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Abstract

We develop new tools for analyzing matrix multiplication constructions similar to the Coppersmith-
Winograd construction, and obtain a new improved bound on w < 2.372873.

1 Introduction

The product of two matrices is one of the most basic operations in mathematics and computer science. Many
other essential matrix operations can be efficiently reduced to it, such as Gaussian elimination, LUP decom-
position, the determinant or the inverse of a matrix [1]. Matrix multiplication is also used as a subroutine in
many computational problems that, on the face of it, have nothing to do with matrices. As a small sample
illustrating the variety of applications, there are faster algorithms relying on matrix multiplication for graph
transitive closure (see e.g. [1]), context free grammar parsing [21], and even learning juntas [13].

Until the late 1960s it was believed that computing the product C' of two n X n matrices requires
essentially a cubic number of operations, as the fastest algorithm known was the naive algorithm which
indeed runs in O(n?) time. In 1969, Strassen [19] excited the research community by giving the first
subcubic time algorithm for matrix multiplication, running in O(n?8%) time. This amazing discovery
spawned a long line of research which gradually reduced the matrix multiplication exponent w over time. In
1978, Pan [14] showed w < 2.796. The following year, Bini et al. [4] introduced the notion of border rank
and obtained w < 2.78. Schonhage [17] generalized this notion in 1981, proved his 7-theorem (also called
the asymptotic sum inequality), and showed that w < 2.548. In the same paper, combining his work with
ideas by Pan, he also showed w < 2.522. The following year, Romani [15] found that w < 2.517. The first
result to break 2.5 was by Coppersmith and Winograd [9] who obtained w < 2.496. In 1986, Strassen [20]
introduced his laser method which allowed for an entirely new attack on the matrix multiplication problem.
He also decreased the bound to w < 2.479. Three years later, Coppersmith and Winograd [10] combined
Strassen’s technique with a novel form of analysis based on large sets avoiding arithmetic progressions and
obtained the famous bound of w < 2.376 which has remained unchanged for more than twenty years.

In 2003, Cohn and Umans [8] introduced a new, group-theoretic framework for designing and analyzing
matrix multiplication algorithms. In 2005, together with Kleinberg and Szegedy [7], they obtained several
novel matrix multiplication algorithms using the new framework, however they were not able to beat 2.376.

Many researchers believe that the true value of w is 2. In fact, both Coppersmith and Winograd [10]
and Cohn et al. [7] presented conjectures which if true would imply w = 2. Recently, Alon, Shpilka and
Umans [2] showed that both the Coppersmith-Winograd conjecture and one of the Cohn et al. [7] conjectures
contradict a variant of the widely believed sunflower conjecture of Erdos and Rado [12]. Nevertheless, it
could be that at least the remaining Cohn et al. conjecture could lead to a proof that w = 2.



The Coppersmith-Winograd Algorithm. In this paper we revisit the Coppersmith-Winograd (CW) ap-
proach [10]. We give a very brief summary of the approach here; we will give a more detailed account in
later sections.

One first constructs an algorithm A which given Q-length vectors x and y for constant (), computes )
values of the form z, = Zz j Lijkwiyy, say with ;5. € {0, 1}, using a smaller number of products than would
naively be necessary. The values z; do not necessarily have to correspond to entries from a matrix product.
Then, one considers the algorithm A™ obtained by applying A to vectors z, y of length ", recursively n
times as follows. Split = and y into Q subvectors of length Q™ ~'. Then run A on z and y treating them
as vectors of length Q with entries that are vectors of length Q™. When the product of two entries is
needed, use A"~ to compute it. This algorithm A" is called the nth tensor power of A. Its running time is
essentially O(r™) if r is the number of multiplications performed by A.

The goal of the approach is to show that for very large n one can set enough variables x;, y;, z; to 0 so
that running A™ on the resulting vectors = and y actually computes a matrix product. That is, as n grows,
some subvectors 2’ of 2 and 3’ of y can be thought to represent square matrices and when A™ is run on z
and y, a subvector of z is actually the matrix product of 2’ and 3/’

If A™ can be used to multiply m X m matrices in O(r"™) time, then this implies that w < log,, 7", so
that the larger m is, the better the bound on w.

Coppersmith and Winograd [10] introduced techniques which, when combined with previous techniques
by Schonhage [17], allowed them to effectively choose which variables to set to 0 so that one can compute
very large matrix products using A™. Part of their techniques rely on partitioning the index triples i, j, k €
[Q]™ into groups and analyzing how “similar” each group g computation {zrg = >_, .. (; i k)eg Lijk®i¥j }i 18
to a matrix product. The similarity measure used is called the value of the group.

Depending on the underlying algorithm A, the partitioning into groups varies and can affect the final
bound on w. Coppersmith and Winograd analyzed a particular algorithm A which resulted in w < 2.39.
Then they noticed that if one uses A? as the basic algorithm (the “base case”) instead, one can obtain the
better bound w < 2.376. They left as an open problem what happens if one uses A3 as the basic algorithm
instead.

Our contribution. We give a new way to more tightly analyze the techniques behind the Coppersmith-
Winograd (CW) approach [10]. We demonstrate the effectiveness of our new analysis by showing that the
8th tensor power of the CW algorithm [10] in fact gives w < 2.3729. (The conference version of this paper
claimed w < 2.3727, but due to an error, this turned out to be incorrect in the fourth decimal place.)

There are two main theorems behind our approach. The first theorem takes any tensor power A" of a
basic algorithm A, picks a particular group partitioning for A™ and derives a procedure computing formulas
for (lower bounds on) the values of these groups.

The second theorem assumes that one knows the values for A and derives an efficient procedure which
outputs a (nonlinear) constraint program on O(n?) variables, the solution of which gives a bound on w.

