightarrow K^* \mu^+ \mu^-))$	$-0.60 \pm 0.10 \pm 0.00$	1.24 ± 0.25 -0.66 ± 0.37
$ \langle I_{5}(D \to K^{*}\mu^{+}\mu^{-})\rangle = (16,19) \text{GeV}^{2} $	$-0.31 \pm 0.38 \pm 0.10$	0.00 ± 0.01
$ \langle I_{6}(D \rightarrow I \mu \mu)/q^{2} \in [16, 19] \text{GeV}^{2} $ $ \langle P'(B \rightarrow K^{*} \mu^{+} \mu^{-}) \rangle = (1 - 1)^{2} \text{GeV}^{2} $	$-0.51 \pm 0.58 \pm 0.10$ 0.12 + 0.54 + 0.04	0.00 ± 0.00
$\frac{\langle I_8(D), (I_1 \mu, \mu)/q^2 \in [16, 19] \text{GeV}^2}{\langle dBB/dq^2(B \rightarrow K^* \mu^+ \mu^-) \rangle}$	$(0.34 \pm 0.03 \pm 0.04 \pm 0.02 \pm 0.03) \times 10^{-7}$	$(0.38 \pm 0.33) \times 10^{-7}$
$ \langle H_{\mu}(\mu) \mu \rangle \langle \mu \rangle \langle \mu \rangle \langle \mu \rangle \rangle \langle \mu \rangle \langle \mu \rangle \langle \mu \rangle \rangle \langle \mu \rangle \langle \mu \rangle \langle \mu \rangle \rangle \langle \mu \rangle \langle \mu \rangle \langle \mu \rangle \rangle \langle \mu \rangle \langle $	$(0.04 \pm 0.03 \pm 0.04 \pm 0.02 \pm 0.03) \times 10$ 0.65 ± 0.08 ± 0.03	$(0.00 \pm 0.00) \times 10$ 0.70 ± 0.21
$ \langle \Gamma_L(D \to K \ \mu \ \mu \)/q^2 \in [1,6] \text{GeV}^2 $	$0.05 \pm 0.08 \pm 0.03$	-0.06 ± 0.04
$ P_1(D \to M^* \mu^+ \mu^-) q^2 \in [1,6] \text{GeV}^2 $	$0.10 \pm 0.41 \pm 0.00$ $0.33 \pm 0.12 \pm 0.02$	0.00 ± 0.04 0.10 ± 0.08
$ \begin{array}{c} \langle P'(B \rightarrow K^* \mu^+ \mu^-) \rangle q^2 \in [1,6] \text{GeV}^2 \\ \langle P'(B \rightarrow K^* \mu^+ \mu^-) \rangle q^2 \in [1,6] \text{GeV}^2 \\ \rangle q^2 = [1,6] GeV$	$0.55 \pm 0.12 \pm 0.02$ $0.58 \pm 0.36 \pm 0.06$	0.10 ± 0.00 0.53 ± 0.07
$ \begin{array}{c} \langle \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \rangle / q^2 \in [1,6] \text{GeV}^2 \\ \langle \mathbf{P}'(\mathbf{R} \rightarrow \mathbf{K}^* u^+ u^-) \rangle = q^2 = q^2 \end{array} $	$0.00 \pm 0.00 \pm 0.00$	-0.34 ± 0.07
$ \begin{array}{c} \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{+}\mu^{-}) \rangle \langle P_{2}^{\prime}(B \rightarrow K^{*}\mu^{-}) \rangle \rangle \langle P_{2}$	$0.21 \pm 0.21 \pm 0.03$ 0.18 ± 0.21 ± 0.03	-0.05 ± 0.05
$ \begin{array}{c} \langle P_0'(B \rightarrow K^* \mu^+ \mu^-) \rangle \rangle_{2} \in [1,6] \text{GeV}^2 \\ \langle P_0'(B \rightarrow K^* \mu^+ \mu^-) \rangle \rangle_{2} \in [1,6] \text{GeV}^2 \\ \rangle_{2} = [1,6] (1,6) (1,6) \text{GeV}^2 \\ \rangle_{2} = [1,6] (1,6) (1,$	$0.46 \pm 0.38 \pm 0.04$	0.03 ± 0.03
1 8 1 - 7 + 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0.10 - 0.00 - 0.01	0.00 - 0.04

Table 18: Experimental results and theoretical predictions for the $b\to s\ell\ell$ observables.

Particle	Limits (GeV)	Conditions
h^0	111	to remove???
H^+	79.3	
A^0	93.4	
$ ilde{\chi}_1^0$	46	
$\tilde{\chi}_2^0$	62.4	$\tan\beta < 40$
$ ilde{\chi}_3^0$	99.9	$\tan\beta < 40$
$\tilde{\chi}_4^0$	116	$\tan\beta < 40$
$\tilde{\chi}_1^{\pm}$	94	$\tan \beta < 40, \ m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0} > 5 \ \text{GeV}$
\tilde{e}_R	73	
\tilde{e}_L	107	
$ ilde{\mu}_{L,R}$	94	$ \tan \beta < 40, m_{\tilde{\mu}_R} - m_{\tilde{\chi}_1^0} > 10 \text{ GeV} $
$ ilde{ au}_1$	81.9	$m_{\tilde{ au}_1} - m_{\tilde{\chi}_1^0} > 15 \text{ GeV}$
$\tilde{\nu}_{\ell} \ _{(\ell=e,\mu,\tau)}$	94	$\tan\beta < 40, m_{\tilde{\ell}_R} - m_{\tilde{\chi}^0_1} > 10 \ {\rm GeV}$
\tilde{u}_R	100	$m_{\tilde{u}_R} - m_{\tilde{\chi}_1^0} > 10 \text{ GeV}$
$ ilde{u}_L$	100	$m_{\tilde{u}_L} - m_{\tilde{\chi}^0_1} > 10 \text{ GeV}$
\tilde{t}_1	95.7	$\overline{m_{\tilde{t}_1} - m_{\tilde{\chi}^0_1} > 10~{\rm GeV}}$
\tilde{d}_R	100	$m_{\tilde{d}_R} - m_{\tilde{\chi}^0_1} > 10 \text{ GeV}$
$ ilde{d}_L$	100	$m_{\tilde{d}_L} - m_{\tilde{\chi}^0_1} > 10 \text{ GeV}$
\tilde{b}_1	100	$m_{\tilde{b}_1} - m_{\tilde{\chi}_1^0} > 5 \text{ GeV}$
ĝ	195	

