
TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

The Quest for the Generalized Perfect Numbers

A. V. Lelechenko

Let 𝑛 be a generalized perfect number if 𝜎*(𝑛) = 𝑘𝑛 for an integer 𝑘 and a gen-
eralized sum-of-divisors function 𝜎*. We develop a numerical approach to estimate
the lower bound of generalized perfect numbers with given properties and present an
effective algorithm to find all generalized perfects below given limits. The program,
implementing our algorithm, produces many new, unknown previously samples of
generalized perfects.

Keywords: sum-of-divisors function, perfect number.
MSC 2010: 11Y55, 11Y16, 11N56
UDC: 511

Introduction

We say that function 𝑠 is a generalized sum-of-divisors function if 𝑠 is a multi-
plicative arithmetic function and for prime 𝑝

𝑠(𝑝𝑎) =
∑︁

0≤𝑏≤𝑎
Pr(𝑎,𝑏)

𝑝𝑏,

where Pr is a fixed predicate. Examples of such functions include:

∙ Pr(𝑎, 𝑏) = 1 for all 𝑎 and 𝑏 produces 𝑠 ≡ 𝜎, which is the usual sum-of-divisors
function. See [1, A000396], [2].

∙ Pr(𝑎, 𝑏) = [𝑏 = 𝑎] ∨ [𝑏 = 0] produces the sum-of-unitary-divisors function
𝑠 ≡ 𝜎*. See [1, A002827], [3], [4].

∙ Pr(𝑎, 𝑏) = [binary digits of 𝑏 have zeros in all positions, where 𝑎’s have]
gives us the sum-of-infinitary-divisors function 𝑠 ≡ 𝜎∞. See [1, A007357],
[5], [6].

∙ Pr(𝑎, 𝑏) = [𝑏 divides 𝑎] produces the sum-of-exponential-divisors function
𝜎(𝑒), introduced in [7]. There is also a bunch of other exponential sum-
of-divisors functions, which definitions utilize different modifications of the
concept of divisibility, including 𝜎*(𝑒) for unitary and 𝜎∞(𝑒) for infinitary
divisors [8].

We call integer 𝑛 a generalized ⟨𝑠,𝑚⟩-perfect number, if 𝑠 is a generalized sum-
of-divisors function, 𝑚 > 0 is an integer and 𝑠(𝑛) = 𝑚𝑛.

Here and below letters 𝑝 and 𝑞 denotes prime numbers.
Note that 𝑛 is ⟨𝜎(𝑒),𝑚⟩-perfect if and only if 𝑛/𝛾(𝑛) is ⟨𝑠′,𝑚⟩-perfect for func-

tion 𝑠′ defined by Pr(𝑎, 𝑏) = [𝑏+1 divides 𝑎+1] (so-called reduced or sum-of-modified-
exponential-divisors function), where 𝛾(𝑛) =

∏︀
𝑝|𝑛 𝑝 is an arithmetical kernel of 𝑛.

The same reduction is valid for all other kinds of exponential sum-of-divisors func-
tions.

129

http://taac.org.ua/en/

TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

Our paper is devoted to computation of generalized perfects and addresses
two following questions. First: what can be said about divisibility properties of
“small” (e.g., below 10500) generalized perfects of a given kind? Second: how can
this information be used for effective and exhaustive search of all such perfects 𝑀
canonical representation of which includes only primes < 𝑃 in powers < 𝐴 for given
𝑀 , 𝑃 and 𝐴?

Unfortunately, we are able to deal only with a subclass of generalized sum-of-
divisors functions, namely, functions 𝑠 such that 𝑠(𝑝) = 𝑝 + 1 and Pr(𝑎, 𝑎 − 1) = 0
for 𝑎 > 1. However, this class contains many important and popular functions, e.g.,
all reduced exponential sum-of-divisors functions, sum-of-unitary-divisors functions
and many others.

Divisibility Properties of Generalized Perfects

Let 𝑅 be a finite set of primes. What can be said about lower bound of ⟨𝑠,𝑚⟩-
perfects which are not divisible by any element of 𝑅? In this section we develop an
algorithm, appropriate for automatic computation of such lower bound.