We then apply the procedures given by the theorems to the second, fourth and eighth tensor powers of
the Coppersmith-Winograd algorithm, obtaining improved bounds with each new tensor power.

Similar to [10], our proofs apply to any starting algorithm that satisfies a simple uniformity requirement
which we formalize later. The upshot of our approach is that now any such algorithm and its higher tensor
powers can be analyzed entirely by computer. (In fact, our analysis of the 8th tensor power of the CW
algorithm is done this way.) The burden is now entirely offloaded to constructing base algorithms satisfying
the requirement. We hope that some of the new group-theoretic techniques can help in this regard.



Why wasn’t an improvement on CW found in the 1990s?  After all, the CW paper explicitly posed the
analysis of the third tensor power as an open problem.

The answer to this question is twofold. Firstly, several people have attempted to analyze the third tensor
power (from personal communication with Umans, Kleinberg and Coppersmith). As the author found out
from personal experience, analyzing the third tensor power reveals to be very disappointing. In fact no
improvement whatsoever can be found. This finding led some to believe that 2.376 may be the final answer,
at least for the CW algorithm.

The second issue is that with each new tensor power, the number of new values that need to be analyzed
grows quadratically. For the eighth tensor power for instance, 30 separate analyses are required! Prior to
our work, each of these analyses would require a separate application of the CW techniques. It would have
required an enormous amount of patience to analyze larger tensor powers, and since the third tensor power
does not give any improvement, the prospects looked bleak.

Stothers’ work. We were recently made aware of the thesis work of A. Stothers [18] in which he claims an
improvement to w. (More recently, a journal paper by Davie and Stothers provides a more detailed account of
Stothers” work [11]). Stothers argues that w < 2.3737 by analyzing the 4th tensor power of the Coppersmith-
Winograd construction. Our approach can be seen as a vast generalization of the Coppersmith-Winograd
analysis. In the special case of even tensor powers, part of our proof has benefited from an observation of
Stothers” which we will point out in the main text.

There are several differences between our approach and Stothers’. The first is relatively minor: the CW
approach requires the use of some hash functions; ours are different and simpler than Stothers’. The main
difference is that because of the generality of our analysis, we do not need to fully analyze all groups of
each tensor power construction. Instead we can just apply our formulas in a mechanical way. Stothers, on
the other hand, did a completely separate analysis of each group.

Finally, Stothers’ approach only works for tensor powers up to 4. Starting with the 5-th tensor power,
the values of some of the groups begin to depend on more variables and a more careful analysis is needed.

(Incidentally, we also obtain a better bound from the 4th tensor power, w < 2.37293, however we believe
this is an artifact of our optimization software, as we end up solving an equivalent constraint program.)

Acknowledgments. The author would like to thank Satish Rao for encouraging her to explore the matrix
multiplication problem more thoroughly and Ryan Williams for his support. The author is extremely grateful
to Francois Le Gall who alerted her to Stothers’ work, suggested the use of NLOPT, and pointed out that
the feasible solution obtained by Stothers for his 4th tensor power constraint program can be improved to
w < 2.37294 with a different setting of the parameters. Francois also uncovered a flaw in a prior version of
the paper, which we have fixed in the current version. He was also recently able to improve our bound on w
slightly to 2.37287.

Preliminaries We use the following notation: [n] := {1,...,n}, and ([a,]N Y=, N,).
ilie[k) 1.0k

We define w > 2 to be the infimum over the set of all reals  such that n x n matrix multiplication
over Q can be computed in n” additions and multiplications for some natural number n. (However, the CW
approach and our extensions work over any ring.)

A three-term arithmetic progression is a sequence of three integers a < b < csothatb —a = c— b, or
equivalently, a + ¢ = 2b. An arithmetic progression is nontrivial if a < b < c.

The following is a theorem by Behrend [3] improving on Salem and Spencer [16]. The subset A com-
puted by the theorem is called a Salem-Spencer set.



Theorem 1. There exists an absolute constant ¢ such that for every N > exp(c?), one can construct in
poly(N) time a subset A C [N] with no three-term arithmetic progressions and |A| > N exp(—cy/log N).

The following lemma is needed in our analysis.

Lemma 1. Let k be a constant. Let B; be fixed for i € [k]. Let a; for i € [k] be variables such that a; > 0
and ), a; = 1. Then, as N goes to infinity, the quantity

k

<[ai1\Jf\][ie[k]> [15

i=1
is maximized for the choices a; = B;/ 2521 Bj for all i € [k and for these choices it is at least

N

k
> B;| / (N+1)F
j=1

Proof. We will prove the lemma by induction on k. Suppose that £ = 2 and consider
N aN, N1l—-a) _ , N N aN
<aN>x Y Y \an (@/y)"™
where x < y.

When (z/y) < 1, the function f(a) = (]X,) (z/y)*N of a is concave for a < 1/2. Hence its maximum
is achieved when df(a)/da = 0. Consider f(a): itis N!/((aN)!(N(1 — a)))(z/y)*N. We can take the
logarithm to obtain In f(a) = In(N!) + Naln(z/y) — In(aN!) — In((N(1 — a))!). f(a) grows exactly
when aln(z/y) — In(aN!)/N — In(N(1 — a))!/N does. Taking Stirling’s approximation, we obtain

aln(z/y)—In(aN!)/N—In(N(1—a))!/N = aln(z/y)—aln(a)—(1—a) In(1—a)—In N—-O((log N)/N).

Since N is large, the O((log N)/N) term is negligible. Thus we are interested in when g(a) =
aln(z/y) — aln(a) — (1 — a)In(1 — a) is maximized. Because of concavity, for a < 1/2 and z < y,
the function is maximized when dg(a)/0a = 0, i.e. when

0=In(z/y) —In(a) —14+In(1 —a)+ 1 =In(z/y) —In(a/(1 — a)).