Table 19: Limit on the masses of Higgs and MSSM particles from direct searches at LEP and Tevatron [15]. The limit on the h^0 mass includes a 3 GeV intrinsic uncertainty.

36	4.99999960e+02 # Mh3, CP-odd Higgs
37	5.06332023e+02
Block ALPHA	<pre># Effective Higgs mixing parameter</pre>
	3.12022092e+00
Block UCOUPL	
1 1	0.00000000e+00
1 2	0.00000000e+00

1	3	0.0000000e+00	#	LU_{1,3}
2	1	0.00000000e+00	#	LU_{2,1}
2	2	2.0000000e-02	#	LU_{2,2}
2	3	0.0000000e+00	#	LU_{2,3}
3	1	0.0000000e+00	#	LU_{3,1}
3	2	0.0000000e+00	#	LU_{3,2}
3	3	2.0000000e-02	#	LU_{3,3}
Block I	DCOUPL			
1	1	0.00000000e+00	#	LD_{1,1}
1	2	0.00000000e+00	#	LD_{1,2}
1	3	0.00000000e+00	#	LD_{1,3}
2	1	0.00000000e+00	#	LD_{2,1}
2	2	-5.00000000e+01	#	LD_{2,2}
2	3	0.00000000e+00	#	LD_{2,3}
3	1	0.00000000e+00	#	LD_{3,1}
3	2	0.00000000e+00	#	LD_{3,2}
3	3	-5.00000000e+01	#	LD_{3,3}
Block I	LCOUPL			
1	1	-5.00000000e+01	#	LL {1.1}
1	2	0.00000000e+00	#	LL_{1,2}
1	3	0.00000000e+00	#	LL_{1,3}
2	1	0.00000000e+00	#	$LL_{2,1}$
2	2	-5.00000000e+01	#	LL_{2,2}
2	3	0.0000000e+00	#	LL_{2,3}
3	1	0.0000000e+00	#	LL_{3,1}
3	2	0.0000000e+00	#	LL_{3,2}
3	3	-5.00000000e+01	#	LL_{3,3}

The UCOUPL, DCOUPL and LCOUPL blocks contain respectively the Yukawa couplings λ_{UU} , λ_{DD} and λ_{LL} . If some entries in these blocks are missing, they will be set to 0. The Yukawa couplings for the types I–IV are specified in Table 2.

Appendix J Sample FLHA output file

SuperIso generates Flavour Les Houches Accord (FLHA) output files. A sample file is presented below. Some lines in the blocks FOBS and FOBSMS are broken for better readability.

SuperIso output in Flavour Les Houches Accord format Block FCINFO # Program information 1 SUPERISO # flavour calculator 2 3.3 # version number Block MODSEL # Model selection 1 1 # Minimal supergravity (mSUGRA,CMSSM) model Block SMINPUTS # Standard Model inputs 1 1.27839951e+02 # alpha_em^(-1) 2 1.16570000e-05 # G_Fermi 3 1.17200002e-01 $# alpha_s(M_Z)$ 4 9.11699982e+01 # m_{Z}(pole) 5 # m_{b}(m_{b}) 4.19999981e+00 6 1.72399994e+02 # m_{top}(pole) 7 1.77699995e+00 # m_{tau}(pole) Block FMASS # Mass spectrum in GeV #PDG_code mass scheme scale particle 5 4.68765531e+00 3 0 # b (1S) 211 1.3960000e-01 0 0 # pi+ 313 8.91700000e-01 0 0 # K* 321 4.93700000e-01 0 0 # K+ 421 1.86960000e+00 0 0 # D0 431 1.96847000e+00 0 0 # D_s+ 521 # B+ 5.27917000e+00 0 0 531 5.36630000e+00 0 0 # B_s Block FLIFE # Lifetime in sec #PDG_code lifetime particle 211 2.60330000e-08 # pi+ 321 1.23800000e-08 # K+ 431 5.0000000e-13 # D_s+ 521 # B+ 1.6380000e-12 531 1.42500000e-12 # B_s Block FCONST # Decay constant in GeV #PDG_code number decay_constant particle 431 1 2.4800000e-01 0 0 # D_s+ 521 1.9400000e-01 0 # B+ 1 0 531 2.3400000e-01 0 0 1 # B_s Block FCONSTRATIO # Ratio of decay constants #PDG code1 code2 nb1 nb2 ratio comment 321 211 1 1 1.1930000e+00 0 0 # f_K/f_pi Block FOBS # Flavour observables # ParentPDG type value NDA ID1 ID2 ID3 ... comment q 5 3.01680109e-04 2 3 22 1 0 # BR(b->s gamma) # Delta0(B->K* gamma) 521 2 4 7.94262137e-02 0 313 22 531 3.47501488e-09 0 2 13 -13 # BR(B_s->mu+ mu-) 1 521 2 1 7.97936023e-05 0 -15 16 # BR(B_u->tau nu) 2 521 2 9.96640789e-01 -15 16 # R(B_u->tau nu) 0 2 -15 431 1 5.09631717e-02 0 16 # BR(D_s->tau nu) # BR(D_s->mu nu) 431 5.22975346e-03 2 -13 14 1 0 521 1 6.74263197e-03 0 3 421 -15 16 # BR(B+->D0 tau nu) 521 3 421 # BR(B+->D0 tau nu) 11 2.97215970e-01 0 -15 16 /BR(B+-> D0 e nu)

