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Abstract Deployed software systems are typically composed of many pieces,
not all of which may have been created by the main development team. Often,
the provenance of included components — such as external libraries or cloned
source code — is not clearly stated, and this uncertainty can introduce tech-
nical and ethical concerns that make it difficult for system owners and other
stakeholders to manage their software assets. In this work, we motivate the
need for the recovery of the provenance of software entities by a broad set of
techniques that could include signature matching, source code fact extraction,
software clone detection, call flow graph matching, string matching, histori-
cal analyses, and other techniques. We liken our provenance goals to that of
Bertillonage, a simple and approximate forensic analysis technique based on
bio-metrics that was developed in 19*" century France before the advent of fin-
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gerprints. As an example, we have developed a fast, simple, and approximate
technique called anchored signature matching for identifying the source origin
of binary libraries within a given Java application. This technique involves a
type of structured signature matching performed against a database of candi-
dates drawn from the Maven2 repository, a 275GB collection of open source
Java libraries. To show the approach is both valid and effective, we conduct
an empirical study on 945 jars from the Debian GNU/Linux distribution, as
well as an industrial case study on 81 jars from an e-commerce application.

Keywords reuse, provenance, code evolution, code fingerprints

1 Introduction

Most deployed software systems are composed of many pieces drawn from a
variety of disparate sources. While the bulk of a given software system’s source
code may have been developed by a relatively stable set of known developers,
a portion of the shipped product may have come from external sources. For
example, software systems commonly require the use of externally developed
libraries, which evolve independently from the target system. To ensure library
compatibility — and avoid what is often called “DLL hell” — a target system
may be packaged together with specific versions of libraries that are known
to work with it. In this way, developers can ensure that their system will
run on any supported platform regardless of the particular versions of library
components that clients might or might not have already installed.

However, if software components are included without clearly identifying
their origin then a number of technical and ethical concerns may arise. Tech-
nically, it is hard to maintain such a system if its dependencies are not well
documented; for example, if a new version of a library is released that con-
tains security fixes, system administrators will want to know if their existing
applications are vulnerable. Ethically, code fragments that have been copied
from other sources, such as open source software, may not have licences that
are compatible with the released system; when open source code is discovered
within a proprietary system, it can be costly and embarrassing to the company.

Many North American financial instutions implement the Payment Card
Industry Data Security Standard [24] (PCI DSS). Requirement 6 of this stan-
dard states: “All critical systems must have the most recently released, ap-
propriate software patches to protect against exploitation and compromise of
cardholder data.” Suppose a Java application running inside a financial institu-
tion is found to contain a dependency on a Java archive named httpclient.jar.
Ensuring that the PCI DSS requirement is satisfied entails addressing some
difficult questions:

— Which version of httpclient.jar is the application currently running?

— How hard would it be to upgrade to the latest version of httpclient.jar?

— Has the license of nttpclient.jar changed within the newest version in a
way that prevents upgrading?
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We can use a variety of techniques to address these questions. For exam-
ple, if we have access to the source code we can do software clone detection. If
we have access to binaries, we can perform clone analysis of assembler token
streams, call flow graph matching, string matching, mining software reposito-
ries, and historical analyses.

This kind of investigation can be performed at various levels of granularity,
from code chunks to function and class definitions, to files and subsystems
up to compilation units and libraries. But the fundamental question we are
concerned with is this: Given a software entity, can we determine where it
came from? That is, how can we establish its provenance?

1.1 Contributions

1. We introduce the general concept of software Bertillonage, a method to
reduce the search space when trying to locate a software entity within a
large corpus of possibilities.

2. We present an example technique of software Bertillonage: anchored signa-
ture matching. This method aids in reducing the search space when trying
to determine the identity and version of a given Java archive within a large
corpus of archives, such as the Maven 2 central repository.

3. We establish the validity of our method with an empirical study of 945
binary jars from the Debian 6.0 GNU/Linux distribution. We demonstrate
the significance of our method by replicating a case study of a real world
e-commerce application containing 81 binary jars.

1.2 Our Previous Report

Compared to the implementation in our previous Software Bertillonage report
[4], we have since improved and enhanced our toolset, our corpus, and our
experiments. We have abandoned the source parser that we wrote from scratch.
Instead we use Java’s own compiler, javac, to analyze source code. We have
also switched our bytecode analyzer from bcel-5.2.jar to asm-3.3.1.jar. Thanks
to these improvements we can now extract more features from Java artifacts,
such as generics, enums, and inner classes. We obtained a new snapshot of
the Maven2 repository to serve as our provenance corpus. Surprisingly, the
Maven2 repository has nearly doubled in size since our previous report, from
150 GB to 275 GB. We previously used an industrial case study to explore the
feasibility of our main ideas. We now test our improved techniques and tools
with an empirical experiment based on 945 jar files of known provenance, as
well as a replication of the original case study.
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1.3 Bertillonage and Software Provenance

In the mid to late 19th century, police forces in Europe and elsewhere began to
take advantage of emerging technologies. For example, suspected criminals in
Paris were routinely photographed upon arrest, and the photos were organized
by name in a filing system. Of course, criminals soon found out that if they
gave a false name upon being arrested then their chances of being identified
from the huge pool of photos was very small unless the police were particularly
patient or happened to recognize them from a previous encounter. Alphonse
Bertillon, the son of a statistician who worked as a clerk for the Paris police,
had the idea that if suspects could be routinely subjected to a series of simple
physical measurements — such as height, length of right ear, length of left foot,
etc. — then the photos could be organized hierarchically using the bio-metrics
data, and the set of photographs that had to be examined for a given suspect
could be reduced to a small handful. This approach, later termed Bertillonage
in his honour, proved to be very effective and was a huge step forward in the
burgeoning science of criminology [26].

As a forensic approach, Bertillonage also had its drawbacks. Using the spe-
cialized measuring equipment required extensive training and practice to be
reliable, and it was time-consuming to perform. Each of 10 measurements was
performed three times, because if even one measurement was off then the sys-
tem did not work. Also, the measurements taken did not have a high degree of
independence; tall people tended to have long arms too.! In time, the emerging
science of fingerprinting proved to be a much more effective and accurate iden-
tification mechanism and Bertillonage was forgotten. Nevertheless, Bertillon
and his other inventions — including the modern mugshot and crime scene
photography — showed how simple ideas combined intelligently could greatly
reduce the amount of manual effort required in forensic investigations. Despite
its limitations, Bertillonage was considered the best method of identification
for two decades [14].

Our goal in this work is to devise a series of techniques to aid in determining
the provenance of software entities. That is, given a software entity such as a
function definition or an included library, we would like to be able answer the
question: Where did this entity come from? Of course, most often the answer
will be that the entity in question was created to fit exactly where it is within
the greater design of the system, but sometimes entities are moved around,
designs are refactored, new is copied from old and then tweaked. We would
like be able to answer this question authoritatively: this is version 1.3.7 of the
X library; this SCSI driver is a tweaked clone of a driver of a similar card;
most of this function f was split off from function g during a refactoring effort
in the last development cycle, etc. Sometimes, however, our answers will be
best-effort guesses, especially if we do not have authoritative access to the
original developers.

1 The interdependence of the Bertillonage bio-metrics was recognized by Francis Galton,
and it inspired him to devise the notion of statistical correlation.
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We therefore use the metaphor of software Bertillonage, rather than, say,
software fingerprinting, as we often lack sufficient evidence to make a con-
clusive identification. Instead, we use a set of simple and sometimes ad-hoc
techniques to narrow the search space down to a level where a manual deter-
mination may be feasible.

1.4 Replication

Data for replication is available at:
http://juliusdavies.ca/2011/emse/bertillonage/

2 Related Work

In software engineering research, similar questions relating to development
artifact provenance and attribution have been addressed in various guises. For
example, there is a large body of work in software clone detection that asks the
question: which software entities have been copied (and possibly tweaked) from
other software entities. Our own work [8] on the problem of “origin analysis”
asked: if function f is in the new version of the system but not the old, is it
really a new function or was it merely moved / renamed / merged or split from
another entity in the old version? The emphasis in our work here is to broaden
the question even further. Given the recent advances in the field of mining
software repositories, can we take advantage of the vast array of different
software development artifacts to draw conclusions about the provenance of
software entities?

There exist many studies on the origin, maintenance, and evolution of
code clones [16,19,21,22,27], while others have examined clone lifespan and
genealogy [18]. The distinction between these studies and our own is that we
study provenance across applications, and we are interested not only in finding
similar entities, but determining where they come from. We are also interested
in matching similar entities when one of them is in compiled (binary) form.

Clone detection methods (such as [15,20]), as well as the tracking of clones
between applications [7] provided a starting point for our investigation. Similar
to Holmes et al. [13] we build our own code-search index.

Di Penta et al. [6] used code search engines to find the source code that
corresponds to a Java archive (they used the fully qualified name of the class).
They found that their main limitation was the inability to match a binary jar
with the precise version of the source release it came from. Similarly, Hemel et
al. [11] showed how extracting string literals from binaries to detect clones can
work surprisingly well, often out-performing other more sophisticated tech-
niques. Ossher et al. [23] employ a technique they call “name-based finger-
prints” in their source-based clone analysis of the Maven 2 Central repository;
these fingerprints are a simplified version (e.g., no inner classes, no return
types) of our anchored class signatures. We consider all of these works to be
forms of Bertillonage.
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Recently, a line of research on software development “recommender sys-
tems” has arisen [2,12,17,25]. The goal here is to analyze a given working
context — such as the bug report being worked on, the source code files that
have been changed, the API elements whose documentation has been accessed
— and try to infer what other artifacts (bug reports, API elements, documen-
tation) might be relevant to the development task at hand. This is done using
historical usage information, which can be specific to a developer, a team, or
use a public history repository. This can be seen as another instance where
is it desirable to characterize software artifacts and perform a loose matching
algorithm on them against a large repository. The matching algorithm must
be loose to be useful, since it is highly unlikely that the exact combination of
artifacts have ever been used at the same time before.

3 A Framework for Software Bertillonage

The goal of software Bertillonage is to provide computationally inexpensive
techniques to narrow the search space when trying to determine the provenance
of a software entity. More formally, we define a ‘subject’ as the entity whose
provenance we are investigating. We define ‘candidates’ as a set of entities from
a given corpus that are credible matches to the subject. A desirable property
of Bertillonage is thus to provide, for any subject, a relatively small set of
high-likelihood candidates.

We use the metaphor of Bertillonage — an approximate approach fraught
with errors — rather than a more precise forensic metaphor of fingerprinting
or DNA analysis to emphasize that while we may have a lot of evidence, of-
ten we do not have authoritative answers. For example, one of the problems
we examine involves trying to match a compiled binary against a large set
of candidate source files. If we know the exact details of the creation of the
binary — the version of the compiler, the compilation options used, the ex-
act set of libraries used for linking, etc. — then we can compile our source
candidates accordingly and use simple byte-to-byte comparison. But in reality
the candidate binaries are often compiled under varying conditions, and this
can result in two binary artifacts that have the same provenance yet are not
byte-for-byte equivalent in their binary representations.

It may also be the case that “the suspect is not on file”, i.e., that there
may be no correct match for the subject within the corpus. In our example
of anchored signature matching (normalizing type signatures for comparison
described in Section 4.1), we compare Java archives from subject software sys-
tems against the Maven2 repository. However, Maven2 is not a comprehensive
list of all possible versions of all possible Java libraries; it consists only of
those library versions that someone has explicitly contributed. So our subject
archive may not be present within the corpus in any form (which is likely to
be easy to determine), or the archive may be present but not the particular
version that we seek. Consequently, we must always be willing to consider the
possibility that what we are looking for is not actually there.
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Thus, instead of precision we take as our goal of software Bertillonage the
narrowing of a large search space. We seek to prune away the low probability
candidates leaving a relatively small set of likely suspects, against which we
may choose to apply more expensive techniques, such as clone detection, com-
pilation, or manual examination. We realize that establishing provenance may
take some effort, and that it may not even be possible in a given situation.