For a fixed 𝑠 let 𝐵 be a polynomial of finite degree such that 𝑠(𝑝𝑎)𝑝−𝑎 ≤ 𝐵(𝑝−1),
𝑎 ≥ 2. Then restriction Pr(𝑎, 𝑎− 1) = 0 implies that 𝐵 can be chosen so that 𝐵(𝑥)
has zero first-degree coefficient and unit zero-degree coefficient:

𝐵(𝑥) = 1 + 𝑂(𝑥2), 𝑥 → 0. (1)

Choose function 𝑏(𝑡) such that 𝑏(𝑡) ≥ max𝜏≥𝑡 𝑠(2
𝜏)2−𝜏 . Trivially one can take

𝑏(𝑡) =

{︃
max(3/2, 𝐵(1/2)) if 𝑡 = 1,

𝐵(1/2) else.

Consider an ⟨𝑠,𝑚⟩-perfect number 𝑛 with canonical representation

𝑛 = 2𝑡
∏︁
𝑝∈𝑃

𝑝
∏︁
𝑞∈𝑄

𝑞𝑎𝑞 ,

where 𝑃 ∩ 𝑄 = {}, (𝑃 ∪ 𝑄) ∩ 𝑅 = {}, 𝑎𝑞 ≥ 2. For any fixed integer 𝑁 (it is
appropriate for applications to take 1 ≤ 𝑁 ≤ 10) we split 𝑃 into disjoint subsets
𝑃 = 𝑃1 ⊔ · · · ⊔ 𝑃𝑁 , where

𝑃𝑘 = {𝑝 ∈ 𝑃 | 𝑝 ≡ −1 (mod 2𝑘), 𝑝 ̸≡ −1 (mod 2𝑘+1)}, 𝑘 = 1, . . . , 𝑁 − 1,

𝑃𝑁 = 𝑃 ∖ 𝑃1 ∖ · · · ∖ 𝑃𝑁−1.

Denote 𝑡𝑘 = |𝑃𝑘|. Now since 𝑠(𝑝) = 𝑝 + 1 ≡ 0 (mod 2) for 𝑝 > 2 we have

𝑠(𝑛) = 𝑠(2𝑡)

𝑁∏︁
𝑘=1

∏︁
𝑝∈𝑃𝑘

(𝑝 + 1)
∏︁
𝑞∈𝑄

𝑠(𝑞𝑎𝑞) ≡ 0 (mod 2
∑︀

𝑘𝑡𝑘),

130

http://taac.org.ua/en/

TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

so 𝑡 + 𝜈2(𝑚) ≥
∑︀𝑁

𝑘=1 𝑘𝑡𝑘, where 𝜈𝑝(𝑛) stands for a maximal power of 𝑝, dividing 𝑛.
Since 𝑛 is ⟨𝑠,𝑚⟩-perfect

𝑚 =
𝑠(𝑛)

𝑛
≤ 𝑏

(︃
𝑁∑︁

𝑘=1

𝑘𝑡𝑘 − 𝜈2(𝑚)

)︃
·
∏︁
𝑘

∏︁
𝑝∈𝑃𝑘

(1 + 𝑝−1)
∏︁
𝑞∈𝑄

𝐵(𝑞−1) ≤

≤ 𝑏

(︃
𝑁∑︁

𝑘=1

𝑘𝑡𝑘 − 𝜈2(𝑚)

)︃
·
∏︁
𝑘

∏︁
𝑝∈𝑃𝑘

1 + 𝑝−1

𝐵(𝑝−1)

∏︁
𝑞∈𝑃⊔𝑄

𝐵(𝑞−1). (2)

The last product in the right-hand side is majorized by
∏︀

𝑞 ̸∈𝑅 𝐵(𝑞−1), which due to
the choice of 𝐵 in (1) converges to a computable constant 𝐶 < ∞. Every product
by 𝑝 ∈ 𝑃𝑘 is majorized by product by first 𝑡𝑘 elements of the set of primes

𝒫𝑘 =
{︁
𝑝 | 𝑝 ≡ −1 (mod 2𝑘), 𝑝 ̸≡ −1 (mod 2𝑘+1),

∀𝑟 ∈ 𝑅 𝑝 ̸≡ −1 (mod 𝑟1+𝜈𝑟(𝑚))
}︁
, 𝑘 = 1, . . . , 𝑁 − 1,

𝒫𝑁 =
{︁
𝑝 | 𝑝 ≡ −1 (mod 2𝑁), ∀𝑟 ∈ 𝑅 𝑝 ̸≡ −1 (mod 𝑟1+𝜈𝑟(𝑚))

}︁
.