155

	321	11	6.34226493e-01	0	2	-13	14		#	BR(K->mu nu)/BR(pi->mu nu)
	321	12	9.99985352e-01	0	2	-13	14		#	R_mu23
Block FOBSSM # SM predictions for flavour observables										
#	Pare	entPDG	type value	q	NDA	ID1	ID2	ID3	•	comment
	5	1	3.04981464e-04	0	2	3	22		#	BR(b->s gamma)
	521	4	7.95890809e-02	0	2	313	22		#	DeltaO(B->K* gamma)
	531	1	3.49460689e-09	0	2	13	-13		#	BR(B_s->mu+ mu-)
	521	1	8.00625493e-05	0	2	-15	16		#	BR(B_u->tau nu)
	521	2	1.00000000e+00	0	2	-15	16		#	R(B_u->tau nu)
	431	1	5.09649311e-02	0	2	-15	16		#	BR(D_s->tau nu)
	431	1	5.22993400e-03	0	2	-13	14		#	BR(D_s->mu nu)
	521	1	6.74722565e-03	0	3	421	-15	16	#	BR(B+->D0 tau nu)
	521	11	2.97418460e-01	0	3	421	-15	16	#	BR(B+->D0 tau nu)
										/BR(B+-> D0 e nu)
	321	11	6.34245073e-01	0	2	-13	14		#	BR(K->mu nu)/BR(pi->mu nu)
	321	12	1.00000000e+00	0	2	-13	14		#	R_123

Acknowledgements

The author would like to thank Alexandre Arbey for many useful discussions, and for his technical helps throughout the development of the program. Thanks also to Ben Allanach and Peter Skands for their help regarding the SLHA2 format, Pietro Slavich for useful discussions, and the members of THEP group at Uppsala University for interesting discussions and in particular Oscar Stål for useful discussions on 2HDM. The author is also grateful to Cyril Hugonie for his help with NMSSMTools and his comments, to Tobias Hurth for many useful discussions and Siavash Neshatpour for his help and cross checks regarding the implementation of the $B \to K^* \ell^+ \ell^-$ observables and the calculations and implementation of the RGE running of C_9 .

The literature on flavour physics observables and indirect searches for new physics is very rich, therefore it is impossible to refer to the complete list here. Since the present manuscript is meant to serve as a manual for the program, only the articles used directly in the program are acknowledged for clarity. We refer to [118] for a fairly complete review of available tools in SUSY.

References

- [1] F. Mahmoudi, "SuperIso: A Program for calculating the isospin asymmetry of $B \rightarrow K^* \gamma$ in the MSSM", Comput. Phys. Commun. **178**, 745 (2008) [arXiv:0710.2067], http://superiso.in2p3.fr.
- [2] M.R. Ahmady and F. Mahmoudi, "Constraints on the mSUGRA parameter space from NLO calculation of isospin asymmetry in $B \to K^* \gamma$ ", Phys. Rev. D75, 015007 (2007) [hep-ph/0608212].

- [3] F. Mahmoudi, "SuperIso v3.0, flavor physics observables calculations: extension to NMSSM", Comput. Phys. Commun. 180, 1718 (2009).
- [4] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, "HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron", Comput. Phys. Commun. 181, 138 (2010) [arXiv:0811.4169]; "HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector Predictions with Exclusion Bounds from LEP and the Tevatron", Comput. Phys. Commun. 182, 2605 (2011) [arXiv:1102.1898 [hep-ph]]; P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein and K.E. Williams, "HiggsBounds – 4: Improved Tests of Extended Higgs Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC", Eur. Phys. J. C 74, 2693 (2014) [arXiv:1311.0055 [hep-ph]].
- [5] S. Heinemeyer, W. Hollik, G. Weiglein, "FeynHiggs: A Program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM", Comput. Phys. Commun. 124, 76 (2000) [hep-ph/9812320].
- [6] P. Skands et al., "SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages, and event generators", JHEP 0407, 036 (2004) [hep-ph/0311123].
- [7] B. Allanach et al., "SUSY Les Houches Accord 2", Comput. Phys. Commun. 180, 8 (2009) [arXiv:0801.0045].
- [8] B.C. Allanach, "SOFTSUSY: A C++ program for calculating supersymmetric spectra", Comput. Phys. Commun. 143, 305 (2002) [hep-ph/0104145].
- [9] H. Baer *et al.*, "ISAJET 7.69: A Monte Carlo event generator for pp, $\bar{p}p$, and e^+e^- reactions", hep-ph/0312045.
- [10] W. Porod, "SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e^+e^- colliders", Comput. Phys. Commun. **153**, 275 (2003) [hep-ph/0301101].
- [11] A. Djouadi, J.L. Kneur and G. Moultaka, "SuSpect: A Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM", Comput. Phys. Commun. 176, 426 (2007) [hep-ph/0211331].
- [12] U. Ellwanger and C. Hugonie, "NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions", Comput. Phys. Commun. 177, 399 (2007) [hep-ph/0612134]; "NMHDECAY 2.0: An Updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM", Comput. Phys. Commun. 175, 290 (2006) [hep-ph/0508022].
- [13] D. Eriksson, J. Rathsman and O. Stål, "2HDMC Two-Higgs-Doublet Model Calculator Physics and Manual", Comput. Phys. Commun. 181, 189 (2010) [arXiv:0902.0851].
- [14] F. Mahmoudi, S. Heinemeyer *et al.*, "Flavour Les Houches Accord: Interfacing Flavour related Codes", Comput. Phys. Commun. **183**, 285 (2012) [arXiv:1008.0762].
- [15] K.A. Olive *et al.* [Particle Data Group], "Review of Particle Physics", Chin. Phys. C38, 090001 (2014).