3.1 Bertillonage Metrics

As with forensic Bertillonage, it is necessary to define a set of metrics that
can be measured in a potential subject and that will be relatively unique to
it. This is particularly difficult when trying to match binary to source code,
because many of the original features of the source code might be lost during
the compilation; for example, identifiers might be lost, some portions might
not be compiled, source code entities are translated into binary form (which
might include optimizations), etc.

Given the variety of programming languages, we presume that each will
require different Bertillonage metrics. For instance, compilation to Java is
easier to analyze — and contains richer information — than compilation to
C++. In turn, C++ binaries maintain more information than compiled C, as
C++ maintains parameters types to support overloading while C does not.

Another important consideration is: what is the level of granularity of
the Bertillonage? To match an entire software system it might not be neces-
sary to look inside each function/method. But if the objective is to match a
function/method, then the only information available to measure are method
bodies and type signatures.

Bertillonage is concerned with measuring the intrinsic properties of a sub-
ject, usually by considering different kinds of its sub-parts, which we will call
“objects of interest” (OOIs). These measurements can be performed in various
ways:

Count-based: Count the number of OOIs that the subject contains, such
as number of calls to external libraries, or uses of an obscure feature (e.g.,
How many times is setjmp, longjmp used);

Set-based: Compute a set of OOIs that the entity contains, such as the string
literals defined by this entity?, the set of classes defined in a package, or
the set of methods in a class;

Sequence-based: Compute a sequence of OOIs in the entity (i.e., preserv-
ing the order), such as the sequence of methods signatures of a class, the
(lexical) sequence of calls within a method, the sequence of tokens types,
etc.;

Relationship-based: Consider external OOIs that the subject is related to
in some way; for example, what dynamic libraries are used by this program,

2 The GPL Compliance Engineering Guide recommends the extraction of literal strings
to determine potential licensing violations [10].
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what externally-defined interfaces are implemented, what exceptions are
thrown?

The dimensionality of possible software Bertillonage metrics also includes
the granularity (code snippet, function / method, class / file, package / names-
pace), artifact kinds (source code, binary, structured text, natural language),
and the programming language (C, C++, Java). A good Bertillonage metric
should be computationally inexpensive, applicable to the desired level of gran-
ularity and programming language, and when applied, it should significantly
reduce the search space.

4 Anchored class signatures, a Bertillonage approach

To exemplify the concept of software Bertillonage, we propose a metric that
addresses the following problem: given a Java binary archive, can we determine
its original source code? The most obvious source of information is the name
of the archive itself, i.e., one would expect that commons-codec-1.1.jar comes
from commons-codec, an Apache project, release 1.1.2 However, in practice this
does not always work: some projects do not adhere to consistent naming and
numbering policies, sometimes beta tags are removed from version identifiers,
and sometimes version identifiers are removed altogether when the library
sources are copied into the source tree of the application.

Alternatively, we could build a database of exact source-to-byte matches
by compiling all known sources and indexing the results. False positives are
impossible under such a scheme, and thus matches would provide a direct
and unquestionable link back to source code. But false negatives could arise
in several ways, among these: variation of compilers (e.g., Oracle’s javac7 vs.
IBM’s jikes 1.22), debugging symbols (on or off), and different optimization
levels. Furthermore, library dependencies can be difficult to satisfy (especially
for older artifacts) making full compilation a problem. Even without compiler
variation, avenues for false negatives remain; for example, the build scripts
themselves might inject information at build-time directly into class files.

The philosophy we propose, software Bertillonage, requires us to seek char-
acteristics that are easy to measure and compare such that, even if they do
not guarantee an exact match, they will significantly reduce the search space.
We are particularly interested in features that survive the compilation process.
For Java, we considered the following list of attributes that are present in both
source and binary forms:

1. The class’s name.

2. The class’s namespace (a.k.a., ‘package’).
3. The inheritance tree.

4. Implemented interfaces.

3 This is analogous to a policeman asking a suspect for her/his name and expecting a
correct answer.
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package a.b;
import g.h.x*;

/**

* Qauthor Jane Doe

* @since January 1, 2001
*/
public class D

implements I<Number> {

© 000U WN -

11 synchronized static int a(

12 String s

13 ) throws E {

14 return "abc".hashCode() - s.hashCode();
15 }

16 ¥

Fig. 1: Source code of a class D.

Thrown exceptions.

Fields.

Methods.

Inner-classes.

9. Generics.

10. Class, method, and field modifiers (i.e., public, static, abstract).
11. Return types, and method parameters.

12. Relative position of methods and fields in the class.

© N

Many other features are lost during compilation, including comments, im-
port statements, local variable names, parameter modifiers (such as final),
and absolute position of methods, since line numbers are preserved only when
the class is compiled with debug info.

In a nutshell, we propose a Bertillonage metric for binary Java archives
that can be used to match a binary class file to its likely source file. Not all of
the source code classes may be included in the ultimate binary; for example,
test classes are often excluded, and sometimes a source archive may be split
into two or more binary archives. To match a binary archive, we try to find the
source archives with the largest overlap of classes between the binary archive
and a source archive.

Class file obfuscation could thwart Bertillionage, but this depends on the
techniques employed by the obfuscation. Our method uses type signatures of
classes and methods, and our method is likely to fail if the obfuscator changes
these. But our method will continue to work if the obfuscation is only renaming
local variables and code reformatting. This is an interesting area of research,
and we suspect it will become a mouse-and-cat game of one-upmanship, where
software Bertillionage tools will try to defeat obfuscators, and obfuscators will
continue to improve so that the former methods cannot defeat them.
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4.1 Anchored Class Signatures

Anchored class signatures attempt to provide us with a signature that we can
match classes against other classes. This is achieved by describing the contents
of a class in such a way that one could compare signatures against the same
class or a similar class.

We define the anchored class signature of a class in terms of its own sig-
nature and the signatures of its components. Since classes may contain inner
classes, our formal definition requires two steps. If a class C' has methods
My, ..., M, and fields FY,..., F}, but contains no inner classes, then we define
its anchored class signature, denoted ¥(c), as a tuple:

HC) = (a(C),(c(M1),...,0(Mp)), (o (F1), ..., o (Fp)))

where o(a) is the type signature of the class, field, or method. If a class C
has methods My, ..., M, fields F1, ..., F},, and inner classes C1, ..., C,,, then we
define its anchored class signature, denoted ¥(c), as a tuple:

HC) = (a(C),{c(My), ..., c(Mp)), (0 (F1), .0, 0 (F)), (O(C1), ..., 9(Cr)))

That is, the anchored signature of a class is the type signature of the class itself
(its name, if it is public or not, what it extends/implements), and the ordered
sequence of the type signatures of each of its methods, fields, and recursively,
the anchored class signatures of its inner classes. We say the signature is an-
chored since it includes the fully qualified name of the Java file, and in this way
our signature preserves attributes used by Java’s own built-in name resolution
mechanism (i.e., the cLasspati). We note, however, that when developers copy
and paste (clone) complete classes into their own application, they sometimes
alter the namespace declaration of the original class, in essence relocating the
copied logic into a new namespace. Our anchored approach will be unable to
find matches in these cases, but our results should also possess less noise; for
example, very small single-constructor exception-handling classes that happen
to be coincidentally named will not pollute our results.

When building the signature, all fully qualified parameter types (including
throws clauses) in the decompiled bytecode are stripped of their package pre-
fixes; for example, g.h.I becomes I and java.lang.String becomes String. This
is done because identifying the fully qualified names of the class’s dependen-
cies from source depends on Java’s import mechanism, which is indeterminate,
since resolution of wildcard imports (e.g., import java.util.x) depends on the
exact contents of directories and archive files listed in the CLASSPATH environ-
ment variable at the time of compilation. Fully qualified names that are refer-
enced directly in source — although rare — are also stripped of their package
prefixes, since we have no way of knowing in the bytecode if the name came
from an import or from an inline declaration.

4 Identifying the class’s own fully qualitifed name is determinate. The indeterminism only
arises when we try to resolve internal references that point to other classes.
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1 package a.b;

2

3 public class D extends java.lang.Object
4 implements g.h.I<java.lang.Number> {

5

6 public D() {

7 // Empty constructor added by javac;
8 // all classes need constructors.

9 }

10

11 synchronized static int a(

12 java.lang.String s

13 ) throws a.b.E {

14 /* [compiled byte codel] */

15 }

16 }

Fig. 2: Decompiled version of a class D to illustrate how the correponding Java bytecode
appears to our tools when we analyze it using the asm.jar bytecode analyzer.

Consider a class file 0. java (Fig. 1) and its corresponding decompiled byte-
code (Fig. 2). The Java compiler will insert an empty constructor if no other
constructors are defined, and for that reason the bytecode version contains
an empty constructor. Class D’s signature (Fig. 3) is composed of the type
signature of the class, the type signature of the default constructor D, and the
type signature of its method a().

o(D) = public class a.b.D extends Object implements I<Number>
o(M,) = public <init>()
o(Ms3) = default synchronized static int a(String) throws E

I(D) = (a(D), (o (M), 0 (M2)))

Fig. 3: Anchored class signature for D.java & D.class. Both javac and asm.jar refer
internally to constructors as “<init>” rather than the class name.

4.2 Similarity Index of Archives

To compare two archives we define a metric called the similarity index of
archives, which is intended to measure the similarity of two archives with
respect to the signatures of the classes within them. Formally, given an archive
A composed of n classes A = {¢1, ..., ¢, }, we define the signature of an archive
as the set of signatures of its contained classes.

HA) ={9(c1),....,0(cn) }
We define the Similarity Index of two archives A and B, denoted as sim(A, B),
as the Jaccard coefficient of their signatures:
_ [9(A)NI(B)|

sim(4 B) = 5@ Ua )]
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Ideally, a binary archive b would have originated in source archive S if sim(b, S) =
1. In practice, however, this is not the case, for two reasons: first, there are
cases in which an archive contains two or more different archives (e.g., embed-
ded dependencies); second, not all files in the source archive may be present
in the binary archive (such as test cases, or examples). To address these issues
we define two more indices: inclusion and containment.

4.3 Inclusion Index of Archives

To identify when the subject A is a likely subset of the candidate B, we define
the inclusion index. The inclusion index of archive A in B, denoted as
inclusion(A, B), is the proportion of class signatures found in both archives
with respect to the size of A.

[9(A)9(B)]
[9(A)]

inclusion(A, B) =

The intuition here is that when the inclusion index of a binary archive A in
archive B is close to 1, then the classes in A are present in B.

4.4 Containment Index of Archives

Similarly, we would like to know if a candidate archive B is contained in the
subject A. We define the containment index of archive A in B, denoted as
containedBy(A, B), as the proportion of class signatures found in both archives
with respect to the size of the candidate archive B.

[9(A)9(B)|

containedBy(A, B) = [0(B)|

In this case, when the containment index of a binary archive A with respect
to archive B is 1, then A contains all the classes in B.

4.5 Finding Candidate Matches

Given a candidate archive, we can use the similarity, inclusion, and contain-
ment indices to rank the likelihood that any archive in a corpus might contain
the same code found in the binary archive.

When the candidate is a source archive, we expect that three indices to
be 1. In other words, the Java files in the subject archive are the same as the
ones in the candidate. In some cases, multiple versions might be matched.

When the candidate is a binary archive, we can expect a wide range of
values for the similarity index. A value of 1 implies that every class in the
binary is present in the source, and vice-versa. As the value of the similarity
index drops, the containment index becomes more useful: a containment of 1



Software Bertillonage 13

will mean that every class in the candidate is present in the source (the subject
is a subset of the candidate); this is the likely scenario in which the binary
archive does not contain every Java file in its source.

For source and binary archives, the final scenario is when both the simi-
larity and the containment index drop, but the inclusion index increases. In
that case, the candidate is likely to a “superarchive” that contains code from
various sources. This is the case when the source archive contains “copied”
code from other sources, or when the binary archive embedded its needed
dependencies (and they are not in the source archive).

If the similarity index is zero, then no archive in the corpus contains a
single class signature in common with the binary archive.

