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ABSTRACT 
Some predictors, such as age or height, are measured as continuous variables but could be put into 
categories ("discretized").  Other predictors, such as occupation or a Likert scale rating, are measured as 
(ordinal) categories but could be treated as continuous variables.  This paper explores choosing between 
treating predictors as continuous or categorical (including them in the CLASS statement).  Specific topics 
covered include deciding how many categories to use for a discretized variable (is 3 enough?  Is 6 too 
many?); testing for deviations from linearity by having the same variable in the model both as a 
continuous and as a CLASS variable; and exploring the efficiency loss when treating unequally spaced 
categories as though they were equally spaced. 

INTRODUCTION 
Early in your statistical training, whether it was formal or informal, you probably learned that variables 
have a "level of measurement" of nominal, ordinal, interval, or ratio.  The popularization of this rubric goes 
back at least to the 1950s (see Blalock 1979 section 2.2 and the references mentioned there).  A nominal 
variable is a classification for which there is no ordering (although sometimes there is a partial ordering): 
the values are just "names" and are not to be interpreted quantitatively even if they are numbers.  The 
values of an ordinal variable can be put into a unique order, but the distance between values cannot be 
quantified.  For an interval variable, the distance between values can be quantified but the "zero" is 
arbitrary, so we cannot talk about one value as being "twice as big" as another.  Finally, the highest 
achievement for a variable is to be a ratio variable: both the distances between values and their ratios can 
be quantified. 
 
It may surprise you to learn that this method of characterizing variables is not, in fact, generally accepted 
by statisticians.  Yes, it has some value as a pedagogical tool and it provides some common language for 
discussing what sorts of analyses might make sense.  However, it ignores important distinctions within 
categories, including whether a nominal variable has a partial ordering and whether a ratio variable arises 
as a count or a proportion.  Much can be (and has been) written on this topic; a good starting place is 
Velleman and Wilkinson (1993).  For the purposes of this paper we will emphasize a very practical 
distinction that arises in the analysis: will the variable be treated as continuous or as categorical? 
 
We will refer to variables as continuous even though it is easy to argue that no variable being analyzed in 
a digital computer is truly continuous, as measurements are recorded with finite precision.  What we really 
mean is that we're treating the variable as a measure of an underlying continuous or approximately 
continuous value and we are willing to treat the differences between values as quantitative.  Thus it is 
meaningful to talk about the effect of "a one-point increase" in the value of X or for that matter "a 0.3-point 
increase".  This is one place where it may be important to distinguish among subdivisions of continuous 
variables.  If variable X is a count, we would probably want to talk only about whole-number increases in 
the value of X; if it is a proportion, we would only want to talk about increases that were less than 1.  What 
we are calling continuous variables are referred to by others as quantitative, metric, interval-scaled, or 
other similar terms.  The important thing to remember is that for continuous variables we are treating each 
unit change as having the same effect. 
 
When we do not want to treat the differences between values as quantifiable, or at least not uniformly 
quantifiable, we treat the variable as categorical.  In SAS® procedures, this means including the variable 
on the CLASS statement.  The values represent categories.  It will be important to know whether those 
categories are unordered (nominal), partially ordered, or fully ordered (ordinal).  It is even possible for the 
fully ordered variables to be interval or ratio – for example, if it represents numerical ranges of income – 
but what is important for our purposes is that we want to estimate the effect of each value separately.  
Thus the effect of moving from one category to another may differ depending on the categories.  These 
variables are also referred to as discrete, but we use the term categorical because it is in broad use and 
because even variables treated as continuous are measured discretely. 
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A WORD ABOUT BINARY VARIABLES 
Binary variables are those that take on exactly two values, such as 0 and 1 or True and False or Male 
and Female.  For analysis purposes, they can be considered either continuous or categorical.  In general 
it doesn't matter which way you think about them.  However, it can have implications for computational 
algorithms, for parameterizations of models, and for interpretations of results.  There are circumstances 
where it matters a great deal whether you are treating a binary variable as continuous or categorical, such 
as when you are adjusting for it in a linear model and you are calculating least squares means 
(LSMEANS).  Specifically, putting a binary variable in a CLASS statement affects (1) the parameterization 
and therefore (2) the interpretation of the results; it also affects (3) the calculation of the least squares 
means (LSMEANS) and also (4) the interpretation of the OBSMARGIN option on LSMEANS.  Generally, 
it is safer to treat binary variables as categorical than to treat them as continuous, although there are 
times when you will want to treat them as continuous.   