- [16] U. Ellwanger, J.F. Gunion and C. Hugonie, "Difficult scenarios for NMSSM Higgs discovery at the LHC", JHEP 0507, 041 (2005) [hep-ph/0503203].
- [17] A. Arbey and F. Mahmoudi, "SuperIso Relic: A Program for calculating relic density and flavor physics observables in Supersymmetry", Comput. Phys. Commun. 181, 1277 (2010) [arXiv:0906.0369]; Comput. Phys. Commun. 182, 1582 (2011), http://superiso.in2p3.fr/relic.
- [18] F. Mahmoudi, "New constraints on supersymmetric models from $b \to s\gamma$ ", JHEP 0712, 026 (2007) [arXiv:0710.3791].
- [19] B.C. Allanach, M.J. Dolan and A.M. Weber, "Global Fits of the Large Volume String Scenario to WMAP5 and Other Indirect Constraints Using Markov Chain Monte Carlo", JHEP 0808, 105 (2008) [arXiv:0806.1184].
- [20] F. Mahmoudi, "Supersymmetric parameter constraints from isospin asymmetry in $b \rightarrow s\gamma$ transitions", arXiv:0710.4501 [hep-ph].
- [21] D. Eriksson, F. Mahmoudi and O. Stål, "Charged Higgs bosons in Minimal Supersymmetry: Updated constraints and experimental prospects", JHEP 0811, 035 (2008) [arXiv:0808.3551].
- [22] S.S. AbdusSalam *et al.*, "Selecting a Model of Supersymmetry Breaking Mediation", Phys. Rev. D80, 035017 (2009) [arXiv:0906.0957].
- [23] F. Mahmoudi and O. Stål, "Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings", Phys. Rev. D81, 035016 (2010) [arXiv:0907.1791].
- [24] D. Horton and G.G. Ross, "Naturalness and Focus Points with Non-Universal Gaugino Masses", Nucl. Phys. B830, 221 (2010) [arXiv:0908.0857].
- [25] H. Fusaoka and Y. Koide, "Updated estimate of running quark masses", Phys. Rev. D57, 3986 (1998) [hep-ph/9712201].
- [26] A.H. Hoang, "1S and \overline{MS} bottom quark masses from Upsilon sum rules", Phys. Rev. D61, 034005 (2000) [hep-ph/9905550].
- [27] K.G. Chetyrkin, M. Misiak and M. Münz, " $|\Delta F| = 1$ nonleptonic effective Hamiltonian in a simpler scheme", Nucl. Phys. B520, 279 (1998) [hep-ph/9711280].
- [28] C. Bobeth, M. Misiak and J. Urban, "Photonic penguins at two loops and m_t dependence of BR $(B \to X_s l^+ l^-)$ ", Nucl. Phys. B574, 291 (2000) [hep-ph/9910220].
- [29] M. Misiak and M. Steinhauser, "Three loop matching of the dipole operators for $b \to s\gamma$ and $b \to sg$ ", Nucl. Phys. B683, 277 (2004) [hep-ph/0401041].
- [30] M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, "Next-to-leading QCD corrections to $B \to X_s \gamma$: Standard model and two Higgs doublet model", Nucl. Phys. B527, 21 (1998) [hep-ph/9710335].
- [31] C. Bobeth, A.J. Buras and T. Ewerth, " $\overline{B} \to X_s l^+ l^-$ in the MSSM at NNLO", Nucl. Phys. B713, 522 (2005) [hep-ph/0409293].