Hence a/(1 —a) = z/yandsoa = z/(z + y).

Furthermore, since the maximum is attained for this value of a, we get that for each ¢t € {0,..., N}
we have that (]:7) ztyN—t < (a]]\if) :E“NyN(l_“), and since Zivzo (]X) xtyN =t = (x + y)N, we obtain that for
a=z/(z+y)

()25 > o+ )06+ 1),

Now let’s consider the case £k > 2. First assume that the B; are sorted so that B; < B;;;. Since
>, a; = 1, we obtain

k

(w0 () ) e

z]ie[k} i1 ’]ie[lﬂ i=1
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i1 bfz and the lemma will follow for the

where b; = B;/ >, B;. We will prove the claim for ([ai]]ive [k]) 1"

B; as well. Hence we can assume that ) . b; = 1.
Suppose that we have proven the claim for £ — 1. This means that in particular

N—a1 N

( _‘“N) Hb“f Zk:bj /(N + 1)kt
§=2

]>2

and the quantity is maximized for a; N/(N —a1N) = b;/ > ;55 b; forall j > 2.
—a1N B
Now consider (,, iv )b‘“N (Z? 9 b ) ' . By our base case we get that this is maximized and is at
least (Zk—1 ;)Y /N for the setting a; = b;. Hence, we will get

N

N b N i
[To" = (D b /(N + 1),
<[aije[k]> i =

for the setting a1 = by and for j > 2, a;N/(N — a1 N) = b;/ >~ bj implies a; /(1 — b1) = b;/(1 — b1)
and hence a; = b;. We have proven the lemma. O

1.1 A brief summary of the techniques used in bilinear matrix multiplication algorithms

A full exposition of the techniques can be found in the book by Biirgisser, Clausen and Shokrollahi [6]. The
lecture notes by Bldser [5] are also a nice read.

Bilinear algorithms and trilinear forms. Matrix multiplication is an example of a trilinear form. n x n
matrix multiplication, for instance, can be written as

Z g TikYkjZig»

1,j€[n] ken

which corresponds to the equalities z;; = D ., TiYk; forall 4, j € [n]. In general, a trilinear form has the
form Zz, ik t;jkTiyj 2 Where i, j, k are indices in some range and ¢;;;, are the coefficients which define the
trilinear form; ¢;, is also called a tensor. The trilinear form for the product of a £ x m by an m x n matrix
is denoted by (k, m, n).

Strassen’s algorithm for matrix multiplication is an example of a bilinear algorithm which computes a
trilinear form. A bilinear algorithm is equivalent to a representation of a trilinear form of the following form:

.
S tipriyize =Y O axiz) (O Bryi) O k-
1,5,k A=1 =1 J k

Given the above representation, the algorithm is then to first compute the 7 products Py = (3, axi2i) (3 Br,9;)
and then for each & to compute z;, = Y, 7axPa.
For instance, Strassen’s algorithm for 2 x 2 matrix multiplication can be represented as follows:

(x11y11 + T12y21) 211 + (T11Y12 + T12y22) 212 + (T21Y11 + T22y21)221 + (T21Y12 + T22Y22) 200 =

(x11 + a?22)(3/11 + y22) (211 + 222) + (3?21 + x22)y11(221 - 222) + 3711(y12 — y22)(212 + 222)+



x22(Y21 — y11) (211 + 221) + (211 + 212)Y22(—211 + 212) + (21 — z11) (Y11 + Y12) 222+
(712 — w22) (Y1 + y22)211-

The minimum number of products 7 in a bilinear construction is called the rank of the trilinear form
(or its tensor). It is known that the rank of 2 x 2 matrix multiplication is 7, and hence Strassen’s bilinear
algorithm is optimal for the product of 2 x 2 matrices. A basic property of the rank R of matrix multiplication
is that R((k,m,n)) = R({k,n,m)) = R((m,k,n)) = R((m,n,k)) = R((n,m,k)) = R((n,k,m)).
This property holds in fact for any tensor and the tensors obtained by permuting the roles of the z,y and 2
variables.

Any algorithm for n x n matrix multiplication can be applied recursively & times to obtain a bilinear
algorithm for n* x n* matrices, for any integer k. Furthermore, one can obtain a bilinear algorithm for
(k1ko, m1ma, ning) by splitting the k1 ko X m1me matrix into blocks of size k1 x m; and the myma X ning
matrix into blocks of size m1 xn;. The one can apply a bilinear algorithm for (k2, mo, no) on the matrix with
block entries, and an algorithm for (k1,m1, n1) to multiply the blocks. This composition multiplies the ranks
and hence R(({k1ko, mima,ning)) < R({ky,m1,n1))-R((k2, ma,nz)). Because of this, R((2¥, 2% 2k)) <
(R({2,2,2)))F = 7F and if N = 2%, R((N, N, N)) < 7°82 N = N!°¢27 Hence, w < logy R((N, N, N)).

In general, if one has a bound R({k,m,n)) < r, then one can symmetrize and obtain a bound on
R({kmn, kmn, kmn)) < r3, and hence w < 31ogy,,,, 7-

The above composition of two matrix product trilinear forms to form a new trilinear form is called
the tensor product t; ® to of the two forms ¢1,t2. For two generic trilinear forms ZZ ik tijkwiy;jzk, and
Zi,7 ik tg kT Y 2k their tensor product is the trilinear form

S ikt T VG 2w,
(5, (o)

i.e. the new form has variables that are indexed by pairs if indices, and the coordinate tensors are multiplied.