SHOULD MY VARIABLE BE CONTINUOUS OR CATEGORICAL? 
At first blush, it seems easy to tell which variables should be continuous and which should be categorical.  
There are, however, many gray areas and even situations where you are quite sure it may turn out that 
others have a different point of view.  My experience is that the decision at times appears to hinge on the 
analytic techniques people are most familiar with.  Someone who works with lots of survey data and is 
very comfortable with categorical variables is eager to treat household income (measured to the nearest 
thousand) as a categorical variable by dividing it into groups.  Another analyst, working almost exclusively 
with continuous variables, might be eager to take household income (as recorded in broad ranges) and 
make it a continuous variable.  How much difference does it make?  Are there clear situations that go one 
way or the other? 
 
First, the easy direction: Any continuous variable can be made into a categorical one – or a set of 
categorical ones – by "discretizing" it.  You define categories and use the continuous value to determine 
the appropriate category for each measurement.  Why would you want to do that?  Don't you lose 
information that way?  How can that ever be a good idea? 
 
It is true that if the variable in question has an exactly linear relationship with the outcome, you do lose 
information by making a continuous variable into a categorical one.  Furthermore, instead of estimating a 
single coefficient (1 degree of freedom, or df) you need to estimate K coefficients if your variable has K 
categories, which represents K-1 df.  (You use up only K-1 degrees of freedom because of the inherent 
redundancy of classification – if you know an observation is not in any of the first K-1 categories, it must 
be in the Kth category.  Put another way, the proportion of observations in the categories must add up to 
1.  Therefore as long as there is an intercept term in the model, or another categorical variable, the 
number of degrees of freedom is equal to the number of categories minus 1.)  On the other hand, what if 
the relationship is not precisely linear?  Treating the variable as continuous allows you to estimate the 
linear component of the relationship, but the categorical version allows you to capture much more 
complicated relationships.   
 
What about the other direction?  Does it ever make sense to take a categorical variable and treat it as 
continuous?  Indeed it does.  In fact, I would argue that it is nearly always worthwhile at least examining 
the linear component associated with any ordinal variable.  Even if you want to keep a variable as 
categorical, it is worth understanding the extent to which the relationship is linear.  It is, in general, a more 
powerful approach to analyzing ordinal variable to treat them as continuous and to fail to consider that 
possibility may cause many useful relationships to be overlooked.  The article by Moses et al. (1984) is 
positively eloquent on the subject. 
 
One concern often expressed is that "we don't know that the ordinal categories are equally spaced."  That 
is true enough – we don't.  But we also don't "know" that the relationship between continuous variables is 
linear, which means we don't "know" that a one-unit change in a continuous variable has the same effect 
no matter whether it is a change between two relatively low values or a change between two relatively 
high values.  In fact, when it's phrased that way -- rather than "is the relationship linear?" -- I find a lot 
more uncertainty in my colleagues.  It turns out that it doesn't matter that much in practice – the results 
are remarkably insensitive to the spacing of an ordinal variable except in the most extreme cases.  It 
does, however, matter more when you consider the products of ordinal variables.   
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I am squarely in the camp that says "everything is linear to a first approximation" and therefore I am very 
cheerful about treating ordinal variables as continuous.  Deviations from linearity can be important and 
should be considered once you have the basics of the model established, but it is very rare for an ordinal 
variable to be an important predictor and have it not be important when considered as a continuous 
variable.  That would mean that the linear component of the relationship is negligible but the non-linear 
component is substantial.  It is easy to create artificial examples of this situation, but they are very, very 
rare in practice.   
 
Are there situations where even I would insist on keeping a variable as categorical?  As tempting as it 
might be for some people to put an order on race/ethnicity or religious affiliation, except in rare cases that 
is inadvisable.  There are certainly situations where objects have been grouped by unspecified criteria 
and part of the object of the analysis is to understand those groupings – those need to be considered 
nominal, not ordinal.  Genetic mutations might also be nominal, although often there is a partial ordering 
associated.  You can probably think of some other examples from your own experience.  In general, 
though, truly nominal (not even partially ordered) variables are infrequent in practice. 
 
Just as uncommon, in my view, are continuous measures where you are certain that the effect is linear (a 
one point change has the same impact no matter on the scale it occurs).  In fact, other than the limiting 
case of binary variables (where there is not enough information to detect nonlinearities) no good 
examples come to mind outside of the physical sciences.  So I see the world as pretty much shades of 
gray.  There are many variables might be treated either as continuous (linear) or as categorical and many 
fewer that should definitely be treated one way or another. 