- [32] T. Hermann, M. Misiak and M. Steinhauser, " $\overline{B} \to X_s \gamma$ in the Two Higgs Doublet Model up to Next-to-Next-to-Leading Order in QCD", JHEP **1211**, 036 (2012) [arXiv:1208.2788].
- [33] G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, "micrOMEGAs: Version 1.3", Comput. Phys. Commun. 174, 577 (2006) [hep-ph/0405253].
- [34] G. D'Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, "Minimal flavor violation: An Effective field theory approach", Nucl. Phys. B645, 155 (2002) [hep-ph/0207036].
- [35] A. Freitas, E. Gasser, U. Haisch, "Supersymmetric large $\tan \beta$ corrections to $\Delta M_{d,s}$ and $B_{d,s} \rightarrow \mu^+ \mu^-$ revisited", Phys. Rev. D76, 014016 (2007) [hep-ph/0702267].
- [36] A.J. Buras, P.H. Chankowski, J. Rosiek and L. Slawianowska, " $\Delta M_{d,s}$, $B^0_{d,s} \to \mu^+ \mu^$ and $B \to X_s \gamma$ in supersymmetry at large tan β ", Nucl. Phys. B659, 3 (2003) [hepph/0210145].
- [37] L. Hofer, U. Nierste and D. Scherer, "Resummation of $\tan\beta$ -enhanced supersymmetric loop corrections beyond the decoupling limit", JHEP **0910**, 081 (2009) [arXiv:0907.5408].
- [38] Z. Heng *et al.*, "*B* meson dileptonic decays in the next-to-minimal supersymmetric model with a light CP-odd Higgs boson", Phys. Rev. D77, 095012 (2008) [arXiv:0801.1169].
- [39] Q.S. Yan, C.S. Huang, W. Liao and S.H. Zhu, "Exclusive semileptonic rare decays $B \rightarrow (K, K^*) \ell^+ \ell^-$ in supersymmetric theories", Phys. Rev. D62, 094023 (2000) [hep-ph/0004262].
- [40] T. Hermann, M. Misiak and M. Steinhauser, "Three-loop QCD corrections to $B_s \rightarrow \mu^+\mu^-$ ", JHEP **1312**, 097 (2013) [arXiv:1311.1347].
- [41] C. Bobeth, M. Gorbahn and E. Stamou, "Electroweak Corrections to $B_{s,d} \to \ell^+ \ell^-$ ", Phys. Rev. D89, 034023 (2014) [arXiv:1311.1348].
- [42] D. Lopez-Val and J. Sola, "Delta r in the Two-Higgs-Doublet Model at full one loop level – and beyond", Eur. Phys. J. C 73, 2393 (2013) [arXiv:1211.0311 [hep-ph]].
- [43] S. Heinemeyer, W. Hollik, G. Weiglein and L. Zeune, "Implications of LHC search results on the W boson mass prediction in the MSSM", JHEP 1312, 084 (2013) [arXiv:1311.1663 [hep-ph]].
- [44] C. Bobeth, A.J. Buras, F. Kruger and J. Urban, "QCD corrections to $B \to X_{d,s}\nu\bar{\nu}$, $\bar{B}_{d,s} \to \ell^+ \ell^-, K \to \pi \nu \bar{\nu}$ and $K_L \to \mu^+ \mu^-$ in the MSSM", Nucl. Phys. B630, 87 (2002) [hep-ph/0112305].
- [45] Y.B. Dai, C.S. Huang and H.W. Huang, " $B \rightarrow X_s \tau^+ \tau^-$ in a two-Higgs doublet model", Phys. Lett. B**390**, 257 (1997) [Erratum-ibid. B**513**, 429 (2001)] [hep-ph/9607389].
- [46] H.E. Logan and U. Nierste, " $B_{s,d} \rightarrow \ell^+ \ell^-$ in a Two-Higgs-Doublet Model", Nucl. Phys. B586, 39 (2000) [hep-ph/0004139].

- [47] Z. Heng, R.J. Oakes, W. Wang, Z. Xiong and J.M. Yang, "B meson Dileptonic Decays in NMSSM with a Light CP-odd Higgs Boson", Phys. Rev. D77, 095012 (2008) [arXiv:0801.1169].
- [48] A.J. Buras, "Weak Hamiltonian, CP violation and rare decays", hep-ph/9806471.
- [49] M. Czakon, U. Haisch and M. Misiak, "Four-Loop Anomalous Dimensions for Radiative Flavour-Changing Decays", JHEP 0703, 008 (2007) [hep-ph/0612329].
- [50] F. Mahmoudi, S. Neshatpour and J. Orloff, "Supersymmetric constraints from $B_s \rightarrow \mu^+\mu^-$ and $B \rightarrow K^*\mu^+\mu^-$ observables", JHEP **1208**, 092 (2012) [arXiv:1205.1845.
- [51] M. Gorbahn and U. Haisch, "Effective Hamiltonian for non-leptonic $|\Delta F| = 1$ decays at NNLO in QCD", Nucl. Phys. B713, 291 (2005) [hep-ph/0411071].
- [52] M. Misiak *et al.*, "Estimate of $\mathcal{B}(\bar{B} \to X_s \gamma)$ at $\mathcal{O}(\alpha_s^2)$ ", Phys. Rev. Lett. **98**, 022002 (2007) [hep-ph/0609232].
- [53] M. Misiak and M. Steinhauser, "NNLO QCD corrections to the $\bar{B} \to X_s \gamma$ matrix elements using interpolation in m_c ", Nucl. Phys. B764, 62 (2007) [hep-ph/0609241].
- [54] P. Gambino and C. Schwanda, "Inclusive semileptonic fits, heavy quark masses, and V_{cb} ", Phys. Rev. D89, 014022 (2014) [arXiv:1307.4551].
- [55] A.J. Buras, A. Czarnecki, M. Misiak and J. Urban, "Completing the NLO QCD calculation of $\bar{B} \to X_s \gamma$ ", Nucl. Phys. B631, 219 (2002) [hep-ph/0203135].
- [56] P. Gambino and M. Misiak, "Quark mass effects in $\overline{B} \to X_s \gamma$ ", Nucl. Phys. B**611**, 338 (2001) [hep-ph/0104034].
- [57] M. Misiak and M. Poradzinski, "Completing the Calculation of BLM corrections to $\bar{B} \to X_s \gamma$ ", Phys. Rev. D83, 014024 (2011) [arXiv:1009.5685].
- [58] K. Melnikov and A. Mitov, "The Photon energy spectrum in $B \to X_s + \gamma$ in perturbative QCD through $\mathcal{O}(\alpha_s^2)$ ", Phys. Lett. B620, 69 (2005) [hep-ph/0505097].
- [59] A. Kagan and M. Neubert, "Isospin breaking in $B \to K^* \gamma$ decays", Phys. Lett. B539, 227 (2002) [hep-ph/0110078].
- [60] S.W. Bosch and G. Buchalla, "The radiative decays $B \to V\gamma$ at next-to-leading order in QCD", Nucl. Phys. B621, 459 (2002) [hep-ph/0106081].
- [61] P. Ball, V.M. Braun, Y. Koike and K. Tanaka, "Higher twist distribution amplitudes of vector mesons in QCD: Formalism and twist-three distributions", Nucl. Phys. B529, 323 (1998) [hep-ph/9802299].
- [62] A. Ghinculov, T. Hurth, G. Isidori and Y. P. Yao, "The rare decay $B \to X_s \ell^+ \ell^-$ to NNLL precision for arbitrary dilepton invariant mass", Nucl. Phys. B685, 351 (2004) [hep-ph/0312128].
- [63] T. Huber, E. Lunghi, M. Misiak and D. Wyler, "Electromagnetic logarithms in $\bar{B} \rightarrow X_s \ell^+ \ell^-$ ", Nucl. Phys. B740, 105 (2006) [hep-ph/0512066].