The direct sum t1 & to of two trilinear forms ¢1, 2 is just their sum, but where the variable sets that they
use are disjoint. That is, the direct sum of Z”k tijkiy; 2k, and Z”k tgjkxiyjzk is a new trilinear form
with the set of variables {x;0, Zi1, Y0, Yj1, 2k0, Zk1 }i,j k-

/
Z tijki0Y502k0 + tijRTilYj12k1-
i?j7k

A lot of interesting work ensued after Strassen’s discovery. Bini et al. [4] showed that one can extend
the form of a bilinear construction to allow the coefficients vy ;, 8 ; and 7, x to be linear functions of the
integer powers of an indeterminate, €. In particular, Bini et al. gave the following construction for three
entries of the product of 2 x 2 matrices in terms of 5 bilinear products:

(x11y11 + T12y21) 211 + (T11y12 + T12y22) 212 + (T21Y11 + T22y21) 221 + O(€) =
(712 + €xa2)yo1 (211 + 6_1221) +x11(y11 + eyi2) (211 + 6_1212)—1-
T12(y11 + yo1 + €ya2)(—€ tz1) + (w11 + 212 + €x21)y11(—€ T212)+
(212 + €21) (Y11 + €eyaz) (€ 212 + € 221),

where the O(¢€) term hides triples which have coefficients that depend on positive powers of e.
The minimum number of products of a construction of this type is called the border rank R of a trilinear
form (or its tensor). Border rank is a stronger notion of rank and it allows for better bounds on w. Most of



the properties of rank also extend to border rank, so that if R((k,m,n)) < r, then w < 3 % logy,,,, 7. For
instance, Bini et al. used their construction above to obtain a border rank of 10 for the product of a 2 x 2 by
a 2 x 3 matrix and, by symmetry, a border rank of 10? for the product of two 12 x 12 matrices. This gave
the new bound of w < 3log;, 10 < 2.78.

Schonhage [17] generalized Bini et al.’s approach and proved his 7-theorem (also known as the asymp-
totic sum inequality). Up until his paper, all constructions used in designing matrix multiplication algorithms
explicitly computed a single matrix product trilinear form. Schonhage’s theorem allowed a whole new fam-
ily of contructions. In particular, he showed that constructions that are direct sums of rectangular matrix
products suffice to give a bound on w.

Theorem 2 (Schonhage’s 7-theorem). If R(@g:1<ki, mi,n;)) < 1 forr > q, then let T be defined as
>4 (kiming)™ = r. Then w < 3.

2 Coppersmith and Winograd’s algorithm

We recall Coppersmith and Winograd’s [10] (CW) construction:

q

q q q
A2 Z(mo + A7) (Yo + Ayi) (20 + Azi) — A7 - (mg + A2 Z i) (yo + A? Z vi) (20 + A2 Z 2i)+

FATP = gA7?) - (20 + Nagr1) (o + A1) (20 + Nzg1) =
q
D (@iyizo + xiyozi + zoyizi) + (Toyozgr1 + ZoYgr120 + Tar190%0) + O(N).
i=1
The construction computes a particular symmetric trilinear form. The indices of the variables are either
0, ¢ + 1 or some integer in [g]. We define

0 ifi=0
p(i)= 1 ifi€]q]
2 ifi=q+1

The important property of the CW construction is that for any triple z;y;zj, in the trilinear form, p(i) +
p(j) + p(k) = 2

In general, the CW approach applies to any construction for which we can define an integer function p
on the indices so that there exists a number P so that for every z;y; 2}, in the trilinear form computed by the
construction, p(i) + p(j) + p(k) = P. We call such constructions (p, P)-uniform.

Definition 1. Let p be a function from [n] to [N]. Let P € [N] A trilinear form ), ;i1 tijiiy; 2 is
(p, P)-uniform if whenever t;;, # 0, p(i) + p(j) + p(k) = P. A construction computing a (p, P)-uniform
trilinear form is also called (p, P)-uniform.

Any tensor power of a (p, P)-uniform construction is (p/, P’) uniform for some p’ and P’. There are
many ways to define p’ and P’ in terms of p and P. For the K -th tensor power the variable indices are length
K sequences of the original indices: x = x[1],...,x[K], v = v[1],...,7[K] and ¢ = ([1],...,¢[K].
Then, for instance, one can pick p’ to be an arbitrary linear combination, p/[x] = ZZK a; - x[], and similarly
Py = ZZK a; - v[i] and p'[¢] = ZZK a; - C[i]. Clearly then P" = P, a;, and the K-th tensor power
construction is (p/, P')-uniform.



In this paper we will focus on the case where a; = 1 for all i € [K], so that for any index ¢ € {x,,(},
Y] = Zf{ [i] and P’ = PK. Similar results can be obtained for other choices of p'.

The CW approach proceeds roughly as follows. Suppose we are given a (p, P)-uniform construction
and we wish to derive a bound on w from it. (The approach only works when the range of p is at least
2.) Let C be the trilinear form computed by the construction and let r be the number of bilinear products
performed. If the trilinear form happens to be a direct sum of different matrix products, then one can just
apply the Schonhage 7-theorem [17] to obtain a bound on w in terms of r and the dimensions of the small
matrix products. However, typically the triples in the trilinear form C' cannot be partitioned into matrix
products on disjoint sets of variables.

The first CW idea is to partition the triples of C' into groups which look like matrix products but may
share variables. Then the idea is to apply procedures to remove the shared variables by carefully setting
variables to 0. In the end one obtains a smaller, but not much smaller, number of independent matrix
products and can use Schonhage’s 7-theorem.