AN EXAMPLE: TESTING FOR DEVIATIONS FROM LINEARITY 
I mentioned testing for deviations from linearity.  How do you do that?  It's actually pretty easy, but it leads 
to output that people find a little odd-looking at first.  For any ordinal variable, (1) but the ordinal variables 
in the CLASS statement, (2) make an exact copy that will not be in the CLASS statement, and (3) include 
both variables in the MODEL statement.  For example, you might have a variable measuring education 
called EDUCAT with K categories.  You can create L_EDUCAT (L for Linear), and include both in the 
model.  What happens?  L_EDUCAT will have 0 degrees of freedom and 0 Type III effect (it doesn't add 
any information after the categorical EDUCAT is included).  EDUCAT will be a test of deviations from 
linearity with K-2 degrees of freedom – 1 lost to the overall constant, and 1 lost to the linear effect 
L_EDUCAT.  There are some details to watch out for, best expressed by looking at some SAS output. 
 
EEEEDUCATDUCATDUCATDUCAT categorical with typical labels categorical with typical labels categorical with typical labels categorical with typical labels    

Dependent Variable: y  

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        4      21702.2880       5425.5720       2.24    0.0707 

Error                       95     230398.3776       2425.2461 

Corrected Total             99     252100.6656 

 

R-Square     Coeff Var      Root MSE        y Mean 

0.086086      33.46631      49.24679      147.1533 

 

Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

educat                       4     21702.28797      5425.57199       2.24    0.0707 

 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

educat                       4     21702.28797      5425.57199       2.24    0.0707 
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                                                 Standard                                                 Standard                                                 Standard                                                 Standard    

Parameter                      Estimate             Error    t Value    Pr > |t|Parameter                      Estimate             Error    t Value    Pr > |t|Parameter                      Estimate             Error    t Value    Pr > |t|Parameter                      Estimate             Error    t Value    Pr > |t|    

Intercept                   136.6563385 B    Intercept                   136.6563385 B    Intercept                   136.6563385 B    Intercept                   136.6563385 B      8.32422640      16.42      <.0001  8.32422640      16.42      <.0001  8.32422640      16.42      <.0001  8.32422640      16.42      <.0001    

educat    HS grad            educat    HS grad            educat    HS grad            educat    HS grad            ----2.3539316 B     14.86171676      2.3539316 B     14.86171676      2.3539316 B     14.86171676      2.3539316 B     14.86171676      ----0.16      0.87450.16      0.87450.16      0.87450.16      0.8745    

educat    college grad       35.1031661 B     13.59340479       2.58      0.0113educat    college grad       35.1031661 B     13.59340479       2.58      0.0113educat    college grad       35.1031661 B     13.59340479       2.58      0.0113educat    college grad       35.1031661 B     13.59340479       2.58      0.0113    

educat    less than HS        2.6127789 B     15.99531606 educat    less than HS        2.6127789 B     15.99531606 educat    less than HS        2.6127789 B     15.99531606 educat    less than HS        2.6127789 B     15.99531606       0.16      0.8706      0.16      0.8706      0.16      0.8706      0.16      0.8706    

educat    post college       21.0818184 B     15.19788858       1.39      0.1686educat    post college       21.0818184 B     15.19788858       1.39      0.1686educat    post college       21.0818184 B     15.19788858       1.39      0.1686educat    post college       21.0818184 B     15.19788858       1.39      0.1686    

educat    some college        0.0000000 B       .                .         .educat    some college        0.0000000 B       .                .         .educat    some college        0.0000000 B       .                .         .educat    some college        0.0000000 B       .                .         .    

 
Is that pretty?  Well, not really.  The reference category is "some college" and the order is, shall we say, 
not exactly natural.  One quick solution to that is to use numbered labels.  Most of the output is the same 
until you get to the parameter estimates. 
 