- [64] T. Huber, T. Hurth and E. Lunghi, "Logarithmically Enhanced Corrections to the Decay Rate and Forward Backward Asymmetry in $\bar{B} \to X_s \ell^+ \ell^-$ ", Nucl. Phys. B802, 40 (2008) [arXiv:0712.3009].
- [65] B. Aubert *et al.* [BABAR Collaboration], "Measurement and interpretation of moments in inclusive semileptonic decays $\bar{B} \to X_c \ell^- \bar{\nu}$ ", Phys. Rev. D81, 032003 (2010) [arXiv:0908.0415].
- [66] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, "Calculation of two loop virtual corrections to $b \rightarrow s\ell^+\ell^-$ in the standard model", Phys. Rev. D65, 074004 (2002) [hep-ph/0109140].
- [67] H. H. Asatrian, H. M. Asatrian, C. Greub and M. Walker, "Two-loop virtual corrections to $B \to X_s \ell^+ \ell^-$ in the standard model", Phys. Lett. B507, 162 (2001) [hep-ph/0103087].
- [68] C. Greub, V. Pilipp and C. Schupbach, "Analytic calculation of two-loop QCD corrections to $b \rightarrow s\ell^+\ell^-$ in the high q^2 region", JHEP **0812**, 040 (2008) [arXiv:0810.4077].
- [69] H. H. Asatryan, H. M. Asatrian, C. Greub and M. Walker, "Complete gluon bremsstrahlung corrections to the process $b \to s\ell^+\ell^-$ ", Phys. Rev. D66, 034009 (2002) [hep-ph/0204341].
- [70] H. M. Asatrian, H. H. Asatryan, A. Hovhannisyan and V. Poghosyan, "Complete bremsstrahlung corrections to the forward backward asymmetries in $b \to X_s \ell^+ \ell^-$ ", Mod. Phys. Lett. A19, 603 (2004) [hep-ph/0311187].
- [71] F. Kruger and L. M. Sehgal, "Lepton Polarization in the Decays $B \to X_s \mu^+ \mu^-$ and $B \to X_s \tau^+ \tau^-$ ", Phys. Lett. B**380** (1996) 199 [hep-ph/9603237].
- [72] U. Egede, T. Hurth, J. Matias, M. Ramon and W. Reece, "New observables in the decay mode $\bar{B} \to \bar{K}^{*0} \ell^+ \ell^-$ ", JHEP **0811**, 032 (2008) [arXiv:0807.2589].
- [73] C. Bobeth, G. Hiller, G. Piranishvili, "CP Asymmetries in bar $B \to \bar{K}^* (\to \bar{K}\pi) \bar{\ell} \ell$ and Untagged \bar{B}_s , $B_s \to \phi (\to K^+ K^-) \bar{\ell} \ell$ Decays at NLO", JHEP **0807**, 106 (2008) [arXiv:0805.2525].
- [74] F. Beaujean, C. Bobeth, D. van Dyk and C. Wacker, "Bayesian Fit of Exclusive $b \rightarrow s\bar{\ell}\ell$ Decays: The Standard Model Operator Basis", JHEP **1208**, 030 (2012) [arXiv:1205.1838].
- [75] F. Kruger and J. Matias, "Probing new physics via the transverse amplitudes of $B^0 \rightarrow K^{*0}(\rightarrow K^-\pi^+)\ell^+\ell^-$ at large recoil", Phys. Rev. D71, 094009 (2005) [hep-ph/0502060].
- [76] T. Feldmann and J. Matias, "Forward backward and isospin asymmetry for $B \rightarrow K^* \ell^+ \ell^-$ decay in the standard model and in supersymmetry", JHEP **0301**, 074 (2003) [hep-ph/0212158].
- [77] C. Bobeth, G. Hiller and D. van Dyk, "The Benefits of $\bar{B} \to \bar{K}^* \ell^+ \ell^-$ Decays at Low Recoil", JHEP **1007**, 098 (2010) [arXiv:1006.5013].