We can formalize finding the best match(es) for a binary archive in an
archive corpus as follows: given a set of archives S = {s1, ..., s, } (the corpus),
we find the best candidate matches a of binary archive b as the subset of L C S
such that:

Vs; € L sim(b, s;) > 0 A sim(b, s;) = maxsim[S, b]

where maxg;, [, b] is the maximum similarity index of b and the elements in S.
In the ideal case, L has only one member. In practice, however, the corpus often
has several candidate matches with equal maximum similarity scores. We have
found several reasons for multiple archives having the same maximal score:
there may be identical redundant archive copies in Maven2; some archives
differ only in documentation or other non-code attributes; some non-identical
archives may simply achieve equal scores; and the signature of an archive may
remain constant across multiple versions if there are implementation changes
but no interface changes. This last case is typical in minor release updates.

We exemplify our approach in Table 1. The subject is the binary jar
asm-2.2.3.jar, and the candidates are binary and source archives in Maven2. As
it can be seen, the perfect inclusion score of 1 matches three different versions
(2.2.3, 2.2.2, and 2.2.1), whereas version 2.1 is more distant (inclusion index
0.636). The perfect inclusion score of 1 also suggests the larger asm-5.1.0.jar
library probably contains a perfect copy of asm, but repackaged by JOnAS
(an application server bundle). Notice how the filename no longer reflects the
version of asm, but the version of JOnAS. Finally, the source archives with
the highest inclusion are versions 2.2.1-sources and 2.2.2-sources. Surprisingly,
Maven2 did not contain a copy of the sources of the version 2.2.3 subject,
although it contained a copy of the binary. This highlights two challenges we
are trying to address. First, there is a much higher concentration of binary ar-
tifacts in Maven2 compared to source artifacts. Second, there is no certainty a
particular subject will be found in the corpus, and so we must find the closest
match possible instead.
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Al | 1Bl | 1IN | U] sim incl | cont | path for each B

22 22 22 22 | 1.000 | 1.000 | 1.000 | asm/2.2.1/asm-2.2.3.jar

22 22 22 22 | 1.000 | 1.000 | 1.000 | asm/2.2.3/asm-2.2.2.jar

22 22 22 22 | 1.000 | 1.000 | 1.000 | asm/2.2.1/asm-2.2.1.jar

22 21 14 29 | 0.483 | 0.636 | 0.667 | asm/2.1/asm-2.1.jar

22 91 22 91 | 0.242 | 1.000 | 0.242 | jonas/../5.1.0/asm-5.1.0.jar

22 22 8 36 | 0.222 | 0.364 | 0.364 | asm/2.2.1/asm-2.2.1-sources.jar
22 | 22 8 36 | 0.222 | 0.364 | 0.364 | asm/2.2.1/asm-2.2.2-sources.jar

Table 1 — Best results based on Bertillonage metrics when the subject archive
is asm-2.2.3.jar. The top matches are binary archives; here, 3 versions match
perfectly. The bottom matches are source archives; the expected source package,
asm-2.2.3-sources. jar was not present in the corpus (Maven2) and the top matches
were versions 2.2.1, and 2.2.2.

5 Implementation
5.1 Building a Corpus

To be effective, any approach that implements the Bertillonage philosophy
requires a corpus that is as comprehensive as possible. For Java, the Maven2
Central Repository® fulfills this requirement. Maven2 provides a large pub-
lic repository of reusable Java components and libraries under various open
source licenses, often including multiple versions of each component; it serves
as the Java development community’s de facto library archive. Originally, the
repository was developed as a place from where the Maven build system could
download required libraries to build and compile an application. Because of the
repository’s broad coverage and depth, even competing dependency resolvers
make use of it (i.e., http://ant.apache.org/ivy/).

Maven2, as a whole, is unversioned: today’s Maven2 collection will be dif-
ferent from tomorrow’s, as there is a continual accumulation of artifacts. Our
first download of the Maven2 collection took place in June of 2010 and our
second download took place in July of 2011, over one year later. The repository
grew substantially over this period, nearly doubling in size. This behaviour is
unlike the major GNU/Linux compilations of free and open source software
such as Debian, where Debian 6.0 is a fixed collection that remains static after
its official release date.

5.2 Extracting the Class Signatures

We developed two tools to extract anchored class signatures from Java archives:
a wrapper around javac for analyzing source code, and a byte code analyzer
based on the asm. jar library. Using these tools we were able to consistently pro-
cess interfaces, classes, methods, fields, inner classes, enums, and generics.%

5 http://repol.maven.org/maven2/

6 We were unable to process pre-release implementations of generics sometimes found in
Java 1.4 class files of a few brave bleeding edge developers from that time.
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When analyzing a source file we first call the parse() method of com.sun.
tools.javac.main.JavaCompiler that is contained inside Java’s tools.jar. This
parses the symbols of the source code using the same logic as the command-line
javac tool, but it stops before resolving dependencies and compiling bytecode.
Once this is done, we can recursively visit the class’s symbols to extract fields,
methods, and inner classes. We also perform several canonicalizations to ensure
signatures are extracted consistently, including:”

— Remowve explicit sub-classing of java.lang.Object. Sometimes developers ex-
plicitly declare that a particular class “extends Object” and javac faithfully
reports back this fact. But all Java classes implicitly extend java.lang.0Object
according to the Java specification, so there is no point including this re-
dundant information.

— Always mark interface methods as public. Developers are free to leave off
the public keyword on interface methods as a convenience, since all in-
terface methods are public according to the Java specification. However,
we re-introduce the public keyword if it is missing to make the signature
consistent with what is in the bytecode.

— Consistently deal with the strictfp keyword. If the class is marked as strictfp
then all its methods will be marked as strictfp in its bytecode, even if this
modifier is missing in the source code for those same methods.

The approach we apply to bytecode is similar: we call the asm. jar bytecode
analyzer to visit all fields, methods, and inner classes, and we perform vari-
ous canonicalizations to keep the bytecode signatures consistent with source
signatures. When this process completes for both of our two examples, D. java,
and D.class, we should possess a class signature identical to Figure 3.

Through the course of writing these tools we noticed a challenging asym-
metry of Java’s implementation. A source file will always contain at least one
class, but it may contain several. A class file, however, contains the bytecode
for at most one complete class. Class files never include their own inner classes,
which are stored as separate files. For our tools this meant our source analyzer,
when analyzing a single file, might output many top-level class signatures. On
the other hand, our binary analyzer, when pointed at a single file, often needed
to scan the archive or directory in question for additional files before it could
build a single signature.

Consider the code example in Figure 4, A.java. This small Java program
contains only 11 source lines of code (SLOC) [28], and yet it compiles into 7
separate class files, and with our method it contains 3 anchored signatures,
as shown in Table 2. Even our baseline technique, where we calculate simple
binary SHA1 fingerprints for each class, is affected by this asymmetry: we first
must concatenate the outer class and all its inner classes before running the
SHAT1 algorithm against the resulting binary data.

7 QOur source code contains the full list of signature canonicalizations that we apply:
http://juliusdavies.ca/svn/academic/sig-extractor/
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1 /%

2 This small source file, A.java, is a valid Java program that

3 generates 3 bertillonage signatures and 7 class files.

4

5 We use this program to illustrate an asymmetry of Oracle’s Java
6 implementation: a single Java source file compiles into many

7 Dbinary class files should it contain inner-classes or sibling

8 classes.

9 */

10 public class A {
11 Runnable r;

12

13 public AQ) {

14 // Anonymous inner-classes also compile into class files,
15 // and our signature-extractor needs to ignore them.

16 r = new Runnable() { public void run() {} };

17 }

18

19 // inner-classes Al, A2, A3.
20 class A1 {}
21 class A2 {}
22 class A3 {}

24 }
26 // Sibling classes B and C. Notice they are outside class A!

27 class B {}
28 class C {}

Fig. 4: Mapping source files to binary files is not always straight-forward in Java. This
source file, A. java, despite its simplicity and small size, results in the creation of 7 distinct
class files due to the inner-classes Al, A2, A3 and the anonymous class on line 16, as well
as the sibling-classes B and C. Table 2 shows the results of compiling and analyzing this
source file with our signature-extraction tool.

5.3 Matching a Subject Artifact to Candidates

The source and bytecode tools we developed to extract the signatures are
employed both in the construction of a corpus index, as well as the generation
of queries to find matching candidates. The two phases are described below.

Building the Corpus Index: we scan every source and binary archive
within the Maven2 repository, including archives within archives. For each
source and compiled class file we compute its signature using the steps de-
scribed in section 5.2. To improve response time for finding matches, we index
each signature using its SHA1 hash.

Finding Matches: we are interested in finding what archives have match-
ing classes with the subject, and what these classes are. To perform this step
efficiently we use the following algorithm:

1. For each class present in the subject, find its matching classes (with iden-
tical class signature) in the corpus.

8 These signatures are copied verbatim from the output of our extraction tool after ana-
lyzing the A.java example (Figure 4), and the class files were generated by running Oracle
Java 1.6.0_20’s javac against the same A. java file.
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One Source File | Three Signatures® Seven Class Files

A.java 1. public class A A.class
Runnable r;
public <init>()

class Al AS$Al.class
public <init>()

class A2 A$A2.class
public <init>()

class A3 AS$A3.class

public <init>()

ignored anonymous inner-class A$1.class

2. class B B.class
<init>()

3. class C C.class
<init>()

Table 2 — This table shows how the small source file shown in Figure 4 generates 3
anchored signatures when analyzed by our tool, and 7 class files when compiled. In
Java any given source file contains at least one complete class definition, whereas a
binary file contains at most one complete class definition. This asymmetry significantly
complicated our own signature-extraction tool’s implementation, making our own code
harder to understand and maintain.

2. Group the union of all matching classes (for all the classes in the subject)
by their corresponding archive. This will result in a list of all archives that
have at least one matching class with the subject, and for each archive, the
list of matching classes with the subject.

At this point we can now compute the similarity, inclusion, and contain-
ment metrics of the subject archive, compared with each of the archives that
have at least one matching class. Table 1 shows an example where a subject
artifact (asm-2.2.3.jar) is matched to candidate artifacts within the corpus.

Note that even in an exact match the archive signature similarity index
might not be equal to 1. This is because the source package might contain some
source Java files that are not included in the binary jar, such as unit tests.
However, every class in the binary archive should be present in the source
archive, unless bytecode manipulators, or other post-compilation processes
alter the binary.

Nonetheless, even automatic code generation is likely to generate a well-
defined set of classes every time. Our Bertillionage system already considers
any output from these generators to be “copies” of each other. An improved
Bertillionage system would have to flag the common classes created by a gen-
erator as special, and every time such copy is found, immediately mark its
origin as known, without having to check every other jar for matches. In fact,
we see this as the next step in Software Bertillionage: to create a curated
corpus of artifacts whose provenance is well known. Any candidate will first
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be run against this corpus, and only if not match is found, run against a the
universal corpus (such as the one described in this paper).

5.4 Evaluating the Extractor and Exploring Maven2

Initially we iteratively coded, tested and improved our extractor by apply-
ing it against complete binary and source archives from a handful of notable
Java projects. These included OpenOffice, Glassfish, Xerces, Xalan, Tomcat,
Eclipse, JBoss, the Rhino JavaScript engine, among others. From across these
diverse projects we identified 50 particularly challenging source and binary
pairs against which our tool, at various points, failed to match the source and
binary signatures. All of these test files can be found in the test-pairs directory
of our tool.

These 50 pairs became essentially our unit tests, and at this time only 2 of
these pairs fail to match, both from Xalan. Releases of xalan. jar continue to be
compiled using a rare and hard-to-find IBM 1.3.1 Java compiler that is over 10
years old. This compiler exhibits some strange behaviour with abstract classes
that happen to implement additional interfaces: the compiler overriddes inter-
face methods by “pulling” them down into the abstract class. Since our tool
is compiler-agnostic, there is no way for us to compensate for this signature-
modifying behaviour. The other failure comes from a Xalan auto-generated
Java class that is literally named cuP$xPathParser$actions. Our tool assumes
the $ (dollar-sign) character is reserved for file names of inner-classes. Our
assumption failed in this aforementioned case, but fixing this problem would
require significant effort on our part, as the assumption represents a core de-
sign decision within our tool. We believe similar usage of $ in class names to
be extremely rare in general, as Oracle/Sun actively discourages such use in
the Java Language Specification.