EDUCATEDUCATEDUCATEDUCAT categorical with numbered labels categorical with numbered labels categorical with numbered labels categorical with numbered labels    

Dependent Variable: y 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        4      21702.2880       5425.5720       2.24    0.0707 

Error                       95     230398.3776       2425.2461 

Corrected Total             99     252100.6656 

 

R-Square     Coeff Var      Root MSE        y Mean 

0.086086      33.46631      49.24679      147.1533 

 

Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

educat                       4     21702.28797      5425.57199       2.24    0.0707 

 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

educat                       4     21702.28797      5425.57199       2.24    0.0707 

 

                                                                              Standard                                          Standard                                          Standard                                          Standard    

Parameter                        Estimate             Error    t Value    Pr > |t|Parameter                        Estimate             Error    t Value    Pr > |t|Parameter                        Estimate             Error    t Value    Pr > |t|Parameter                        Estimate             Error    t Value    Pr > |t|    

Intercept                     157.7381569 B     12.71546586      12.41      <.0001Intercept                     157.7381569 B     12.71546586      12.41      <.0001Intercept                     157.7381569 B     12.71546586      12.41      <.0001Intercept                     157.7381569 B     12.71546586      12.41      <.0001    

educat    1 less than HS      educat    1 less than HS      educat    1 less than HS      educat    1 less than HS      ----18.4690318.4690318.4690318.4690395 B     18.66120207      95 B     18.66120207      95 B     18.66120207      95 B     18.66120207      ----0.99      0.32480.99      0.32480.99      0.32480.99      0.3248    

educat    2 HS grad           educat    2 HS grad           educat    2 HS grad           educat    2 HS grad           ----23.4357501 B     17.69917942      23.4357501 B     17.69917942      23.4357501 B     17.69917942      23.4357501 B     17.69917942      ----1.32      0.18861.32      0.18861.32      0.18861.32      0.1886    

educat    3 some college      educat    3 some college      educat    3 some college      educat    3 some college      ----21.0818184 B     15.19788858      21.0818184 B     15.19788858      21.0818184 B     15.19788858      21.0818184 B     15.19788858      ----1.39      0.16861.39      0.16861.39      0.16861.39      0.1686    

educat    4 college grad       14.0213477 B   educat    4 college grad       14.0213477 B   educat    4 college grad       14.0213477 B   educat    4 college grad       14.0213477 B     16.64845280       0.84      0.4018  16.64845280       0.84      0.4018  16.64845280       0.84      0.4018  16.64845280       0.84      0.4018    

educat    5 post college        0.0000000 B       .                .         .educat    5 post college        0.0000000 B       .                .         .educat    5 post college        0.0000000 B       .                .         .educat    5 post college        0.0000000 B       .                .         .    

 

Well, that's certainly easier to follow.  Now the reference category is the highest education (post college) 
and the categories are ordered.  We've got a p-value of 0.071, which is borderline.  What happens if we 
treat education as a continuous variable?  All we need to do is omit it from the CLASS statement. 
 
EDUCATEDUCATEDUCATEDUCAT continuous continuous continuous continuous    

Dependent Variable: y 

                                       Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        1      10457.6803      10457.6803       4.24    0.0421 

Error                       98     241642.9853       2465.7447 

Corrected Total             99     252100.6656 
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R-Square     Coeff Var      Root MSE        y Mean 

0.041482      33.74458      49.65627      147.1533 

 

Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

l_educat                     1     10457.68028     10457.68028       4.24    0.0421 

 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

l_educat                     1     10457.68028     10457.68028       4.24    0.0421 

 

                                  Standard                                  Standard                                  Standard                                  Standard    

PaPaPaParameter         Estimate           Error    t Value    Pr > |t|rameter         Estimate           Error    t Value    Pr > |t|rameter         Estimate           Error    t Value    Pr > |t|rameter         Estimate           Error    t Value    Pr > |t|    

Intercept      121.1955784     13.54728807       8.95      <.0001Intercept      121.1955784     13.54728807       8.95      <.0001Intercept      121.1955784     13.54728807       8.95      <.0001Intercept      121.1955784     13.54728807       8.95      <.0001    

l_educat         8.4005599      4.07910241       2.06      0.0421l_educat         8.4005599      4.07910241       2.06      0.0421l_educat         8.4005599      4.07910241       2.06      0.0421l_educat         8.4005599      4.07910241       2.06      0.0421    

 

That gave us a p-value of 0.042, so we have a statistically significant linear trend.  But are the deviations 
from linearity statistically significant?  This is the moment we've been waiting for. 
 