- [78] J. Matias, F. Mescia, M. Ramon and J. Virto, "Complete Anatomy of $\bar{B}_d \to \bar{K}^{*0}(\to K\pi)\ell^+\ell^-$ and its angular distribution", JHEP **1204**, 104 (2012) [arXiv:1202.4266].
- [79] W. Altmannshofer, P. Ball, A. Bharucha, A. J. Buras, D. M. Straub and M. Wick, "Symmetries and Asymmetries of $B \to K^* \mu^+ \mu^-$ Decays in the Standard Model and Beyond", JHEP **0901**, 019 (2009) [arXiv:0811.1214].
- [80] U. Egede, T. Hurth, J. Matias, M. Ramon, W. Reece, "New physics reach of the decay mode $\bar{B} \to \bar{K}^{*0} \ell^+ \ell^-$ ", JHEP **1010**, 056 (2010) [arXiv:1005.0571].
- [81] M. Beneke, T. Feldmann and D. Seidel, "Exclusive radiative and electroweak $b \rightarrow d$ and $b \rightarrow s$ penguin decays at NLO", Eur. Phys. J. C41, 173 (2005) [hep-ph/0412400].
- [82] A. Khodjamirian, T. Mannel, A. A. Pivovarov and Y.-M. Wang, "Charm-loop effect in $B \to K^{(*)} \ell^+ \ell^-$ and $B \to K^* \gamma$ ", JHEP **1009**, 089 (2010) [arXiv:1006.4945 [hep-ph]].
- [83] P. Ball and R. Zwicky, " $B_{d,s} \rightarrow \rho, \omega, K^*, \Phi$ decay form factors from light-cone sum rules revisited", Phys. Rev. D71, 014029 (2005) [hep-ph/0412079].
- [84] M. Beneke, T. Feldmann and D. Seidel, "Systematic approach to exclusive $B \to V \ell^+ \ell^-$, $V \gamma$ decays", Nucl. Phys. B612, 25 (2001) [hep-ph/0106067].
- [85] P. Ball, M. Boglione, "SU(3) breaking in K and K^{*} distribution amplitudes", Phys. Rev. D68, 094006 (2003) [hep-ph/0307337].
- [86] P. Ball, R. Zwicky, " $|V_{td}/V_{ts}|$ from $B \to V\gamma$ ", JHEP **0604**, 046 (2006) [hep-ph/0603232].
- [87] D. Seidel, "Analytic two loop virtual corrections to $b \rightarrow d\ell^+ \ell^-$ ", Phys. Rev. D70, 094038 (2004) [hep-ph/0403185].
- [88] B. Grinstein and D. Pirjol, "Exclusive rare $B \to K^* \ell^+ \ell^-$ decays at low recoil: Controlling the long-distance effects", Phys. Rev. D70, 114005 (2004) [hep-ph/0404250].
- [89] C. Bobeth, T. Ewerth, F. Kruger and J. Urban, "Analysis of neutral Higgs-boson contributions to the decays $\bar{B}_s \to \ell^+ \ell^-$ and $\bar{B} \to K \ell^+ \ell^-$ ", Phys. Rev. D**64**, 074014 (2001) [hep-ph/0104284].
- [90] J. Ellis, K.A. Olive and V.C. Spanos, "On the Interpretation of $B_s \to \mu^+ \mu^-$ in the CMSSM", Phys. Lett. B624, 47 (2005) [hep-ph/0504196].
- [91] K. de Bruyn *et al.*, "A New Window for New Physics in $B_s^0 \to \mu^+ \mu^-$ ", Phys. Rev. Lett. **109**, 041801 (2012) [arXiv:1204.1737].
- [92] G. Isidori and P. Paradisi, "Hints of large $\tan \beta$ in flavour physics", Phys. Lett. B639, 499 (2006) [hep-ph/0605012].
- [93] J.F. Kamenik and F. Mescia, " $B \to D\tau\nu$ Branching Ratios: Opportunity for Lattice QCD and Hadron Colliders", Phys. Rev. D78, 014003 (2008) [arXiv:0802.3790].
- [94] G.M. de Divitiis, R. Petronzio and N. Tantalo, "Quenched lattice calculation of semileptonic heavy-light meson form factors", JHEP 0710, 062 (2007) [arXiv:0707.0587].