Two procedures are used to remove the shared variables. The first one defines a random hash func-
tion h mapping variables to integers so that there is a large set S such that for any triple x;y;2; with
h(x;), h(y;), h(zx) € S one actually has h(z;) = h(y;) = h(zx). Then one can set all variables mapped
outside of S to 0 and be guaranteed that the triples are partitioned into groups according to what element
of S they were mapped to, and moreover, the groups do not share any variables. Since S is large and h
maps variables independently, there is a setting of the random bits of & so that a lot of triples (at least the
expectation) are mapped into S and are hence preserved by this partitioning step. The construction of S uses
the Salem-Spencer theorem and # is a cleverly constructed linear function.

After this first step, the remaining nonzero triples have been partitioned into groups according to what
element of S they were mapped to, and the groups do not share any variables. The second step removes
shared variables within each group. This is accomplished by a greedy procedure that guarantees that a
constant fraction of the triples remain. More details can be found in the next section.

When applied to the CW construction above, the above procedures gave the bound w < 2.388.

The next idea that Coppersmith and Winograd had was to extend the 7-theorem to Theorem 2 below
using the notion of value V. The intuition is that V- assigns a weight to a trilinear form 7" according to how
“close” an algorithm computing 7" is to an O(n37) matrix product algorithm.

Suppose that for some NN, the Nth tensor power of T ! can be reduced to @7, (ki,mi,n;) by substitu-
tion of variables. Then, as in [10] we introduce the constraint

q 1/N

=1

Furthermore, if 7 is the cyclic permutation of the x,y and z variables in 7', then we also have V.(T') >
(VA(T @ 7T @ ®T)'/3 > (VA(T)Vy (7T Vi (72T)) /3.

We can give a formal definition of V.(T") as follows. Consider all positive integers IV, and all possible
ways o to zero-out variables in the Nth tensor power of 1" so that one obtains a direct sum of matrix products

gfl) (k7,m7,n?). Then we can define

q(o) /N

Vr (T) = lim SUP N 00,0 Z(kfmgnf)q—
1=1

"Tensor powers of trilinear forms can be defined analogously to how we defined tensor powers of an algorithm computing them.



We can argue that for any permutation of the x, y, z variables 7, and any N there is a corresponding per-
mutation of the zeroed out variables o that gives the same (under the permutation 7) direct sum of matrix
products. Hence V,(T) < V,(nT) and since T can be replaced with 7T and 7 with 7—!, we must have
V(T = V,(xT), thus also satisfying the inequality V,(T) > (Vi (T) Vi (xT)Vy(x2T)) /3.

It is clear that values are superadditive and supermultiplicative, so that V(11 ® T3) > V(T1)V(T3)
and VT(Tl D Tg) > VT(Tl) + VT(TQ)

With this notion of value as a function of 7, we can state an extended 7-theorem, implicit in [10].

Theorem 3 ([10]). Let T be a trilinear form such that T = @}_, T; and the T; are independent copies of
the same trilinear form T". If there is an algorithm that computes T by performing at most r multiplications
forr > q, then w < 37 for T given by ¢V.(T') = r.

Theorem 2 has the following effect on the CW approach. Instead of partitioning the trilinear form into
matrix product pieces, one could partition it into different types of pieces, provided that their value is easy
to analyze. A natural way to partition the trilinear form C is to group all triples x;y;z;, for which (i, j, k) are
mapped by p to the same integer 3-tuple (p(i), p(j), p(k)). This partitioning is particularly good for the CW
construction and its tensor powers: in Claim 1 we show for instance that the trilinear form which consists of
the triples mapped to (0, J, K) for any J, K is always a matrix product of the form (1, @, 1) for some Q.

Using this extra ingredient, Coppersmith and Winograd were able to analyze the second tensor power of
their construction and to improve the estimate to the current best bound w < 2.376.

In the following section we show how with a few extra ingredients one can algorithmically analyze an
arbitrary tensor power of any (p, P)-uniform construction. (Amusingly, the algorithms involve the solution
of linear systems, indicating that faster matrix multiplication algorithms can help improve the search for
faster matrix multiplication algorithms.)

3 Analyzing arbitrary tensor powers of uniform constructions

Let K > 2 be an integer. Let p be an integer function with range size at least 2. We will show how to analyze
the KC-tensor power of any (p, P)-uniform construction by proving the following theorem:

Theorem 4. Given a (p, P)-uniform construction and the values for its IKC-tensor power, the procedure in
Figure I outputs a constraint program the solution T of which implies w < 37.

Consider the the K-tensor power of a particular (p, P)-uniform construction. Call the trilinear form
computed by the construction C. Let r be the bound on the (border) rank of the original construction. Then
X is a bound on the (border) rank of C.

The variables in C have indices which are KC-length sequences of the original indices. Moreover, for
every triple z,y,z¢ in the trilinear form and any particular position ¢ in the index sequences, p(x[(]) +
p(v[€]) + p(¢[¢f]) = P. Recall that we defined the extension p of p for the K tensor power as p(¢) =
Zfi 1 p([i]) for index sequence 1), and that the K tensor power is (p, PK)-uniform.

Now, we can represent C' as a sum of trilinear forms XY Z¥, where XY’ ZX only contains the
triples ,y~2¢ in C' for which p maps x to I, v to J and { to K. Thatis, if C' = ), t;irx;y; 2k, then
XIYIZR =30, i ke ptiv=1 ()= Ligk@iyj 2. We refer to I,.J,K as blocks.

Following the CW analysis, we will later compute the value V7 sk (as a function of 7) for each trilin-
ear form X'Y 7 ZK separately. If the trilinear forms X’Y”Z% didn’t share variables, we could just use
Theorem 2 to estimate w as 37 where 7 is given by r* = Y~ Vi k(7).

ijk



. Foreach I, J, K = PK — I — J, determine the value V7 s of the trilinear form
2 j: pli)y=I p(j)=J LijkTiY;Zk, as a nondecreasing function of 7.