EDUCAT EDUCAT EDUCAT EDUCAT continuous and categoricalcontinuous and categoricalcontinuous and categoricalcontinuous and categorical    

 

Dependent Variable: y 

                                        Sum of 

Source                      DF         Squares     Mean Square    F Value    Pr > F 

Model                        4      21702.2880       5425.5720       2.24    0.07070.07070.07070.0707    

Error                       95     230398.3776       2425.2461 

Corrected Total             99     252100.6656 

 

R-Square     Coeff Var      Root MSE        y Mean 

0.086086      33.46631      49.24679      147.1533 

 

Source                      DF       Type I SS     Mean Square    F Value    Pr > F 

l_educat                     1     10457.68028     10457.68028       4.31    0.0405 

educat                       3     11244.60769      3748.20256       1.55    0.2078 

 

Source                      DF     Type III SS     Mean Square    F Value    Pr > F 

l_educat                     0         0.00000          .      l_educat                     0         0.00000          .      l_educat                     0         0.00000          .      l_educat                     0         0.00000          .             .       .       .       .       .       .       .       .    

educat                       3     11244.60769      3748.20256       1.55    0.2078educat                       3     11244.60769      3748.20256       1.55    0.2078educat                       3     11244.60769      3748.20256       1.55    0.2078educat                       3     11244.60769      3748.20256       1.55    0.2078    

 

                                                   Standard 

Parameter                        Estimate             Error    t Value    Pr > |t| 

 

Intercept                     227.8448953 B     73.98734261       3.08      0.0027 

l_educat                      -14.0213477 B     16.64845280      -0.84      0.4018 

educat    1 less than HS      -74.5544302 B     59.07208796      -1.26      0.2100 

educat    2 HS grad           -65.4997931 B     42.86841897      -1.53      0.1299 

educat    3 some college      -49.1245137 B     26.32351518      -1.87      0.0651 

educat    4 college grad        0.0000000 B       .                .         . 

educat    5 post college        0.0000000 B       .                .         . 
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The overall p-value is the same as it was originally (0.071), and as promised the L_EDUCAT variable has 
0 degrees of freedom in the Type III section.  The EDUCAT variable has 3 degrees of freedom and a p-
value of 0.21, indicating a lack of statistical significance.  That is, the deviations from linearity are non-
significant.  I will leave it as an exercise for the reader to figure out how to manipulate the parameter 
estimates from this run to get the values from the first two.  It's a good way to make sure you understand 
what SAS is doing. 

"DISCRETIZING" A CONTINUOUS VARIABLE INTO A CATEGOR ICAL VARIABLE 
Suppose you have a variable measured as continuous but you are concerned about the possibility of 
nonlinear effects.  The nonlinearity might be simple curvature (say, a quadratic or exponential curve 
upwards or downwards).  It might be a floor or threshold effect or a ceiling effect.  Or it might be 
something more complicated, where the relationship is not monotonic.  How should you go about creating 
the categorical version? 
 
You should start by making use of any available substantive knowledge.  If the variable is nonnegative 
and you think zero values might be qualitatively different from the positive values, be sure to make the 
zero category separate.  Similarly, if a variable takes on both negative and positive values it is likely 
appropriate to have categories consisting entirely of negative or entirely of positive values.  (This does not 
preclude the possibility of including some small negative and/or small positive values along with zero; in 
many situations it makes sense to include values close to zero in a "near zero" category.)  You might also 
know that a certain value is often used as a boundary for one reason or another – with ages, there are 
good reasons to use 65 in U.S. studies, for example. 
 
You should also take account of the empirical distribution of the variable when creating categories.  As 
interested as you might be in a category, if there is very little data there you won't be able to say much 
about it.  By the same token, having a category with few values might be used to isolate a small number 
of aberrant cases.  In the absence of other overriding considerations, it's often sensible to define your 
categories so they all have about the same number of observations. 
 
How many categories should you create?  That's easy: as many as you need but no more.  Unless you 
have prodigious amounts of data and a very complicated relationship, it's hard to imagine needing even 
as many as 10 categories.  In fact, in practice 3 or 4 categories often carry most of the information and 
there's rarely a reason to go beyond 5.  Some theoretical and simulation work has shown that in a variety 
of situations there is little to gain by going beyond 5 categories.  That same work has shown that for 
symmetric variables the optimal spacing is also symmetrical around the median but not evenly spaced.  
However, the efficiency loss from using equal spacing is minimal.  Some of the early work on this is in 
Cox (1957), which includes the optimum groups for the Normal case.  The paper by Cochran (1968) 
provides a broader view of the subject, including some non-Normal cases.  Section 3.4 of Cochran (1983) 
provides a brief and fairly accessible summary of both papers. 