- [95] M. Antonelli *et al.* [The FlaviaNet Kaon Working Group], "Precision tests of the Standard Model with leptonic and semileptonic kaon decays", Nucl. Phys. Proc. Suppl. 181-182, 83 (2008) [arXiv:0801.1817].
- [96] A.G. Akeroyd and Chuan Hung Chen, "Effect of H^{\pm} on $B^{\pm} \to \tau^{\pm} \nu_{\tau}$ and $D_s^{\pm} \to \mu^{\pm} \nu_{\mu}$, $\tau^{\pm} \nu_{\tau}$ ", Phys. Rev. D75, 075004 (2007) [hep-ph/0701078].
- [97] A.G. Akeroyd and F. Mahmoudi, "Constraints on charged Higgs bosons from $D_s^{\pm} \rightarrow \mu^{\pm}\nu$ and $D_s^{\pm} \rightarrow \tau^{\pm}\nu$ ", JHEP **0904**, 121 (2009) [arXiv:0902.2393].
- [98] S.P. Martin and J.D. Wells, "Muon anomalous magnetic dipole moment in supersymmetric theories", Phys. Rev. D64, 035003 (2001) [hep-ph/0103067].
- [99] F. Domingo and U. Ellwanger, "Constraints from the Muon g 2 on the Parameter Space of the NMSSM", JHEP **0807**, 079 (2008) [arXiv:0806.0733].
- [100] G. Degrassi and G.F. Giudice, "QED logarithms in the electroweak corrections to the muon anomalous magnetic moment", Phys. Rev. D58, 053007 (1998) [hep-ph/9803384].
- [101] D. Stöckinger, "The Muon Magnetic Moment and Supersymmetry", J. Phys. G34, R45 (2007) [hep-ph/0609168].
- [102] S. Heinemeyer, D. Stöckinger, G. Weiglein, "Electroweak and supersymmetric twoloop corrections to $(g-2)_{\mu}$ ", Nucl. Phys. B699, 103 (2004) [hep-ph/0405255].
- [103] K. Cheung and O.C.W. Kong, "Can the Two-Higgs-Doublet Model Survive the Constraint from the Muon Anomalous Magnetic Moment as Suggested?", Phys. Rev. D68, 053003 (2003) [hep-ph/0302111].
- [104] M. Antonelli *et al.*, "An evaluation of $|V_{us}|$ and precise tests of the Standard Model from world data on leptonic and semileptonic kaon decays", Eur. Phys. J. C**69**, 399 (2010) [arXiv:1005.2323].
- [105] P. Ball, G.W. Jones and R. Zwicky, " $B \rightarrow V\gamma$ beyond QCD factorisation", Phys. Rev. D75, 054004 (2007) [hep-ph/0612081].
- [106] C.T.H. Davies, C. McNeile, E. Follana, G.P. Lepage, H. Na and J. Shigemitsu, "Update: Precision D_s decay constant from full lattice QCD using very fine lattices", Phys. Rev. D82, 114504 (2010) [arXiv:1008.4018].
- [107] J. Charles et al. [CKMfitter Group], "CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories", Eur. Phys. J. C41, 1 (2005) [hepph/0406184]. Updated results and plots available at: http://ckmfitter.in2p3.fr
- [108] C.W. Bauer, Z. Ligeti, M. Luke, A.V. Manohar and M. Trott, "Global analysis of inclusive B decays", Phys. Rev. D70, 094017 (2004) [hep-ph/0408002].
- [109] E. Barberio et al. [Heavy Flavor Averaging Group (HFAG) Collaboration], "Averages of b-hadron and c-hadron Properties at the End of 2007", arXiv:0808.1297 [hep-ex] and online updates at http://www.slac.stanford.edu/xorg/hfag. mettre a jour !!!!!

- [110] B. Aubert *et al.* [BABAR Collaboration], "Measurement of Branching Fractions and CP and Isospin Asymmetries in $B \to K^* \gamma$ ", arXiv:0808.1915 [hep-ex].
- [111] M. Nakao *et al.* [BELLE Collaboration], "Measurement of the $B \to K^* \gamma$ branching fractions and asymmetries", Phys. Rev. D69, 112001 (2004) [hep-ex/0402042].
- [112] B. Aubert *et al.* [BABAR Collaboration], "Observation of the semileptonic decays $B \to D^* \tau^- \bar{\nu}_{\tau}$ and evidence for $B \to D \tau^- \bar{\nu}_{\tau}$ ", Phys. Rev. Lett. **100**, 021801 (2008) [arXiv:0709.1698].
- [113] R. Aaij *et al.* [LHCb Collaboration], "Measurement of the $B_s^0 \to \mu^+\mu^-$ branching fraction and search for $B^0 \to \mu^+\mu^-$ decays at the LHCb experiment", Phys. Rev. Lett. **111**, 101805 (2013) [arXiv:1307.5024]; S. Chatrchyan *et al.* [CMS Collaboration], "Measurement of the $B_s^0 \to \mu^+\mu^-$ branching fraction and search for $B^0 \to \mu^+\mu^-$ with the CMS Experiment", Phys. Rev. Lett. **111**, 101804 (2013) [arXiv:1307.5025]; [CMS and LHCb Collaborations], "Combination of results on the rare decays $B_{(s)}^0 \to \mu^+\mu^$ from the CMS and LHCb experiments", CMS-PAS-BPH-13-007, LHCb-CONF-2013-012.
- [114] J. Prades, "Standard Model Prediction of the Muon Anomalous Magnetic Moment", Acta Phys. Polon. Supp. 3, 75 (2010) [arXiv:0909.2546].
- [115] M. Iwasaki *et al.* [Belle Collaboration], "Improved measurement of the electroweak penguin process $B \to X_s l^+ l^-$ ", Phys. Rev. D72, 092005 (2005) [hep-ex/0503044].
- [116] J. P. Lees *et al.* [BaBar Collaboration], "Measurement of the $B \to X_s l^+ l^-$ branching fraction and search for direct *CP* violation from a sum of exclusive final states", Phys. Rev. Lett. **112**, 211802 (2014) [arXiv:1312.5364].
- [117] R. Aaij *et al.* [LHCb Collaboration], "Measurement of Form-Factor-Independent Observables in the Decay $B^0 \to K^{*0}\mu^+\mu^-$," Phys. Rev. Lett. **111**, 191801 (2013) [arXiv:1308.1707].
- [118] B.C. Allanach, "SUSY Predictions and SUSY Tools at the LHC", Eur. Phys. J. C59, 427 (2009) [arXiv:0805.2088].