. Define variables ayji and a;j for I < J < K =PK -1 —J.
. Form the linear system: for all I, A; = EJ arji,where ajjx = Asort(1JK)-

. Determine the rank of the linear system, and if necessary, pick enough variables
asji to place in .S and treat as constants, so the system has full rank.

. Solve for the variables outside of S in terms of the A; and the variables in S.
. Compute the derivatives pyr jrg/1 K-
. Form the program:

Minimize 7 subject to

& perm(IJK)
K= 1 H aZ‘If{(K yperm(IJK)aryk
T, a7 << \ G LK |

arjK 2> O,GIJK > OfOI‘aHI,J,K
ap gy > 0ifap pr ¢ S and there is some arjx € S, pr i1 > 0,

_perm(IJK) _
aIJK ’ H@I/J/K/%S,pI/J/K/IJK>O(aI/JlK/

= = —perm(I"J' K" Yp s j1 g ~
= H&I/J/K/QS,pI,J/K,IJK<()(aI’J’K’) 1'7k'1JK forall ayji €
> sarjk =y ;aryk forall I( unless one is setting a;jx = arjK).

)perm([’J’K’)pI/J/K/IJK

. Solve the program to obtain w < 37.

(We note that if we only have access to V;jx when they are evaluated at a fixed
T, we can perform the minimization via a binary search, solving each step for a
fixed guess for 7 and decreasing the guess while a feasible solution is found.)

[95)

Figure 1: The procedure to analyze the K tensor power.
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However, the forms can share variables. For instance, XY/ ZX and XY’/ ' 7K' share the x variables
mapped to block I. We use the CW tools to zero-out some variables until the remaining trilinear forms no
longer share variables, and moreover a nontrivial number of the forms remain so that one can obtain a good
estimate on 7 and hence w. We outline the approach in what follows.

Take the N-th tensor power C' of C for large N; we will eventually let N go to co. Now the indices of
the variables of C are N-length sequences of K length sequences. The blocks of CV are N-length sequences
of blocks of C.

We will pick (rational) values A; € [0, 1] for every block I of C, so that Y ; Al = 1. Then we will set
to zero all z, y, z variables of CV the indices of which map to blocks which do not have exactly N - A;
positions of block I for every I. (For large enough N, N - Ay is an integer.) o

For each triple of blocks of CV (I,.J, K) we will consider the trilinear subform of CV, X1y ZK,
where as before CV is the sum of these trilinear forms.

Consider values ay ;g for all valid block triples I, J, K of C which satisfy

Ap = Z arjpr—I1-Jy = Z ajpK—I1-J) = Z a(p.k—1-J)JI
J J J

The values ajjx yvill corregpond to tlle number of index positions ¢ such that any trilinear form X IyJ gk
of CN we have that I[(] = I, J[¢] = J,K[{] = K.
The aj i need to satisfy the following additional two constraints:

1 :ZAI = Z arjK,
I

IJK

and

PIC:3ZI-AI.

We note that although the second constraint is explicitly stated in [10], it actually automatically holds as
a consequence of constraint 1 and the definition of ay g since

3 TA; =) TA;+Y JA;+> KAk =
I I J K
oS Tapyx-1-n+ YD Jaryex-1-n+ > > Kape-s-r)ux =
o J I K J

Z Z(I +J+ (PK—1-J))arspec—1-0) = P’CZQIJ(PICfIfJ) = PK.
I 7 17

Thus the only constraint that needs to be satisfied by the ar i is > ; j x arsx = 1.

Recall that ([Rﬁes) denotes (Rzl R ,RZ‘S‘) where i1,...,i|g are the elements of S. When S is im-

plicit, we only write ([ }]Z ]).
By our choice of which variables to set to 0, we get that the number of C'V block triples which still have
nonzero trilinear forms is

([N]'VAI]> ap3 H(NNazf; )

[(1] IK

11



where the sum ranges over the values ay yx which satisfy the above constraint. This is since the number
of nonzero blocks is ([ NJ'\IQI]) and the number of block triples which contain a particular X block is exactly

I ([N_]Z;‘j;]]) for every partition of Ay into [arsi|s (for K = PK — I —J).

Let X = Z[_auzd I ([NA']Z'I?;}J)' The.cgrrent number .of nonzero bl.ock triples i.s N- ([NJ.\A!]).

Our goal will be to process the remaining nonzero triples by zeroing out variables sharing the same
block until the remaining trilinear forms corresponding to different block triples do not share variables.
Furthermore, to simplify our analysis, we would like for the remaining nonzero trilinear forms to have the
same value.

The triples would have the same value if we fix for each I a partition [a;;x N]; of A7 N: Suppose that
each remaining triple X7Y/ZX has exactly a;jx N positions £ such that I[(] = I, J[{] = J,K[{] = K.
Then each remaining triple would have value at least [ | I.J Vs N by supermultiplicativity.

Suppose that we have fixed a particular choice of the arjx. We will later show how to pick a choice
which maximizes our bound on w.

The number of small trilinear forms (corresponding to different block triples of C*V) is ¥’ - ( [ N ),

N-Af]
where
N’:l_[([ N-Ar )

AV - arkls

Let us show how to process the triples so that they no longer share variables.

Pick M to be a prime which is ©(X). Let S be a Salem-Spencer set of size roughly M 1=0(1) a5 in the
Salem-Spencer theorem. The o(1) term will go to 0 when we let N go to infinity. In the following we’ll let
|S| =M 1=¢ and in the end we’ll let & go to 0, similar to [10]; this is possible since our final inequality will
depend on 1/M /N which goes to 1 as IV goes to oo and € goes to 0.

Choose random numbers wg, wi, . .., wy in {0, ..., M — 1}.