 

NUMBER OF 
CATEGORIES 

OPTIMUM SIZES VAR (OPTIMAL) VAR (EQUAL) 

2 50, 50 1.57 1.57 

3 27, 46, 27 1.23 1.26 

4 16, 34, 34, 16 1.13 1.16 

5 11, 24, 30, 24, 11 1.09 1.11 

 
I tend to use five categories, with approximately 10, 25, 30, 25, 10 percent in each category, which is 
fairly easy to remember.  (If you remember the 10 and 25 at the edges, you can get the 30 by 
subtraction.)  With four categories, think of it as approximately 1/6, 1/3, 1/3, 1/6.  Remember that as have 
"half as much in the end categories" and you can reproduce that one, too.  (A similar rule would apply to 
three categories, producing 25, 50, 25.) 
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How much difference does it make how many categories you use and whether they are approximately 
equal categories or you go to the trouble to use near-optimum sizes?  For an INCOME variable and 
various discretized versions, the correlations range from .83 to .95 if you use at least three categories – a 
difference, but less than many people expect.   
 

Correlations with original INCOME variable  

11 categories 0.95 

7 categories 0.91 

5 categories equal 0.88 

5 categories unequal 0.90 

4 categories equal 0.86 

3 categories unequal 0.86 

3 categories equal 0.83 

2 categories equal 0.72 

MORE ON BINARY VARIABLES 
There are also situations where there are practical advantages to creating one or more binary variables – 
dare we say binarizing? – from a continuous variable.  You may want to know if having any positive value 
is the important thing rather than the specific amount.  Or you might believe that there is a threshold effect 
but you are not sure at exactly which value it occurs.  You might create several binary variables with 
different thresholds so that you can compare their predictive power.  In another circumstance, you might 
create a cumulative set of vinary variables that could be combined to represent an ordinal variable with 
unequal spacing.  You could then test the equality of coefficients to determine how close to equally-
spaced the variables were.  An example of this sort of coding would be to create from a continuous 
variable X one variable called Z1 that is 1 when X is 1 or more and 0 otherwise, another variable called 
Z2 that is 1 when X is 2 or more and 0 otherwise, and another variable called Z3 that is 1 when X is 3 or 
more and 0 otherwise.  The sum of Z1, Z2, and Z3 would be a step function with steps at 1, 2, and 3.  By 
including all three variables with possibly different coefficients, you'd be allowing the steps to be of 
different sizes.  If you included just a single variable Z that took on values 0, 1, 2, 3 and treated it as 
continuous, you'd be assuming each of the steps had the same magnitude.  You could treat Z as 
categorical and you'd have the same model as if you included the Z1, Z2, and Z3 variables.  In both 
cases you would have used 3 df (4-1=3 for the Z variable and 1+1+1=3 for the 3 Z1, Z2, Z3 variables).  
One advantage of the binary coding is that it is somewhat easier to explicitly test the equality of the step 
sizes.  An obvious disadvantage is the need to create multiple variables.  For more on coding of binary 
variables and piecewise constant (and piecewise linear) variables, see Pasta (2005) 

TREATING AN ORDINAL VARIABLE AS CONTINUOUS 
When you want to treat an ordinal variable as categorical, you can just include it in a CLASS statement or 
create a series of binary ("dummy") variables for each of the categories.  If you want to treat it as 
continuous, first be sure that the coding puts them in the correct monotonic order.  This is true even if you 
ware going to include them in the CLASS statement but plan to calculate statistics that use the ordered 
values.  You need to be careful about whether the values are ordered by unformatted (internal) value or 
formatted value.  Do you recognize the sequence EFFNOSSTTT?  How about OTTFFSSENT?  Does it 
help to mention the sequence 8,5,4,9,1,7,5,10,3,2?  (Write down the English for the numbers from one to 
ten and sort them alphabetically.)  It's also common for "don't know" or "unsure" to be away from its 
natural ordinal "home" in the middle of a Likert scale.  For more on how categories are ordered in the 
CLASS statement and how the "reference" category is determined, see Pritchard and Pasta (2004). 
 