The $ character should be used only in mechanically generated source
code or, rarely, to access preexisting names on legacy systems. [9]

We decided to further evaluate the extractors that we had built as a kind of
validity check of our tools, as well as to explore the nature of what is actually
stored in the Maven2 repository. To do so, we needed a set of binaries for which
we had “ground truth”. Consequently, we limited ourselves to those binaries in
the repository that had a corresponding source code file in the same directory;
that is, if the name of the binary archive was name.jar, then we required
there to be a file named name-sources.extension in the same directory, where
extension is one of .zip, .tar, .war, or .tgz.

We picked a random sampling of 1,000 such Java binaries archives from
Maven2. Given the size of Maven2 — there were 144,049 unique binary pack-
ages at the time the work was done — the size of this sample would give us
a margin of error of 4% with a confidence level of 99%. Each binary archive
was comprised of one or more Java classes; within our sample set, we found
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that the median number of classes per binary archive was 10, with an observed
minimum of 1 class and an observed maximum of 2438 classes.

Naively, we expected that we should be able to find all of the binaries with
a perfect Similarity Index, and that we should also be able to find the source
of each. We now discuss the results of our evaluation.

5.4.1 Binary-to-binary matching results

For each of the 1,000 archives in the sample set — which of course we knew
to exist within the repository — we computed its similarity with every other
binary archive in the repository. Happily and unsurprisingly, we found that
in every instance they did indeed match themselves with a Similarity Index
value of 1.

To investigate the amount of duplication within Maven, we then asked: For
each archive in the sample set, how many binary archives in Maven repository
matched it with a Similarity index of 1?7 We found that the median number of
exact matches in our sample using the Similarity Index measure was 5; that
is, the binary occurred five times within the repository, either on its own or
contained within another archive. However, we also found that many archives
occurred a lot more often; the maximum number within our sample set was
487 for servlet-api-2.5-6.1. 12.jar9

We also considered the inclusion and containment measures for our sample
set. Inclusion occurs when one archive is a superset of another; this is often
the result of an archive owner deciding to include dependent archives within
it, to ease subsequent deployment. Containment occurs when one archive is a
subset of another; this is probably the result of an archive being incorporated
(as a dependency) within another.

Figure 5 summarizes the results of all three measures on our sample set.
For most jars, the number of matches was small (median 5), but a few jars
had very large number of matches. This was usually because there were either
many copies of the archive, or the signature of the archive matched several
versions (i.e., the original source code had not changed signature in several
versions).

When the top Inclusion index contains many matches this suggests that
this is a “super-jar” that contains classes found in other archives, not only the
one sought (they include their dependencies in the same jar). When the top
Containment index returns many matches, this suggest that the classes in a
binary archive that tends be embedded in many other jars.

9 Probably a file named servlet-api-2.5.jar is the true origin of this large equivalence
class of perfect matches. JSP & Servlet technologies have long been an important part of
Java’s popularity in servers for over 10 years, and servlet-api-2.5. jar is a critical interface
library which all Java web and application servers must implement, including Tomcat, JBoss,
Glassfish, Jetty, and many others. The 6.1.12 in this case probably comes from a version of
Jetty. The Jetty project tends to rename its own critical dependencies so that they contain
Jetty’s own version number alongside the original dependency’s version number.
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As we expected, Inclusion and Containment had longer tails than the Sim-
ilarity Index. In our sample set, the archive with the largest number of inclu-
sions was easybeans-example-pool-1.1.0-M1b-JONAS.jar with 864 matches (i.e., it
contains 864 other archives), and the archive that was contained most often by
other archives was maven-classpath-plugin-1.2.6-jar-with-dependencies. jar with
2732 inclusions (i.e., it is fully contained within 2732 other archives). Maven
reliability and duplication is discussed in Section 6.4.3.

Number of Matches per type of Metric
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Fig. 5: Number of top-matches found in the binary-to-binary experiment. The
different metrics had a median of 5 or 6 matches, but they had long tails,
suggesting a lot of duplication of some jars in the sample.

5.4.2 Binary-to-source matching results

For each of the 1,000 archives in the sample set we computed its similarity
with every source archive in the repository. While we satisfied ourselves that
our extractors worked as expected, the exploration of the Maven repository
yielded some surprising results:

We classify the result of a search into three three categories:

1. The correct match was among those with the top matching Similarity index
(966 cases out of 1,000).

2. The correct match had a lower Similarity index than some other archives
(30 cases).

3. The algorithm failed to suggest any matches (4 cases).
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In 966 of the 1,000 archives in the sample set, the correct match was among
those with the top Similarity Index. The median Similarity Index of a bi-
nary archive and its corresponding source archive was 1.0. However, there
were several cases where the correct source match had a surprisingly low
Similarity Index, with the lowest in our sample set being 0.0290. Low Sim-
ilarity indexes typically indicate that dependent archives have been added
within the binary version of the archive; for example, the source Java files in
rampart-integration-1.5.1.jar have 12 signatures, yet its binary version contains
231 signatures (those of classes it uses as dependencies, and that are embed-
ded in the jar to avoid having to independently install them in the running
environment). The distribution of the top number of source packages matching
the top Inclusion Index is shown in figure 5.

If there are multiple top matches for a given archive — that is, if there are
multiple archives with the same maximal Inclusion index when compared to
the candidate archive — then a more detailed examination of them must be
performed. Typically, this means that there are multiple versions of the archive
that have an identical interface; that is, the implementation may have evolved
between versions but the interface stayed consistent. In our sample set, we
found that the minimum number of top matches was 1, and the median was 4.
However, there were a few cases where the number of top matches was large;
the most extreme case was maven-interceptor-1.380.jar for which we found 158
different versions from 1.237 to 2.0.1.

We were not able to match any source in 4 cases. These were all small
archives consisting of between one and three classes each, and in each of these
cases the compiler, or other bytecode manipulators had added various fields
and methods that were not actually in the source code. While we are aware
of this phenomenon, our extractor does not explicitly handle such fields and
methods.

And finally, we noted that in 30 cases, the top match was not the cor-
rect match. Manual inspection suggests that in these cases the binary jars
had embedded within them external dependencies from other archives whose
numbers exceeded those of the source itself. For example, org.apache.felix.
http.bundle-2.0.2-sources.jar contains only one Java file, yet its binary equiva-
lent org.apache.felix.http.bundle.2.0.2. jar contains 295 signatures (in 442 .class
files); other binary packages with a higher Inclusion Index were serviet-api-2.5
(contributing 145 signatures) and jetty-6.1.%, contributing 13 classes. This
brings up an interesting philosophical question: What is the source of a given
binary? Is it the source it was created from, or the dependencies it contains?
Certainly all of them, and our method shows this.

Of these 30 cases, 10 source files have a Containment Index of 1.0 (their
binary jar perfectly contains all the signatures in the source file). In other
words, while the expected source was not the top match for the Similarity
Index, it was for the Containment one.
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Fig. 6: Matching sources: Number of matches for each metric

5.4.83 Summary of Exploration and Tool Evaluation

In summary, to evaluate our tools and to explore the problem space of the
Maven repository, we applied our techniques to 1,000 binary archives, ran-
domly chosen from Maven but with the constraint that the sources also be
present in Maven. In 96.6% of the cases (margin of error of 4% with a confi-
dence level of 99%) we were able to match the binary of a source using (one
of) the top Similarity Index match(es). In 3% of the cases the best match
was not the correct source (but the correct one had a slightly lower similarity
index and was part of the set of candidates). In 0.4% of the cases, we could
not match the source at all.

Overall, our metrics-based approach appears to be effective for significantly
narrowing the search space when looking for matches for another binary (the
median number of top matches was 5). In the few occasions it failed to find
a match (0.4%), the archives were very small and the compiled classes were
built using features (e.g., direct bytecode manipulation) that our parser was
not able to process.

When matching binary packages to their corresponding source, we identi-
fied several commonalities. In many cases, the binary and the source were a
1-to-1 match, but in many other cases, the binary was a superset of the source
archive (it contained the dependencies that it required to function). In this
case, the containment metric is useful: it shows us that the binary package
contains the source packages. We found it interesting that in few cases, the
best-match was not the corresponding source, but one of its dependencies. In
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other cases, the best match was a subset of the binary archive. This is com-
mon when a source archive is split into several binary packages, or when there
exists a large number of test cases that are not included in the binary. In these
cases the inclusion metric is the best to use.

6 Evaluation

To validate any provenance technique we need a sample of artifacts from out-
side our corpus, and we need “ground truth” about these artifacts. We can
then apply our technique to determine provenance information about each
of the sampled artifacts and compare the answers returned with the ground
truth. However, we have a confounding variable. We do not possess a perfect
corpus. Should our technique fail, do we blame our method for indexing the
artifacts, or do we blame imperfections in the corpus?

To control for this variable, we assume that byte-oriented fingerprint-
ing techniques are valid. By applying byte-oriented fingerprinting techniques
alongside our Bertillonage technique, we introduce a baseline against which
our new technique can be objectively measured. With the validity of our tech-
nique firmly established, we can then use our corpus and our sampled artifacts
to further explore the following research questions:

RQ1: How useful is the similarity index for narrowing the search
space to find an original binary archive when provided a subject
binary archive?

RQ2: How useful is the similarity index for narrowing the search
space to find an original source archive when provided a subject
binary archive?

RQ3: How reliable is the version information stored in a jar file’s
name?

6.1 Setting
6.1.1 Building A Corpus

We mirrored the Maven2 central repository (from July 25th to July 30, 2011)
using the following command:
rsync -v -t -1 -r mirrors.ibiblio.org::maven2 .

We used the ibiblio.org mirror because repoi.maven.org does not allow un-
known parties direct connections via rsync; repol.maven.org also bans HTTP
crawlers. Our download from ibiblio.org averaged 350KB/second. Since we re-
tained our initial 150GB mirror from a year earlier the rsync command needed
to only download the remaining 125GB of artifacts, requiring 4 days to down-
load. We re-ran the rsync command on the final day of downloading (June 30th)
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to ensure that our version was more or less identical to the ibiblio mirror at
that time. Thus we obtained over 275 GB of jars, zips, tarballs, and other files.
Maven contained 360,000'° different archives (.tar, .zip, .tar, .war, .tgz, .ear,
and .jar). Many of them contained other archives within them. When uncom-
pressed, they resulted in 130,000 source archives (a source archive contains at
least one Java file), but only 110,000 were unique. It contained 650,000 binary
archives (each contained at least one class file), but only 140,000 were unique.
These archives contained 7,140,000 Java files (1,650,000 distinct), and these
generated 920,000 unique signatures.

We processed 19,780,000 class files (2,430,000 distinct)!? which generated
1,510,000 distinct signatures. We observed there are 590,000 (or 39%) fewer
distinct signatures among our source files compared to our class files. This
is despite the observation that a typical source archive often contains more
signatures than its corresponding binary archive, since the source archive is
more likely to contain unit tests. This discrepancy suggests Maven contains
many binary archives for which there is no source code, a fact we confirmed
previously in section 5.4.

We used the Canada Western Research Grid [1] to extract these signatures.
The extraction took approximately 8 hours, which was equivalent to 325 hours
of a single CPU. Once the signatures were extracted, a PostgreSQL database
was created from the results; the database was 11GB in size (including in-
dexes). Bulk loading the compressed data (pre-sorted) directly from disk into
two tables required 30 minutes on an Intel Core i3 laptop with a 7200 RPM
hard-drive. Creating five single-column indexes required 90 minutes. A final
3 hours was spent pre-computing distinct signature tallies for each jar file. In
total 5 hours were spent creating the database from the extracted data.

Initial bertillonage queries of our database ran very slowly, taking sev-
eral minutes per jar file analyzed. Our wHERE clauses contain long chains of or
conditions, e.g., a typical SQL query from our tool looks like WHERE sig=class1
OR sig=class2 OR sig=class3..., and may include several thousand of these or
conditions, one for each class in the jar file. We realized that PostgreSQL’s
query optimizer, when planning these huge wHERE clauses, was erroneously as-
suming full-table scans would run faster than index scans. We tuned Post-
greSQL’s query optimizer to avoid full-table-scans whenever possible by set-
ting enable_segscan = off in the configuration file. This resulted in most queries
taking less than one second, with the slowest queries requiring at most 20 sec-
onds. Section 6.5 contains additional concrete performance details about our
implementation.