For an index sequence I, define the hash functions which map the variable indices to integers, just as
in [10]:

bo(I) =1/2(wo + Y _(PK — we-I[¢])) mod M.
(=1
Set to 0 all variables with blocks mapping to outside 5. B B B
For any triple with blocks 7, J, K in the remaining trilinear form we have that b, (1) + b, (J) = 2b,(K)
mod M. Hence, the hashes of the blocks form an arithmetic progression of length 3. Since S' contains no
nontrivial arithmetic progressions, we get that for any nonzero triple

bx(I_) = by<j) = bz<R)

Thus, the Salem-Spencer set S has allowed us to do some partitioning of the triples.
Let us analyze how many triples remain. Since M is prime, and due to our choice of functions, the =,y
and z blocks are independent and are hashed uniformly to {0, ..., M — 1}. If the I and .J blocks of a triple

12



X1y 7K are mapped to the same value, so is the K block. The expected fraction of triples which remain
is hence
(M'=¢/M) - (1/M), whichis 1 /M T

This holds for the triples that satisfy our choice of partition [a7x].

The trilinear forms corresponding to block triples mapped to the same value in S can still share variables.
We do some pruning in order to remove shared blocks, similar to [10], with a minor change. For each s € S,
process the triples hashing to s separately.

We first process the triples that obey our choice of [a7 sk |, until they do not share any variables. After that
we also process the remaining triples, zeroing them out if necessary. (This is slightly different from [10].)

Greedily build a list L of independent triples as follows. Suppose we process a triple with blocks I, J, K.
If T is among the z blocks in another triple in L, then set to 0 all y variables with block .J. Similarly, if I is
not shared but J or K is, then set all = variables with block I to 0. If no blocks are shared, add the triple to
L.

Suppose that when we process a triple I, J, K, we find that it shares a block, say I, with a triple I, J’, K’
in L. Suppose that we then eliminate all variables sharing block .J, and thus eliminate U new triples for some
U. Then we eliminate at least (g) + 1 pairs of triples which share a block: the (g) pairs of the eliminated
triples that share block .J, and the pair /, J, K and I, J’, K’/ which share 1.

Since (g) + 1 > U, we eliminate at least as many pairs as triples. The expected number of unordered
pairs of triples sharing an X (or Y or Z) block and for which at least one triple obeys our choice of [as ;]
is

12 ( (a0 0= 0 (g ) om0 e = (T ) ovowera-rmpaaees

Thus at most this many triples obeying our choice of [as ;| have been eliminated. Hence the expected
number of such triples remaining after the pruning is

N / 1+4+¢ / N
([N~A[])N/M [1—N/M+N/(2M)] > ([N-AI]
for some constant C' (depending on how large we pick M to be in terms of X). We can pick values for
the variables w; in the hash functions which we defined so that at least this many triples remain. (Picking
these values determines our algorithm.)

e,

We have that
N - Aj ) ( N - Aj )
max < N < poly(N) max .
[aIJK]1;[ ([N cargklr) T T poly( )[am 1;[ [N -arskl)s
. . _ N-Ap
Hence, we will approximate X by Npyax = maxq, ] I ([N-aUK]J)'

We have obtained

O (v ) fo” poly 37

trilinear forms that do not share any variables and each of which has value []; ; V77 N

N
If we were to set X' = N, we would get 2 ([N'AI ]) 5) trilinear forms instead. We use this setting

poly(N)M

in our analyses, though a better analysis may be possible if you allow Y’ to vary.
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We will see later that the best choice of [arjx] sets arjx = asor(1K) for each I, J, K, where
sort(IJK) is the permutation of IJK sorting them in lexicographic order (so that I < J < K). Since
tensor rank is invariant under permutations of the roles of the x,y and z variables, we also have that
Visk = Vsort(rsx) forall I, J, K. Let perm(I, J, K) be the number of unique permutations of I, J, K.

Recall that  was the bound on the (border) rank of C' given by the construction. Then, by Theorem 2,
we get the inequality

N NY 1

KN > . perm(IJK)-N.aIJK.

b <[N ‘AI]> Nax  poly(INV)Me IT V()
I<J<K

N-A;
[N-arsxls

Let @k be the choices which achieve Ny .y so that Ny =[] 7 ( ) Then, by taking Stirling’s

approximation we get that
~QIJK

a
(N /Ra) N = T
I1JK aIJK

Taking the N-th root, taking N to go to co and ¢ to go to 0, and using Stirling’s approximation we obtain
the following inequality:

ALK perm(IJK)
K > 1 H arjk VpeTm(IJK) aryK .
AA[ arjK I1JK
HI I I<J<K

arjK
If we set ajyx = arjxi, we get the simpler inequality

72 [T (o0 [ ad,
I<J<K I

which is what we use in our application of the theorem as it reduces the number of variables and does not
seem to change the final bound on w by much.

The values Vi are nondecreasing functions of 7, where 7 = w/3. The inequality above gives an
upper bound on 7 and hence on w.

Computing a7y and a;jx. Here we show how to compute the values ayjx forming Ny« and ayjx
which maximize our bound on w.

The only restriction on aj i is that Ay = ZJ arjx = ZJ arjk, and so if we know how to pick az sk,
we can let ayyx vary subject to the constraints » JOIJK = > s arsi- Hence we will focus on computing
QI JK-

Recall that @ s is the setting of the variables a5 which maximizes [], ([ N]z 1kl ) for fixed Aj.

Because of our symmetric choice of the Ay, the above is maximized for drjx = Ggori(17K), Where
sort(IJK) is the permutation of I, J, K which sorts them in lexicographic order.

Let perm(I, J, K) be the number of unique permutations of I, .J, K. The constraint satisfied by the
arjk becomes

1—2/11— Z perm(I,J,K) - arjk.
I<J<K

The constraint above together with @17k = Gsor¢(17K) are the only constraints in the original CW paper.
However, it turns out that more constraints are necessary for K > 2.