Once you're sure you have the ordinal variable coded correctly, you can just include it in the model (not in 
the CLASS statement) to treat it as continuous.  But how do you know if you've captured "most" of the 
explanatory power this way?  The relatively simple solution is to create an identical copy of the ordinal 
variable with a different name and work with both variables.  You might consider adopting a naming 
convention for such variables.  Over the years, I have tended to add a "C" or "C_" to the front of the 
copied variable … but then I forget whether that C stands for Categorical or Continuous.  Maybe better 
would be to use L_ to represent Linear (I like to reserve D_ for date variables).   
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Consider a series of Likert-scale questions with seven response categories: disagree strongly, disagree 
moderately, disagree slightly, neither agree nor disagree, agree slightly, agree moderately, agree 
strongly.  If these are coded from 1 to 7 (or 7 to 1), they can be used as they stand.  (You might want to 
consider subtracting 4 from the values so they range from -3 to +3 to make it easier to interpret the 
results, but that is not material here.)  If the original variables were named Q21-Q28 (being questions 21 
through 28 of a questionnaire), you might create exact copies named L_Q21-L_Q28.  Then for each 
variable you could include both the original (categorical) version and the linear version in the same model!  
Won't that be redundant?  Yes, it will, and the linear version will show up with zero degrees of freedom 
and not statistical test of significance.  The Type III statistical test of the categorical version will have one 
less degree of freedom than usual and it will be testing the deviation from linearity – whether the 
remaining K-2 df have statistically significant explanatory power.  If the categorical version is statistically 
significant, that tells you there is a significant non-linear component and it makes sense to omit the linear 
version of the variable.  If the categorical version is not statistically significant by whatever criterion you 
shoose to use, that means that the linear component carries the explanatory power and the categorical 
variable can be dropped.  (Of course, there's no guarantee that the linear version will be significant after 
dropping the categorical variable – that still needs to be tested.) 

UNEQUAL SPACING OF ORDINAL VALUES 
Although variables are generally very insensitive to variations in the spacing between values, there are 
times when you want to use a special spacing or at least test whether it is substantially different from 
equal spacing.  This naturally occurs when the categories are ranges of a continuous measure, as is 
often done on a questionnaire or interview (for example, age ranges or ranges of household income).  It is 
often common that counts of frequent events might be clearly unequally spaced – the categories might be 
0, 1, 2-3, 4-6, 7-10.  Such a variable might be coded according to the midpoint of the categories; in this 
example, you would use 0, 1, 2.5, 5, 8.5.  But what if you also had a category of "11 or more"?  You might 
allow that value to have its own categorical variable (see the next section) or you might try to assign a 
value.  The assigned value might be based on data from another population with more detailed data 
collected or it might be based on a theoretical distribution, or it might be the next value that "feel right."  In 
this example, I could easily argue for using 13.  Where does lucky 13 come from?  The first differences of 
the assigned values are 1, 1.5, 2.5, 3.5 … and 4.5 feels "right" for the next gap and 8.5+4.5=13.   
 
Another approach that I have found useful (and not entirely arbitrary) is to use the harmonic means of the 
endpoints to define the mean.  The harmonic mean is the inverse of the average of the inverses.  For the 
last (open-ended) category that goes from X to infinity, this means going "halfway to infinity" by averaging 
1/X and 0 and taking the inverse.  This means, simply, using two times the value of X as the "midpoint" of 
the upper interval.  In the count example, that would be 2*11=22 and in the case of an income category in 
thousands that ended with "over 200" using a value of 400.   
 
When a variable has an equally-spaced version and a carefully-spaced version that are about equally 
good as predictors, how do you decide which to use?  This may depend on the ease of discussion and 
interpretation of the results.  Consider income categories.  It may be easier to talk about the effect of 
"each 1,000 dollars increase in income" or "each 10,000 dollars increase in income" than to talk about 
"each one category increase in income."  A similar issue arises with age categories.  In other cases, the 
categories will be at least as easy to talk about. 
 
When an ordinal variable is created from an originally continuous variable and you conclude that the 
nonlinear component is negligible, you're faced with a choice: use the original variable or the one in 
categories?  The answer is the usual one: it depends on which is easier to talk about.   