10 Values are rounded to nearest 10,000.

1 We only count outter classes. Class files containing a $ (dollar-sign) character in their
name are assumed to be inner classes, and are not included in these tallies. For example,
only 3 of the class files listed earlier in Table 2 would count: A.class, B.class, and C.class.
These do not contain $ in their names, whereas the other 4 classes do.
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6.1.2 Ezxperimental Subjects: 945 Jar Files From Debian 6.0

To obtain a sample of artifacts outside our corpus we looked at the Debian
GNU/Linux distribution. Many Java libraries are compiled into discrete, in-
stallable packages in this large operating system. The packages, called Debs,
include name, version, and dependency information that is recorded by Debian
maintainers. These maintainers often possess familiarity and expertise related
to the packages they oversee, thus we are confident the provenance information
recorded by these experts is of high quality, and can be considered reasonably
close to ground truth. The Deb format can be used to package any type of
installable application, not just Java applications, but for our purposes we
looked only at packages containing Java libraries. We chose the most recent
stable release, Debian 6.0 “Squeeze”, released on February 6th, 2011, from
which to collect packaged Java artifacts.

Debian 6.0 contains over 1,750 Java jar files. However, in some cases we no-
ticed the provenance information recorded by the Debian package maintainers
was nuanced and complex, and required time and effort to properly under-
stand. For example, one particular Debian package, 1ibgdata-java_1.30.0, was
specified as version 1.30.0, and yet the jars inside this package were marked
with a variety of version numbers:

— libgdata-java-1.30.0-1_all.deb/gdata-core-1.0.jar

— libgdata-java-1.30.0-1_all.deb/gdata-docs-2.0. jar

— libgdata-java_1.30.0-1_all.deb/gdata-photos-1.0.jar
— libgdata-java-1.30.0-1_all.deb/gdata-youtube-2.0.jar
— etc...

None of these jars included the version ‘1.30.0” within their own names. To
make our analysis easier, we decided to filter out all jars that did not include
the same version number in their name as that of their containing package. In
this way we reduced our sample from 1,750 jars down to 945. We believe this
filtering further improves the ground truth of our sample, since the version is
specified in two places for each jar. In a way, each jar possesses two ‘votes’
regarding its encoded version information.

We are not attempting to validate byte-oriented fingerprint techniques,
such as SHA1. We assume byte-oriented fingerprint techniques work, and we
use them as a measuring stick from which to compare our signature based
Bertillonage technique. We assume fingerprint approaches achieve 100% preci-
sion, and that false positives are impossible.'? For fingerprints of archive files,
any match is considered equivalent to ground truth, even if the matched name
is different, since they are byte-for-byte identical. Similarily, for fingerprints of
archive contents, any match that scores 1.000 similarity is considered equiv-
alent to ground truth. Fingerprint matches of archive contents scoring 0.999
similarity or less are not considered ground truth, and if they represent the
best match, we consider these as experimental results for validation, rather
than ground truth for measuring against.

12 The chance of a birthday collision from SHA1 in our data set is less than 1018,
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6.1.8 Replicating An Industrial Case Study

In a related research project [3] we performed a license and security audit of
a real world e-commerce application. The audits had to be performed against
both the binary and source code forms of these included libraries. Before we
could conduct the audits, we needed to determine the provenance of all in-
cluded libraries. In this study we replicate the provenance phase using 81 jars
from the other project’s replication package.'?

Accurate and precise provenance information forms an important foun-
dation for many types of higher-level analyses. Such analyses include, among
others, license audits, security vulnerability scans, and patch-level assessments
(as required by the PCI DSS security standard). A license audit of software
dependencies must reflect the reality that software licenses sometimes evolve
(change between releases). Similarily, known security holes in libraries will af-
fect specific releases or version ranges. The PCI DSS requirement #6, “All
critical systems must have the most recently released, appropriate software
patches,” cannot be satisfied without knowledge of the existing patch ver-
sions. In this vein we believed that conducting a license audit and a security
audit would provide real value to the developers of the e-commerce applica-
tion, while also providing us with a chance to test our Bertillonage approach
in the field.

6.1.4 Measuring Results

We define one byte-oriented index (“Fingerprint Index”), and one Bertillonage
index (“Anchored Class Signature Index”). Using the indices, we define four
matching techniques (two per index). Here are the four matching techniques,
followed by a shorthand tag we use later to refer to them.

Fingerprint Index, Identical Archive (shal-of-jar)
Our fingerprint index stores SHA1 fingerprints of all archive files, as well
as all source and class files. Therefore, an easy way to query the corpus
is to simply take the SHA1 fingerprint of the subject archive and see if
anything matches. A match found in this way represents a byte-for-byte
identical copy of the subject archive. We also use this index to filter out
duplicate results reported by the other matching techniques.

Fingerprint Index, Identical Contents (shal-of-classes)
This matching technique scans a subject archive to generate a series of
SHAT fingerprints, one per class scanned. We then query the corpus using
the same similarity, inclusion, and containment metrics described earlier.
But instead of comparing sets of anchored class signatures, we compare
sets of bytecode. Some pre-processing is required to properly account for
inner-classes, since we want a change to the inner-class’s bytecode to effect

13 http://juliusdavies.ca/2011 /icse/src/
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the outer class’s fingerprint, even in cases where the outer class did not
change (rare, but we observed some instances).

Anchored Class Signature Index, Binary-To-Binary (bin2bin)
Here we use our Bertillonage technique to find matches as described in
section 4.5. For each jar file in our sample we extract the signatures from
the bytecode, and we build a query from these signatures. The query is
configured to only examine matching binary signatures in the corpus.

Anchored Class Signature Index, Binary-To-Source (bin2src)
Again we use our Bertillonage technique to find matches as described in
section 4.5. We examine the bytecode in each jar file, but in this case the
query is configured to examine matching source signatures in the corpus.

We classify matches into one of three quality levels: High Quality (HQ), Low
Quality (LQ), and No Match. We further divide each quality level into sub-
categories that communicate our criteria for evaluating match quality. These
subcategories also allow us to report some cross-tabulated results, so we can
directly compare results between the four matching techniques.

1. High Quality (HQ): To be considered a high quality match, the top-
ranked set of matches (those tied for best similarity score) must contain
one candidate that satisfies one of the following four conditions:

— HQ1. Identical archive: The candidate is a byte-for-byte identical
match, regardless of name or version information encoded in the can-
didate’s name.

— HQ2. Identical contents: The contents of the candidate (class files)
all match byte-for-byte with the contents of the subject. There are
no unmatched contents in either the candidate or the subject. These
matches are considered successful regardless of name or version infor-
mation encoded in the candidate’s name.

— HQ3. Expected match: The candidate’s name and version informa-
tion is identical to the expected name and version information.

— HQ@4. Version off by final digit: The candidate’s name is identical,
and the version information is only different in its final character, e.g.,
a match of ezmorph-1.0.4.jar against ground truth of ezmorph-1.0.6.jar
is considered a high quality match.

2. Low Quality (LQ): Any match that is not classified as high quality is
classified as low quality. We further subdivide low quality matches into two
types:

— LQ@Q1. Version off by many digits: The candidate’s name is identical
but the version information is different, and this difference is not just in
the final digit, e.g., a match of serp-1.13.1.jar against ground truth of
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serp-1.14.1.jar is considered a low quality match. Also matches where
we knew the candidate’s name was an older name for the library are also
classified in this category, e.g. xml-apis-2.0.2-sources.jar was classified
as a LQ1 match against crimson-1.1.3.jar rather than a LQ2 match
because we happened to know the library had changed its name from
‘crimson’ to ‘xml-apis.’

— LQ2. Not useful: The candidate’s name and version information did
not provide information useful for provenance analysis. Due to the an-
chored nature of our signatures, these are not false positives. Remnants
of past cloning, branching, or merging often show up in many of our
queries, but these fragments usually sit near the bottom of the returned
results, with low similarity scores. However, when a hole in our corpus
precludes the correct match, these fragments can achieve the highest
score. We say these results are not useful for provenance analysis. Users
may nonetheless find these results useful for other purposes, such as
evolution, cloning, or descendant analyses.

3. No Match While not technically a type of match, this is an important cat-
egory. In all experimental and case-study results a portion of the sampled
artifacts result in no matches at all.

6.2 Results I: The Experiment

This section reports results of analyzing 945 jar libraries extracted from Debian
6.0 Squeeze to answer the research questions formulated at the beginning of
this section. By treating version and name information encoded in the 945 jar
files as a good approximation of ground truth, we can compare our signature-
based Bertillonage technique against a baseline technique.

Our techniques consider only the top match according to our similarity
metric, as described in Section 4.2. Often the top similarity score is shared
by several artifacts in our corpus. As evidenced by the results, 2-way, 3-way,
and 4-way ties for best similarity are the norm, rather than the exception.
However, to understand what we mean by a tie, we must mention briefly what
we consider a single artifact. Our earlier exploration of the Maven2 corpus (see
Section 5.4) shows surprising redundancy and duplication of archives within
the repository. Users are likely not interested in knowing all two hundred path
locations of an identical artifact. We filter out these duplications and instead
report only ties that either have a different SHA1 binary fingerprint than other
matches in the tie, or a different name.

In some cases choosing a top match based on the inclusion metric rather
than similarity performs better. To keep our experiment simple, we consider
these to be wrong matches. We anticipate future researchers will improve on
our results by tuning the match criteria to factor in both similarity and inclu-
sion scores when selecting the top match, perhaps at a cost of larger ties.
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6.2.1 The Baseline: Binary Fingerprint Matches
shal-of-class/Debian-945 Similarity # of Ties
Type of Match Count | Min Mdn Max Min Mdn Max
HQ1. Identical archive 2|10 1.0 1.0 1 1 1
HQ2. Identical contents 201 | 1.0 1.0 1.0 1 1 35
HQ3. Expected match 131 | 0.014 0.680 0.997 1 1 13
HQ/4. Version off by final digit 49 | 0.033 0.500 0.977 1 1 4
High Quality Matches 383
LQ1. Version off by many digits 85 | 0.001 0.116 0.964 1 25
LQ2. Not useful 22 | 0.003 0.025 0.206 1 1 18
Low Quality Matches 107
No Matches 455
Total Matches: (52%) 490 Average: 0.685 Average: 2.4

Table 3 — The baseline results: matches are based on binary SHA1 fingerprints of the

945 Debian jars.

Tie # | Similarity Version
1. 1.0 plexus-component-annotations-1.0-alpha-1.jar
2.-17. 1.0 alpha-2 - alpha-17
18. 1.0 plexus-component-annotations-1.0-beta-1.jar
19. - 27. 1.0 1.0-beta-2 - 1.0-beta-3.0.6
28. 1.0 | plexus-component-annotations-1.0-beta-3.0.7.jar
29. - 34. 1.0 1.0 - 1.2.1.8
35. 1.0 plexus-component-annotations-1.2.1.4.jar

Table 4 — We found 35 top matches with plexus-component-annotations-1.0-beta-
3.0.7.jar when using binary fingerprint matches. Notice how candidate #28 contains
the same name as the subject archive, hence this match could be classified as ‘HQ3.
Expected Match.” However, we consider all 1.0 similarity matches of SHA1 fingerprints
as ground truth, hence this match’s classification as ‘HQ2. Identical Contents.” A rel-
atively small jar, plexus-component-annotations-1.0-beta-3.0.7.jar contains only

3 classes.

Table 3 shows the results of our baseline technique, a straightforward SHA1
index of jar files and class files. Slighly over half the Debian sample, 490 jars
out of 945 (52%), contained one or more class files that were identical to a class
file in the Maven corpus. Each match returned an average of 2.4 candidates
that tied for top similarity. The match with the most ties among our baseline
results is shown in Table 4. The average score of the 490 best similarity scores

was 0.685.