Thus condition (2) implies following estimate for the lower bound of 𝑛:

𝑛 ≥ min
𝑡1,...,𝑡𝑁

{︃
2
∑︀𝑁

𝑘=1 𝑘𝑡𝑘−𝜈2(𝑚) ·
𝑁∏︁

𝑘=1

∏︁
𝑝∈𝒫𝑘

𝑝

⃒⃒⃒⃒
⃒

𝑚/𝐶 ≤ 𝑏

(︃
𝑁∑︁

𝑘=1

𝑘𝑡𝑘 − 𝜈2(𝑚)

)︃
·

𝑁∏︁
𝑘=1

∏︁
𝑝∈𝒫𝑘

1 + 𝑝−1

𝐵(𝑝−1)

}︃
,

where
∏︀

𝑝∈𝒫𝑘
denotes a product with index restricted to first 𝑡𝑘 elements of 𝒫𝑘.

The last optimization problem can be solved numerically by brute force, running
over 𝑡1, . . . , 𝑡𝑁 .

An Algorithm for Exhaustive Search

Suppose that we are searching for ⟨𝑠,𝑚⟩-perfects and, utilizing framework from
the previous section, we know, that all “small” (below given 𝑀) of them are divisible
by 𝑝 ∈ 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟|𝑅|}. Usually we obtain that 2 ∈ 𝑅, in many cases 2, 3 ∈ 𝑅
and in several cases we can show that even 2, 3, 5 ∈ 𝑅. We restrict our search to the
numbers built up from primes below some limit 𝑃 in powers below some limit 𝐴.

Let us present the corresponding (presumably new) algorithm:
1. Build a set of “bricks”, which contains all 𝑝𝑎 for 𝑝 ≤ 𝑃 , 𝑎 ≤ 𝐴 such that

𝑠(𝑝𝑎) does not contain prime divisors greater than 𝑃 . We store bricks in an
associative array Bricks, indexed with primes. Element Bricks[𝑝] is a list of
pairs (𝑠(𝑝𝑎)/𝑝𝑎, 𝑝𝑎), where 𝑝𝑎 satisfies mentioned condition.

131

http://taac.org.ua/en/

TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

2. Build a set of initial pillars: Inits is a set of pairs of form⎛⎝1/𝑚 ·
|𝑅|∏︁
𝑘=1

Bricks[𝑟𝑘][𝑎𝑘].fst ,

|𝑅|∏︁
𝑘=1

Bricks[𝑟𝑘][𝑎𝑘].snd

⎞⎠ ,

where each 𝑎𝑘 runs from 1 to the length of Bricks[𝑟𝑘].
3. Feed each pair of Inits into the recursive routine Builder. The latter conse-

quently checks following conditions:
(a) If a ratio in input pair (pair.fst) equals to 1, then the number (pair.snd)

is an ⟨𝑠,𝑚⟩-perfect and it is send to output.
(b) If the numerator of pair.fst is not coprime with pair.snd, then this factor

cannot be cancelled on successive steps, so ⟨𝑠,𝑚⟩-perfect can not have
pair.snd as a unitary divisor. So nothing is sent to output.

(c) Otherwise if the numerator of ratio pair.fst is not equal to 1, choose 𝑝 such
that Bricks[𝑝] is the shortest of all possible 𝑝, which divides the numerator
of pair.fst. If there are several 𝑝 with equal length of Bricks[𝑝], choose the
smallest. Run Builder on each pair of form(︀

pair .fst · Bricks[𝑝][𝑎].fst , pair .snd · Bricks[𝑝][𝑎].snd
)︀

for 𝑎 = 1, . . . ,
⃒⃒
Bricks[𝑝]

⃒⃒
.