ANOTHER EXAMPLE: ALTERNATIVE SPACING OF EDUCATION 
Consider the education variable we used earlier.  What happens if we look at alternative spacings when 
we are using it as a predictor?  Simulated data were generated for a relationship with education where 
the five categories took on the values 1, 2, 8, 20, and 21.  That is about as uneven a distribution as you 
might expect.  Two cases were considered: one where the relationship was strong and one where the 
relationship was much weaker.  The results can be summarized in a correlation matrix. 
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                                                    yeduc1  yeduc1  yeduc1  yeduc1      yeduc2      educat      eduyrs      eduval    yeduc2      educat      eduyrs      eduval    yeduc2      educat      eduyrs      eduval    yeduc2      educat      eduyrs      eduval    

 

yeduc1yeduc1yeduc1yeduc1       1.000 

 

yeduc2yeduc2yeduc2yeduc2       0.257       0.257       0.257       0.257       1.000 

              0.0098 

 

educateducateducateducat       0.883       0.2040.883       0.2040.883       0.2040.883       0.204       1.000 

              <.0001      0.0421 

 

eduyrseduyrseduyrseduyrs       0.831       0.177       0.9880.831       0.177       0.9880.831       0.177       0.9880.831       0.177       0.988       1.000 

              <.0001      0.0784      <.0001 

 

eduvaleduvaleduvaleduval       0.937       0.261       0.943       0.8890.937       0.261       0.943       0.8890.937       0.261       0.943       0.8890.937       0.261       0.943       0.889       1.000 

              <.0001      0.0088      <.0001      <.0001 

 
The EDUVAL variable is the "right" answer and therefore has the highest correlation with the outcomes 
YEDUC1 and YEDUC2.  For YEDUC1, treating education as equally-spaced, EDUCAT, does a little less 
well and treating education according to the years represented, EDUYRS, does a little less well than that.  
But there is not much practical difference among the values.  For YEDUC2, the strength of the correlation 
is in the same relationship.  However, we might now draw a different conclusion if we were hypothesis-
testing, as the "right" coding has P<0.01, the equally-spaced alternative has P<0.05, and the coding 
according to years has P>0.05.  The moral of this story?  For me, it's that borderline P-values might move 
around a bit if you change the spacing, but mostly one coding is about as good as another with ordinal 
variable. 

USING TWO OR MORE VARIABLES TO CAPTURE COMPLEX PATT ERNS 
When you find variables have a partial ordering, you can generally capture the ordering(s) by using two or 
more variables.  Consider a predictor that can be characterized by an ordered string of 4 binary digits (0 
or 1).  It may be that the number of "1" values provides a partial ordering, but there is no a priori ordering 
of the placement of the 1s.  You can create a variable that is the sum of the binary digits (i.e. the number 
of 1s) to include in the model along with the original variable as a categorical variable.  You will be able to 
assess the linear effect of the partial ordering along with the details of the individual categories. 
 
Another situation where two or more variables are useful is when working with a nearly-linear effect with 
distortion in some part of the range, usual at one extreme or another.  You could use a continuous 
variable together with a binary (indicator) variable for cases that are zero.  Similarly, you could use a 
continuous variable together with a set of binary variables to pull out outliers.  Another common use 
would be to allow a top category – "9 or more" for example – to be a different distance from the next lower 
category than the spacing for the other part of the scale.   
 
Piecewise constant and piecewise linear models can be constructed, too, and possibly combined with 
categorical variables for individual values.  When a threshold effect is expected – either at the low or at 
the high end – it can be fit with a simple piecewise model.  Generally it is desirable for the model to be 
continuous, but it can be worthwhile to test for discontinuities by allowing the values below (or above) a 
certain threshold to be fit separately.  See Pasta (2005) for more on piecewise models. 
 
One special case that comes up frequently is age.  In some situations, age is given in years ("age at last 
birthday").  In other situations, age is calculated using the date of birth and the date of an event (a clinic 
visit, for example, or a standardized test).  Without getting into the wisdom of using the inaccurate (but 
easy-to-code) approach of dividing the later SAS date minus the earlier SAS date by 365.25, at the least 
you will be faced with the decision of whether to use the original age variable or put age in categories and 
treat the categories as approximately linear.  Certainly there are cases where an exact age is the way to 
go (in whole years, either age at least birthday or nearest birthday, or in fractional years).  But I usually 
find myself dividing the ages into categories – often 5- or 10-year age groups, but sometimes narrower or 
wider intervals.  I am then in a position to evaluate the (approximately) linear effect and the deviations 
from linearity in a reasonably straightforward way.  It's hard to examine nonlinearities using exact age. 
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CONCLUSION 
Before you treat your continuous measures as continuous variables (with linear effects), consider whether 
you should "discretize" them and treat them as categorical to better understand the relationships.  Before 
you treat your discrete variables as categorical, consider whether you should at least evaluate the linear 
component by treating it as continuous.  For variables with partial orderings, or with both linear and 
nonlinear components, consider combining continuous and categorical variables together.  Soon you, too, 
will see predictor variables in shades of gray.   
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