Only 2 out of the 945 jar files proved to be identical complete archive copies
from the Maven corpus (row HQ1). We suspect the main reason for such a low
match percentage (less than 0.5%) in this category may be Debian’s policy of
recompiling all jar files from original sources. Jar files record timestamps of
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contained files, and Java class files tend to have timestamps set to the moment
they were compiled. This alone will cause Debian jar files to differ, at least
in a few bytes, from their Maven counterparts. A further 201 out of the 945
jar files matched with identical contents (H@2). These 201 matches, while
externally different, were internally identical with respect to contained class
files. Of course the 2 identical jar files also matched according to contents.

A remaining 287 jar files had partial matches, with similarity scores less
than 1.0. Of these, 180 matches, when evaluated against our ground truth,
scored as high quality matches (HQ3 to HQ4), and 107 matches scored as low
quality matches (LQI to LQ2). Finally, for 455 jars, there were no matches
at all using the binary fingerprint technique.

6.2.2 The First Test: Binary-to-Binary Anchored Signature

bin2bin/Debian-945 Similarity # of Ties
Type of Match Count | Min Mdn Max Min Mdn Max
HQ1. Exact (shal of jar) 2|10 1.0 1.0 1 1.5 2
HQ2. Exact (shal of *.class) 201 | 1.0 1.0 1.0 1 3 86
HQ3. Expected match 442 | 0.046 1.0 1.0 1 2 30
HQ/. Version off by final digit 65 | 0.038 0.889 1.0 1 1 23
High Quality Matches 710

LQ1. Version off by many digits 67 | 0.014 0414 1.0 1 1 14
LQ2. Not useful 16 | 0.002 0.027 0.807 1 1 4
Low Quality Matches 83

No Matches 152

Total Matches: (84%) 793 Average: 0.890 Average: 3.5

Table 5 — bin2bin Bertillonage — our signature-based approach applied to 945 Debian
jars.

Match # | Similarity | Inclusion | Match
1. 0.046 | 1.0 javahelp-2.0.05.jar
2. 0.041 | 0.889 javahelp-2.0.02.jar

Table 6 — In this anchored signature example the top match for
jsearch-indexer-2.0.05.dsl.jar had a low similarity score. Only 9
of javahelp-2.0.05.jar’s 195 signatures matched. We classified this as
HQ3. “Expected match,” since it resided inside a Debian package named
javahelp2.2.0.05.ds1-4_all.deb, and so name and version did match as ex-
pected. Because this match also possessed a 1.0 inclusion score, we suspect the Debian
maintainers are splitting a large jar (which exists in Maven) into several smaller jars
(which do not).

Table 5 shows the results of our first Bertillonage test: binary-to-binary
anchored signature matching. In the Debian sample, we found that 793 jars
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out of 945 (84%) contained one or more class files with an identical anchored
signature as a class file in the Maven corpus. Each match returned an average
of 3.5 candidates that tied for top similarity. The average score of the 793
best similarity scores was 0.890. The highest quality match with the lowest
similarity score (0.046) is shown in table 6.

We found that 710 matches, when evaluated against our ground truth,
scored as high quality matches (HQI to HQ/4), and 83 matches scored as low
quality matches (LQI to LQ2). Finally, for 152 jars, there were no matches at
all using anchored signature binary-to-binary matches. In general our Bertillon-
age approach outperformed the baseline, with nearly twice as many high-
quality matches (710 vs. 383), fewer low-quality matches (83 vs. 107), and far
fewer non-matches (152 vs. 455).

As expected, all binary-identical matches also scored 1.0 for signature-
similarity, as shown in the two crosstab rows (HQ1 to HQ2). Any non-perfect
score in these rows would signify a critical bug in our tool, since a binary-
identical class-file should also possess an identical signature. One interesting
difference, however, is the increase in ties in the crosstab rows. The anchored
signature approach exhibited a higher median (3 vs. 1), a higher maximum
(86 vs. 35), and the overall average tie rate was also higer (3.5 vs. 2.4). These
differences highlight the tradeoff anchored signature provides: higher recall
(e.g., 793 vs. 450 total matches), but in exchange the user must do more work
analyzing the results (3.5 ties to examine vs. 2.4 ties).

6.2.3 The Second Test: Binary-to-Source Anchored Signature

bin2src/Debian-945 Similarity # of Ties
Type of Match Count | Min Mdn Max Min Mdn Max
HQ1. Exact (shal of jar) n/a n/a n/a

HQ2. Exact (shal of *.class)

HQ@3. Expected match 443 | 0.001 1.0 1.0 1 2 s
HQ4. Version off by final digit 84 | 0.018 0.750 1.0 1 1 2
High Quality Matches 527

LQ1. Version off by many digits 109 | 0.001 0.326 1.0 1 1 20
LQ2. Not useful 24 | 0.002 0.136 0.886 1 1.5 20
Low Quality Matches 133

No Matches 285

Total Matches: (70%) 660 Average: 0.773 Average: 2.9

Table 7 — bin2src Bertillonage — our signature-based approach applied to 945 Debian

jars.

Table 7 shows the results of our second Bertillonage test: binary-to-source

anchored signature matching. In the Debian sample, we found that 660 jars
out of 945 (70%) contained one or more class files with an identical anchored
signature as a source file in the Maven corpus. Each match returned an average
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Match # ‘ Similarity ‘ Inclusion ‘ Match
1. ‘ 0.001 ‘ 1.0 ‘ org.apache.ant.source_1.7.1.jar

Table 8 — In this anchored signature binary-to-source example the best (and only)
match for ant-apache-logdj-1.7.1.jar, a jar containing a single class, had an ex-
tremely low similarity score. The source archive contained 791 signatures. We classified
this as HQ3. “Expected match,” since the name and version were correct. We suspect
ant’s own internal build script creates these tiny single-task jar files.

of 2.9 candidates that tied for top similarity. The average score of the 660
best similarity scores was 0.773. The highest quality match with the lowest
similarity score (0.001) is shown in table 8.

We found that 527 matches, when evaluated against our ground truth,
scored as high quality matches (HQ3 to HQ4), and 133 matches scored as low
quality matches (LQI to LQ2). Finally, for 285 jars, there were no matches at
all using anchored signature binary-to-binary matches. In general our binary-
to-source Bertillonage approach outperformed the baseline, with 40% more
high-quality matches (527 vs. 383), fewer non-matches (285 vs. 455), but in-
creased low-quality matches (133 vs. 107).

Debian Sample (945 Jars) Industrial Sample (81 Jars)
Match Quality by Technique: Match Quality by Technique:
100.00% 100.00%
[ - ] — ]

[ Low [ Low
H

0.00%
T T T T T T
identical jar  fingerprint bin2bin bin2src identical jar fingerprint bin2bin bin2src

0.00%

Fig. 7: A comparison of match quality by data set. Left: Debian’s 945 jars.
Right: Industry’s 81 jars. The Industry set receives a boost of 77% binary-
identical matches compared to Debian’s 21%. Aside from this boost, the results
appear similar.

6.3 Results II: Industry Case Study, A Replication

Table 9 shows the results of our three matching techniques for the replicated
case study. The 81 e-commerce jars represent a close approximation of those
found in a proprietary web application. All 81 were downloaded from original
open source project websites directly, or if such was not possible, they were
built from tagged VCS versions. Figure 7 shows these results alongside the
results of the Debian experiment.

A close look at some of the H@Q)4 matches from the case study revealed the
data set includes library versions missing from the corpus’s collection. Table 10
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shal-of-class/Industry-81 Similarity # of Ties
Type of Match Count | Min Mdn Max Min Mdn Max
HQ1. Exact (shal of jar) 54 | 1.0 1.0 1.0 1 2 14
HQ2. Exact (shal of *.class) 91| 1.0 1.0 1.0 1 1 5
HQ3. Expected match 4 | 0.006 0.758 0.965 1 1.5 4
HQ4. Version off by final digit 7 | 0.016 0.500 0.962 1 1 12
High Quality Matches 74
LQ1. Version off by many digits 1 | 0.038 0.038 0.038 1 1
LQ2. Not useful 2 | 0.002 0.031 0.059 1 1 1
Low Quality Matches 3
No Matches 4
Total Matches: (95%) 77 Average: 0.903 Average: 2.8
bin2bin/Industry-81 Similarity # of Ties
Type of Match Count | Min Mdn Max Min Mdn Max
HQ1. Exact (shal of jar) 54 | 1.0 1.0 1.0 1 3 16
HQ2. Exact (shal of *.class) 9|10 1.0 1.0 1 1 9
HQ3. Expected match 6 | 0933 0994 1.0 1 1 2
HQ)4. Version off by final digit 8 | 0.133 0915 1.0 1 1 12
High Quality Matches 7T
LQ1. Version off by many digits 10132 0.132 0.132 1 1 1
LQ2. Not useful 3 | 0.002 0.023 0.068 1 1 1
Low Quality Matches 4
No Matches 0
Total Matches: (100%) 81 Average: 0.926 Average: 3.6
bin2src/Industry-81 Best Match Score # of Matches
Type of Match Count | Min Mdn  Max Min Mdn Max
HQ1. Exact (shal of jar) n/a n/a n/a
HQ2. Exact (shal of *.class)

HQ3. Expected match 41 | 0.168 1.0 1.0 1 1 2
HQ4. Version off by final digit 14 | 0.054 0.865 1.0 1 1 12
High Quality Matches 55

LQ1. Version off by many digits 12 | 0.061 0.491 1.0 1 1 1
LQ2. Not useful 1| 0.068 0.068 0.068 1 1 1
Low Quality Matches 13

No Matches 13

Total Matches: (84%) 68 Average: 0.812 Average: 1.5

Table 9 — These three sub-tables show the results from our industrial case study
replication based on 81 open source jars.

shows these in detail. Unfortunately, two scenarios show that some jar versions
will probably never be found in any corpus:

1. The application developers may choose to use an experimental or “pre-
released” version of a library that is unlikely to appear in any formal corpus.
We observed one example of this in our study (stax-ex-1.2-SNAPSHOT jar).
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2. Developers may download libraries directly from an open source project’s
version control system, for example, should they require a bleeding edge
feature or a particularly urgent fix. In these cases the jar is built directly
from the VCS instead of from an official released version.

Correct jar Close match
(not in corpus) Sim  (from corpus)
jaxws-api-2.1.3.jar 1.0 jaxws-api-2.1.jar
stax-ex-1.2-SNAPSHOT .jar 1.0 stax-ex-1.2.jar
streambuffer-0.5.jar 1.0 streambuffer-0.7.jar

Table 10 — Three matches with similarity=1 were close in version to the correct
(missing) jars.

For 44 of the 81 binary jars (54%), our method found several candidates
in the corpus that tied for best similarity score of 1.0. In all cases the can-
didate set covered a contiguous sequence of versions, as shown in Table 11,
save for holes in the corpus’s collection. Of these 44 tied matches, the exact
match was present for 42 cases. The remaining two cases, xpp3.min-1.1.4.jar
and sun-jaxws-2.1.3-20071218-api.jar, we classified as H(@4 matches. In both
cases an exact match was not present in the corpus.

Similarity to
asm-attrs-2.2.3.jar  Artifacts from corpus

1.0 asm-attrs-2.1.jar
1.0 asm-attrs-2.2.jar
1.0 asm-attrs-2.2.1.jar
1.0 asm-attrs-2.2.3.jar

Table 11 — Example of multiple matches with similarity=1. The exact match is asm-
attrs-2.2.3.jar.

In general the results are similar to our Debian experiment, except in one
respect. Less then 0.3% of the Debian sample are identical jar copies (HQ1).
Whereas in this data set of archives downloaded directly from project web-
sites, rather than recompiled by Debian, the number of identical copies (HQ1)
stands at 54 (67%), with another 9 (11%) identical contents matches (HQ2).
This suggests fingerprint approaches may be particularly useful in industry
settings, at least for binary-to-binary matching. This may be for two reasons.
First, Maven appears to often contain identical copies to those located on the
upstream project websites, and industry developers may be directly download-
ing dependencies from the project sites. Second, industry may be using the
Maven repository to resolve their dependencies, anyway.