(d) The case when the numerator of ratio pair.fst equals to 1 is the tricki-
est one. We cannot continue building a pillar in a way described above.
Instead we should look for ⟨𝑠, 1/pair .fst⟩-perfects, coprime with pair.snd:
each such perfect, multiplied by pair.snd, will produce ⟨𝑠,𝑚⟩-perfect.
We check using the framework from the previous section whether there
are ⟨𝑠, 1/pair .fst⟩-perfects coprime with pair.snd below 𝑀 (usually there
is no). If they are then find them running Builder recursively with 𝑚 =
1/pair .fst .

The proposed algorithm was implemented as a computer program, written in
Haskell. The choice of the language was determined by appropriate abilities of stan-
dard library, concise and idiomatic syntax, which fits well for recursive algorithms,
laziness by default and easy opportunity to run code on multiple cores.

All ratios in the course of algorithm are stored as two associative arrays, each of
them stores canonical representation of numerator and denominator correspondingly.
Such trade-space-for-speed optimization has allowed to increase the speed of com-
putations greatly: we almost completely avoid costly factorization of large numbers,
replacing them with set operations on multisets.

The method of choice of 𝑝 at step (c) is extremely important: it allows to
examine less number of combinations and cut branches earlier.

The source code can be found at https://bitbucket.org/Bodigrim/perfect. The
source code is accompanied by many examples of found ⟨𝑠,𝑚⟩-perfects, some of
which were previously unknown, for different 𝑠 and 𝑚.

132

http://taac.org.ua/en/

TAAC’2014 | Kyiv, Ukraine, http://taac.org.ua

Conclusions

It is worth mentioning that arguments above can be easily transferred on the
class of alternating sum-of-divisors functions. The simplest representative of them
is 𝛽, which is a multiplicative arithmetic function with 𝛽(𝑝𝑎) =

∑︀𝑎
𝑏=0(−1)𝑎−𝑏𝑝𝑏.

Numbers 𝑛 with a property 𝛽(𝑛) = 𝑛/𝑚 are called 𝑚-imperfect. Several examples
of 2-imperfects and 3-imperfects were known before (see [9]), but no examples of
4-imperfects were known. However the proposed algorithm (slightly modified for the
case of imperfects) has found a bunch of 4-imperfects at once.

References

[1] N. J. A. Sloane, ed., The on-line encyclopedia of integer sequences. 2014.
[2] R. L. Sorli, Algorithms in the study of multiperfect and odd perfect numbers.

Ph. D. thesis, University of technology, Sydney, 2003.
[3] C. R. Wall, “The fifth unitary perfect number,” Canad. Math. Bull., vol. 18,

no. 1, pp. 115–122, 1975.
[4] C. R. Wall, “On the largest odd component of a unitary perfect number,” Fib.

Quart., vol. 25, pp. 312–316, 1987.
[5] G. L. Cohen, “On an integer’s infinitary divisors,” Math. Comput., vol. 54,

pp. 395–411, jan 1990.
[6] G. L. Cohen and P. Hagis Jr., “Arithmetic functions associated with the infinitary

divisors of an integer,” Int. J. Math. Math. Sci., vol. 16, no. 2, pp. 373–383, 1993.
[7] M. V. Subbarao, “On some arithmetic convolutions,” in The theory of arithmeti-

cal functions: Proceedings of the Conference at Western Michigan University,
April 29 — May 1, 1971, vol. 251 of Lecture Notes in Mathematics, (Berlin),
pp. 247–271, Springer Verlag, 1972.

[8] N. Minculete and L. Tóth, “Exponential unitary divisors,” Ann. Univ. Sci. Bu-
dap. Rolando Eötvös, Sect. Comput., vol. 35, pp. 205–216, 2011.

[9] W. Zhou and L. Zhu, “On 𝑘-imperfect numbers,” Integers, vol. 9, no. 1, p. A01,
2009.

Authors

Andrew Wolodymyrowych Lelechenko — the 3rd year postgraduate stu-
dent, Department of Computer Algebra and Discrete Mathematics, Faculty of Math-
ematics, Institute of Mathematics, Economics and Mechanics, I.I. Mechnikov Odessa
National University, Odessa, Ukraine; E-mail: 1@dxdy.ru

133

http://taac.org.ua/en/

	 The Quest for the Generalized Perfect Numbers
	Introduction
	Divisibility Properties of Generalized Perfects
	An Algorithm for Exhaustive Search
	Conclusions
	References
	Authors