Another small difference arises in the binary-to-source results. These re-
sults do not receive any benefit from the “binary-identical boost” described
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in Figure 7, and yet the high-quality matches (HQ3 to HQ4) comprise 68%
of the total, noticeably higher than the 56% found in the Debian sample. We
also note that all of our provenance techniques, including the simple baseline
approaches, enjoyed improved performance when used on the e-commerce jars.
We can also compare the results of our replication against the original
results from our previous report. Compared to the previous report we were
able to achieve one additional match (since the artifact, chiba.jar, had since
appeared in Maven), and in several cases the cardinality of top-matching ties
were reduced. The example shown in Table 12, wicket-ioc-1.4.0.jar, was the
most dramatic reduction in top-matching ties, from 31 ties in our 2011 paper,
compared with 11 ties in this paper. By reducing the number of top-matching
ties, we reduce the amount of additional work end-users of our tools must
employ after-wards, in order to further refine their results to a single match.

Similarity Scores for Case Study (2011) & Replication (2012)
Comparing results for wicket-i0c-1.4.0. jar

Top Matches | 2011 2012
wicket-ioc-1.3.0-beta2.jar | 1.000 | 0.538
wicket-ioc-1.3.7.jar | 1.000 | 0.538
wicket-ioc-1.4-rcl.jar | 1.000 | 1.000
wicket-ioc-1.4.0.jar | 1.000 | 1.000
wicket-ioc-1.4.3.jar | 1.000 | 1.000
wicket-ioc-1.4.8.jar | 1.000 | 0.667

[etc... 26 additional top-ranked 1.000
matches in 2011 case-study omitted]
Total # of Top-Ranked Tied Matches: 31 11

Table 12 — Here we compare a single result from our original 2011 case-study [4]
against the same result in this 2012 replication. With our improved signature-extraction
tool, we are able to narrow the number of ties reported back for wicket-ioc-1.4.0. jar
from 31 ties down to 11 ties. Similarity scores tend to drop off faster as versions diverge
when we analyze jars using our newer signature-extractor.

6.4 Summary of Results

6.4.1 RQ1, How useful is the similarity index for narrowing the search space
to find an original binary archive when provided a subject binary archive?

RQ1: The similarity index is highly useful at narrowing the search space to
find original binary archives, as is the fingerprint index. In fact, the baseline
fingerprint approach produces even narrower search spaces (e.g., 2.4 ties per
result on average compared to 3.5). But the narrower search space comes with
a cost of reduced recall. This trade-off lies at the heart of Bertillonage. In our
study we considered two index approaches: byte-oriented, and Bertillonage-
oriented. Both approaches have important benefits. For example, with the
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byte-oriented approaches, a 1.0 match is authoritative, whereas with our sig-
nature techniques (and presumably any Bertillonage approach), even a 1.0
match could be false, insomuch as provenance is concerned. Since performance
and storage costs imposed by each index are relatively small (both in index
creation, and query execution), a hybrid approach would not impose undue
resource or performance costs. By adopting a hybrid approach, implementors
can benefit from the certainty offered by the byte oriented approaches, while
also enjoying the improved recall and superior match quality we observed in
our Bertillonage approaches.

6.4.2 RQ2, How useful is the similarity index for narrowing the search space
to find an original source archive when provided a subject binary archive?

RQ2: The similarity index is useful the majority of the time to narrow the
search space to find original source archives, although we observed inferior
performance compared to binary-to-binary matching. We suspect two factors
are contributing to the inferior performance.

First, our corpus contains only 1,650,000 Java source files compared to
2,430,000 compiled class files. This results in fewer source archives available
for matching. For example, batik-util-1.6.jar matched no source archives, and
yet for RQ1 the same jar file matched 23 distinct binary archives, ranging
from similarity 1.0 down to 0.005. Second, fundamental problems about source
archives pose difficult obstacles in this area. We often assume a simple 1-for-1
mapping between sources files and binary files, but the reality is more complex.
Techniques such as unit tests, code generation, bytecode manipulation can
thwart the 1-for-1 assumption. Also, metrics based on set similarity have a
hard time when build scripts produce several small binaries instead of a single
large one.

To conclude, our bin2src experiment suggests we can match the sources
the majority of the time, even with an inferior corpus. In future work we
envision employing a better corpus (with fewer holes) so we can better isolate
the fundamental problems of binary-to-source matching.

6.4.3 RQ3, How reliable is the version information stored in a jar file’s
name?

To address RQ3 we took two snapshots of the Maven repository and checked
to see how reliable the file-name could convey the version information of the
archives. We explored the Maven corpus to see if any jars were mislabelled
or were duplicates. We did this by a bitwise comparison of the jar files to
each other and checking for inconsistent file names. 99.1% of the jars were
unique. 0.83% of the corpus was exact duplicates, that is there were multiple
names for the same file. Of the exact duplicated 30.7% did not share the same
project name. Most of these have some version numbering but are not con-
sistently named (abbreviations, license annotations). Many files are identical
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with different names because there was no change in that archive between
versions.

We compared snapshots of Maven at two different times: June 15, 2010
and July 30, 2011. We found that the reliability of Maven had increased by
by 0.03% in terms of duplication. Our first Maven snapshot had 0.86% exact
duplicates while our last snapshot had 0.83% exact duplicates, this reduc-
tion of 0.03% was a statistically significant difference (Student T-test p-value
< 0.001). Thus Maven’s reliability as an authoritative repository has increased
over time. Yet, we have demonstrated that even in a carefully curated reposi-
tory such as Maven, there can be some version ambiguity.

6.5 How Fast Are The Techniques?

Source-to-source analysis of commons-collections-3.2.1-src.zip
(with a = 469) executed in 6.169 seconds:

b | a(\b | similarity | provenance candidates

73 19 0.036 | commons-collections-2.1-sources.jar

76 19 0.036 | commons-collections-2.1.1-sources.jar
249 112 0.185 | commons-collections-3.0-sources.jar
268 201 0.375 | commons-collections-3.1-sources.jar
469 469 1.000 | commons-collections-3.2-src.zip
274 274 0.584 | commons-collections-3.2-sources.jar
274 274 0.584 | commons-collections-3.2.1-sources.jar

b | ab | similarity | clone candidates

1925 274 0.129 | openjpa-all-2.0.0-sources.jar

1925 274 0.129 | openjpa-all-2.0.1-sources.jar

2326 274 0.109 | openjpa-all-2.1.0-sources.jar
101 4 0.007 | commons-beanutils-1.8.0-sources.jar
101 4 0.007 | commons-beanutils-1.8.1-sources.jar
101 4 0.007 | commons-beanutils-1.8.2-sources.jar
101 4 0.007 | commons-beanutils-1.8.3-sources.jar
300 4 0.005 | prettyfaces-jsf2-3.2.1-sources.jar
300 4 0.005 | prettyfaces-jsf2-3.3.0-sources.jar

Table 13 — This analysis of commons-collections-3.2.1-src.zip, a Java source
archive containing 58,000 lines of code, completed in 6.169 seconds on an Intel core-i3
laptop, The top match is an “HQ2” match: the expected version number is off by one
digit (3.2 instead of 3.2.1). These results help us roughly compare performance against
Livieri et al.’s D-CCFinder [20], where analysis of a 47,000 line C project was analyzed
in 40 minutes using 80 Pentium IV computers running in parallel (in 2006). We believe
our results and performance numbers make a strong case for software Bertillonage as
an effective initial approach for clone and provenance analysis.

One of the primary goals of software Bertillonage is to employ fast, light-
weight, and approximate techniques to quickly narrow searches for provenance.
In other words, software Bertillonage queries should take seconds rather than
hours. We compare our approach’s performance to D-CCFinder’s 2006 result
[20], since D-CCFinder illustrates state-of-the-art performance characteristics
of exhaustive clone-detection. Livieri et al. performed two experiments in their
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paper. In the 1st experiment they analysed the complete FreeBSD project for
code-cloning between sub-modules. In the 2nd experiment they indexed the
FreeBSD project, and then analyzed a separate, smaller project, SPARS-J,
to see if any of SPARS-J’s code could be traced back to FreeBSD. The 2nd
experiment is of interest to us, since the aims, design, and execution of that
experiment are similar to our own, although they employ source-to-source
analysis exclusively, whereas our tools also allow binary-to-binary, binary-to-
source, and source-to-binary analysis.

SPARS-J’s source code contained 47,000 lines of C code. D-CCFinder’s
analysis ran in 40 minutes using a customized verison of CCFinder distributed
to 80 Pentrium IV 3.0ghz workstations in a university lab, each configured with
1GB of RAM. Our own tools ran on a single dual-core Intel Core i3 2.26 GHz
laptop with 8GB of RAM. To roughly compare our performance against the
D-CCFinder result, we ran source-to-source analysis using commons-collections-
3.2.1-src.zip, which contains 58,000 lines of Java code, and thus can be con-
sidered similar to SPARS-J in terms of size. Uncompressing the source archive
required 0.171 seconds. Signature extraction of the sources required 5.275 sec-
onds. Running the query took 0.723 seconds. In total the analysis required
6.169 seconds. The results of the query are shown in Table 13. This small
example illustrates software Bertillonage’s strengths: useful results are found
quickly from within a massive set of possible matches. But the results also can
require further analysis: in this case separating the results into “provenance
candidates” and “clone candidates” required human expertise; and realizing
that the 3.2.1-sources.jar match does not contain JUnit tests, whereas the
3.2-src.zip archive does (improving its similarity score), also required addi-
tional analysis.

We also collected performance data on our indexing of Maven2, as well as
our experiments on the Debian and E-Commerce Jars. Our aim in collecting
this data was simply to show that anchored class signatures are fast enough to
be very usable in almost all cases we encountered! We are not trying to prove
any particular run-time complexity of our approach, since the queries involved
are straight-forward database lookups.

As Table 14 suggests, scanning the complete Maven2 repository on the
laptop would require 6 hours to scan the 7,140,000 source files, and 1.5 hours to
scan the 19,780,000 binary files (our current toolset does not skip duplicates).
The binary fingerprint scan would require 20 minutes. The reality, however,
is slower, since these rates do not include time required to decompress zip,
jar, and .tar.gz archives'®. The time required to generate queries is similarly
affected by these rates, since each signature in the query must be first extracted
from the subject archive.

To help us understand our performance data we developed a very simple
model that we believe represents a lower-bound on the amount of work the
database must perform:

14 Unfortunately, we did not instrument our tools to collect unzip timings.
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Signature Type \ Creation Rate, Non-Compressed Files
fingerprint, SHA1 15,250/sec x19,780,000 = 22 mins
anchored class signature, Java bytecode 3,450/sec x19,780,000 = 96 mins
anchored class signature, Java source 330/sec x 7,140,000 = 361 mins

Table 14 — The time it takes to index a corpus, as well as the time needed to generate
subsequent queries, depends partly on the rate at which signatures can be generated.
As this table shows, anchored class signatures for source files are the slowest to create.
Maven contains 19,780,000 class files and 7,140,000 source files.

1. Each signature in the query must be examined against the database’s “sig-
nature” index.

2. Each row in the output must be examined against the database’s “archive”
index.

Presumably the database performs a large amount of intermediate work in-
between these two stages joining various tables and sub-selects, but this simple
model allows us to visualize the performance information we are most inter-
ested in: 1.) How big is the Jar file we are analyzing? 2.) How many matches
did we find? and 3.) How long did it take? Table 15 presents aggregates of our
performance data using this model, and Figures 8 and 9 provide a complete
visualization. We ran all experiments three times, and took an average timing
from the three runs. On our laptop the 1st execution tended to run 4 times
slower than subsequent executions; we suspect this may be due an aggressive
caching policy within the PostgreSQL database engine. Since each run only
executes approximately 4,000 queries, we suspect PostgreSQL is able to cache
significant portions of the results inbetween runs.

Signatures + Results Seconds
Provenance Technique Mdn Avg SD | Mdn Avg SD
fingerprints, shal-of-jar 3.0 2.8 1.1 | 0.254 0.261 0.032
fingerprints, shal-of-classes 57.0 151.8 258.4 | 0.405 0.558 1.058
signatures, bin2bin 79.0 188.8 290.6 | 0.286 0.674 1.483
signatures, bin2src 68.0 151.4 260.5 | 0.240 0.342 0.470

Table 15 — Performance comparison of the 4 techniques processing all jars (945 De-
bian + 81 Industry). All techniques performed very quickly, with bin2bin the slowest,
requiring on average 2/3rds of a second per jar analyzed.

To summarize, anchored class signatures exemplify software Bertillonage:
they are simple, approximate, and significantly faster than exhaustive clone-
detection techniques. And they are effective. With most queries requiring on
average 2/3rds of a second, our anchored class signatures implementation could
be feasibly offered to programmers within an Integrated Develompent Envi-
ronment (IDE) such as Eclipse (e.g., right-click on a jar, click Bertillonage...).
Thanks to previous exhaustive techniques, such as D-CCFinder, it was feasi-
ble for programmers, researchers, and other stakeholders to run clone-analysis
against very large systems. But they needed a strong case to justify the time
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Fig. 8: A closeup on the fastest 75% of the bin2bin queries (divided into quartiles), with
ql=fastest, g2=medium fastest, and g3=medium slowest. We plot execution time against a
combined tally of results returned plus the # of signatures in the query. The tally models a
useful lower-bound on amount of work the database needs to perform.

and resource utilization. With faster light-weight Bertillonage methods, such
as the anchored class signatures offered here, provenance analysis can begin
to support stakeholders who want to know, as opposed to only those who need
to know.

6.6 Threats to Validity

This section discusses the main threats to validity that can affect the studies
we performed.

In particular, threats to construct validity may concern imprecision in the
measurements we performed. Our logic for detecting Java and class files in the
Maven2 repository relied on accurate detection of .java and .class files, as well
as .jar, .ear, .war, .zip, .tar.gz, .tar.bz2, and .tgz archives. No other search
patterns were employed, and thus some archives may have been missed. This
threat is diminished thanks to the very large amount of data we managed to
extract from just those nine search patterns.

Threats to internal validity arise primarily from our technique for verify-
ing a correct match: we visually check the version number in the names of
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Fig. 9: The wide-angle view of the bin2bin query performance (all four quartiles), with
ql=fastest (barely visible), g2=medium fastest, g3=medium slowest, and gq4=slowest. We
plot execution time against a combined tally of results returned plus the # of signatures in
the query. The tally models a useful lower-bound the amount of work the database needs to
perform. The query for aspectjtools-1.6.9.jar in the case study took nearly 22 seconds
to execute on average. It contains 2,810 signatures and its query returns 668 rows.

jars and zip files. To address this threat, we samples 945 jars with known
provenance information from Debian, and we also conducted a thorough byte-
by-byte comparison of all our jars. One threat to internal validity is that we
rely on authoritative file-names instead of other information like tags found in
version control systems (VCSs). We hypothesize that developers involved in
the creation and/or packaging of open source libraries for Debian and for the
Maven2 repository strive to publish correct version information, since depen-
dency management systems rely on such information.

Threats to external validity concern the generalization of our results. Our
sample of 945 Debian jars attempts to minimize this threat, but the Debian
collection may be atypical, for example, most Java developers choose to de-
velop and deploy applications to the Windows platform. Could the Debian
sample be missing jars that are more popular on Windows? We believe the
large size of our Debian sample mitigates this threat. We postulate there is
a strong tradition of platform-independent development within the Java com-
munity. Such a tradition, if it exists, would further lessen the risk of any sig-
nificant body of Windows-specific or Mac-specific Java archives being missed



42 Julius Davies et al.

by our sample. Another threat to our external validity comes from Maven’s
own composition: is Maven’s repository a good sample of open source software
in the Java eco-system? Given its critical position in industry with respect
to Java dependency resolution (even unrelated dependency resolvers such as
Ivy use the Maven2 repository), we believe it is representative. We have one
complaint about its composition: it contains too many alpha, beta, milestone,
and release-candidate artifacts that are likely of little interest to integrators.

7 Discussion

What is provenance? Is name and release number alone a suitable represen-
tation of provenance for our purposes? Suppose a given jar is authoritatively
known to be named foo and to be release z.y.z. Our method assigned the high-
est similarity score to this single candidate, foo-z.y.z.jar, for over 60% of the
subject jars in our case study. But can provenance really be boiled down to
a small sequence of characters, hyphens, digits and dots. Does foo-1.2.8 con-
stitute provenance? This question is important, since our technique assumes
it.

Fortunately, for the majority of the jars in this study, and perhaps for
the majority in “current circulation” among Java developers, this notion of
provenance is sufficient. As a thought experiement, imagine asking random
undergraduate students enrolled in Introduction to Computer Programming
at any university to download the oro-2.0.8.jar Java library. In all likelihood
the vast majority would download the same artifact, even those completely
unfamiliar with Java. Java developers often manage to avoid name and version
collisions among their reusable libraries.

However, for some jars, this notion of provenance is insufficient. The un-
derlying assumption with respect to name and release number is that the com-
bination of these two attributes will always result in a distinct set of software
code, an authoritative snapshot, frozen in time. Among the 81 jars studied,
we observed three challenges to a foo-1.2.8 notion of provenance:

1. Jars that, during their build process, copy classes from other jars. For
example, vreports.jar contains copies of classes from itext.jar.

2. Jars with historically unstable provenance, perhaps due to corporate acqui-
sitions, or even internal restructurings within a company. The Sun/Oracle
jar named xsdlib.jar is an example of this. Various project websites pro-
vide conflicting testimony regarding the jar’s origins. Each of these projects
appears to have taken control of, or at least contributed to, xsdilib.jar’s
development at some point in its history. The answer may very well be
a combination of the projects we observed, which each project contribut-
ing to different phases of xsd1ib.jar’s evolution. In cases such as these, our
Bertillonage results can resemble a hall of mirrors. More expensive analysis
methods, such as sending questions to project mailing lists, or analyzing
version control repositories are required.
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3. Altered jars, e.g., a particular foo-1.2.3.jar, may contain 10 classes, whereas
another jar with the same name and release information may contain only
9 classes. In some cases these 9 are a proper subset of the 10. Perhaps a
user of the library has customized it by adding or removing a class. Which
archive is authoritative in this case? We have examples of this in our data.

In the face of these challenges our Bertillonage approach was surprisingly
fruitful. Our simple Bertillonage metric could readily accommodate #1 (em-
compassed jars). Challenges #2 (unstable provenance) and #3 (altered jars)
always required additional narrowing work, and yet our approach nonetheless
still revealed when these particular challenges were occurring. Rather than
reinforce our initially narrow notions of provenance, thanks to the simplicity
of our metric, and particularly thanks to an immense (and messy) data source
such as Maven2, our study outlined what future provenance research must
tackle.

7.1 A Foundation for Higher Analyses

Developing, deploying, and maintaining software systems can involve many
diverse groups within — and external to — an organization. Each of these
groups may require different knowledge about the software systems they are
involved with. For example, testers, developers, system administrators, sales-
people, managers, executives, auditors, owners, and other stakeholders may
have specific questions they need answered about an organization’s software
assets. A salesperson may have a technically demanding client that insists on
a specific release of a particular library. The security auditor wants to make
sure no libraries or copy-pasted code fragments contain known security holes.
The license auditor wants to know if her license requirements are being ful-
filled. The manager wants to know how risky an upgrade to the latest release
of a popular object-relational database mapping library might be. As noted
in section 6, provenance forms a critical foundation upon which these higher
level analyses rely. Without reliable provenance information in place these
stakeholders cannot even begin to find answers to their questions.

Provenance information is also important to the software developers re-
sponsible for importing and integrating libraries and code fragments into their
software systems. Therefore name and release information is often encoded
directly into an artifact’s file name (e.g., oro-2.0.7.jar). But sometimes de-
velopers may omit the release numbering, or they may mistype it. Also, as
we noted earlier, in some cases an artifact internally encompasses additional
artifacts, rendering the file name inadequate for communicating the versions
of the encompassed releases. For these reasons, higher level analyses cannot
depend on filename alone.

The specific metric we introduced here, anchored signature matching, will
by no means be the final word on software Bertillonage. But we found our
simple metric to be effective. For the 945 Debian jars, arguably an atypically
challenging dataset, our approach was able to supply high quality provenance
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information for over 75% of the subject archives, including complex cases where
an archive encompassed other archives. Of course some manual effort was
required in our case study to narrow all matched candidates to single exact
matches, but the original filename was correct for the majority of these, and
so the manual effort was minimal. Our result minimizes the risk of relying on
filenames exclusively when performing higher level analyses that depend on
provenance. We also note the excellent binary-to-binary results we obtained
can serve as a bridge to improved binary-to-source results: with a single binary
match, manually locating the corresponding source archive (especially in the
open source world) is trivial. This “bridging” idea mitigates the downside of
our inferior binary-to-source results.

Our technique also performed well in a separate informal exercise to de-
termine the moment of a copy-paste of class files. We noticed the developers
of nttpclient.jar, an open source Java library, had posed a question on their
mailing list: when did Google Android developers copy-paste httpclient.jar
classes into android.jar?'® They wanted to know this to evaluate how hard it
would be for Google to import a more recent version of their jar. We employed
our technique to answer the original question on the mailing list, and the
main developer confirmed our result. We initially identified 4.0-betal as the
moment of the copy-paste. The developer asked if we could also test against
4-0_API_FREEZE, an uncommon version he suspected Google had actually
imported. We loaded the FREEZFE release into our index and re-ran our anal-
ysis. This resulted in both 4.0-betal and 4_0_API_FREEZFE being returned as
equally likely matches for android. jar.

We were successful in narrowing the search space for the moment of a copy-
paste to just two versions. In addition, the httpclient.jar exercise motivated
future work. Precedent and subsequent releases diverge with respect to the
cardinality of their intersecting signatures. Our anchored signature match is
not just useful for finding exact matches. It could also prove useful at measur-
ing the distance between versions, which in turn could be useful for performing
risk assessment of releases.

As stated earlier, we performed a license audit and security audit using
the provenance information unearthed from the case study. The results of
these higher analyses proved useful: the license audit pinpointed a jar where
some versions used the GNU Affero license, while other versions used LGPL;
similarly, the security audit located a jar with a known security hole. The
organization found the results from both of these audits valuable, and steps
were taken to address both issues in their application.

8 Conclusion and Future Work

In this paper, we have discussed the problem of determining the provenance
of a software entity. That is, given a library, file, function, or even snippet of

15 See email from Bob Lee to dev@hc.apache.org on 18 Mar 2010 23:47:14 GMT, subject
”Re: HttpClient in Android.”
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code, we would like to be able to determine its origin: was the entity designed
to fit into the design of the system where it sits, or has it been borrowed or
adapted from another entity elsewhere? We argued that determining software
entity provenance can be both difficult and expensive, given that the candi-
date set may be large, there may be multiple or even no true matches, and
that the entities may have evolved in the mean time. Consequently, we intro-
duced the general idea of software Bertillonage: fast, approximate techniques
for narrowing a large search space down to a tractable set of likely suspects.

As an example of software Bertillonage, we introduced anchored signature
matching, a method to determine the provenance of source code contained
within Java archives. We demonstrated the effectiveness of this simple and
approximate technique by means of an empirical experiment performed on
945 jars from the Debian GNU/Linux distribution, and using a corpus drawn
from the Maven2 Java library repository. We found that we were able to re-
liably retrieve high-quality provenance information of contained binary Java
archives if the product was present in our database derived from Maven2,
and in the majority of cases we were able to identify the correct version. If a
sought product was not present in Maven, this was usually quickly obvious.
However, if a product was present we found that identifying the correct ver-
sion was sometimes tricky, requiring detailed manual examination. The use
of anchored signature matching proved to be very effective in eliminating su-
perficially similar non-matches, providing a small result set of candidates that
could be evaluated in detail.

Being able to determine the provenance of software entities is becoming
increasingly important to software developers, IT managers, and the compa-
nies they work for. Often these stakeholders need this information in order to
comply with security standards, licensing and other requirements. Given the
wide ranging nature of the problem, the large candidate sets that must be
examined, and the detailed amount of analysis required to verify matches, we
feel that this is only the beginning of software Bertillonage. We need to design
a wide array of techniques to narrow the search space quickly and accurately,
so that we can then perform more expensive analyses on candidate sets of
tractable size.
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