14



The equalities A7 = ) jaryi form a system of linear equations involving the variables ayyx and the
fixed values Aj. If this system had full rank, then the aj i values (for ajjx = @sori(17K)) Would be
determined from the A; and hence X would be exactly [[, ([ NA&II/J‘II( ]J), and a further maximization step
would not be necessary. This is exactly the case for K = 2 in [10]. This is also why in [10], setting
arjK = GjjK Wwas necessary.

However, the system of equations may not have full rank. Because of this, let us pick a minimum set S
of variables ayjr (with I < J < K) so that viewing these variables as constants would make the system
(in terms of ag,,4(7.k)) have full rank.

Then, all variables arjx ¢ S would be determined as linear functions depending on the A; and the
variables in S.

Consider the function G of A; and the variables in S, defined as

N - A )
G = .
111 ([N : dIJK:Ia,[JK¢S7 [N : EL[JK}&]‘]KES

G is only a function of {ar;x € S} for fixed {4;};. We want to know for what values of the variables
of S, GG is maximized.

G is maximized when [[,;(a;sxN)! is minimized, which in turn is minimized exactly when F' =
> ryIn((Narjk)!) is minimized, where K = PKC — 1 — J.

Using Stirling’s approximation In(n!) = nlnn — n 4+ O(Inn), we get that F' is roughly equal to

N[Z argr n(aryx) —argx + argx In N + O(log(Narjk)/N)| =
I

NInN + N[Z arjK 111(&[][() —arjK + O(log(NdUK)/N)],
1J
since >, ;arjxk = y,; Ar = 1. As N goes to oo, for any fixed setting of the @ i variables, the
O(log N/N) term vanishes, and F'is roughly N In N+N (>, ; arsx In(arsx)—arsx ). Hence to minimize
F we need to minimize f = (3_;; aryx In(arjrx) — aryx).
We want to know for what values of ajyx, f is minimized. Since f is convex for positive ajjx, it

is actually minimized when 8[3? — =0 for every arjx € S. Recall that the variables not in .S are linear

combinations of those in S.2
Taking the derivatives, we obtain for each ayjx in S:

of _ day yk
— = 1 IR ) ———— .
0 > (@) 5

aa[‘]K I'JK! arjK
We can write this out as
oap yryr
1= H ((_],I/J/K/) daryi .
I/J/K/

Since each variable aj j g in the above equality for ayjx is a linear combination of variables in 5,

_ 86‘I’J’K’ . . .
the exponent pyr /17K = e 1s actually a constant, and so we get a system of polynomial equality
constraints which define the variables in .S in terms of the variables outside of S: for any a; ;i € S, we get

2We could have instead written f = > ;yaruk In(@rsx) and minimized f, and the equalities we would have obtained
would have been exactly the same since the system of equations includes the equation ), ar7x = 1, and although Jf/0a

is > w = > aa”K (In@arsx — 1), the —1 in the brackets would be canceled out: if @oo,px = (1 —
aaooplc Inag,0,PK [)GIIJ/K/
20 (1,0)£(0,0) Q1K ), then —S0ER 00

T 20 (1,0 2£(0,0) B

3001’%

= In(@o,0,rPK)
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arjK - H (dI,J,K,)pI/J’K/IJK —
ap g1t ESP1 g1 k117K >0 (1)
H (C_LI/J,K/)_pI’J’K’IJK‘
ap gy g1 &SP g gt 17k <0
Now, recall that we also have ajjx = Ggor4(17K) SO that we can rewrite Equation 1 only in terms of the
variables with I < J < K without changing the arguments above:

_ 1JK _ 'J K’
az;?"[f(n( ). H (@g g yPermI I Kk =
apr g1 g P11 g1 i1 15K >0 2)
H ((_II/J/K/)_pI/J/K/IJerTm(I,JIK/).

ap g g1 &SP gt 17k <0

Given values for the variables not in .S, we can use (2) to get valid values for the variables in S, provided
that for every ajjrx € S and any ajs jr g ¢ S with ppr iy > 0 we have ap j i > 0. Also, given such
values for the variables in .S and the corresponding values for the variables not in S, we obtain values for
the A;. For that choice of the A7, G is maximized for exactly the variable settings we have picked. Now
all we have to do is find the correct values for the variables outside of S and for ajx, given the constraints
Ar=> ,ark.

We cannot pick arbitrary values for the variables outside of S. They need to satisfy the following
constraints:

e the obtained A; satisfy ) ; Ay =1,
e apyrr S = apyx >0,andif pp iy > 0 for some aryi € S, thenayr ygr > 0,
e the variables in .S obtained from Equation 2 are nonnegative.

In summary, we obtain the procedure to analyze the /C tensor power shown in Figure 1.

4 Analyzing the smaller tensors.

Consider the trilinear form consisting only of the variables from the I tensor power of C, with blocks
I,J,K,where I + J + K = P - K. In this section we will prove the following theorem:

Theorem 5. Given a (p, P)-uniform construction C, the procedure in Figure 2 computes the values Vi i
for any tensor power of C.

Recall that the indices of the variables of the KX tensor power of C are K-length sequences of indices
of the variables of C, and that the blocks of the K power are K-length sequences of the blocks of C. Also
recall that if p was the function from [n] to [N] which maps the indices of C' to blocks, then we define p*
to be a function which maps the K power indices 1 to blocks as p*(v)) = >, p(1[f]). We also define
pic © [ = [N as pie(4)[0] = p(v[f]) for each ¢ € [K].

For any I, J, K which form a valid block triple of the K tensor power, we consider the trilinear form
Tr.; i consisting of all triples 2;y; 2, of the K tensor power of the construction for which p* (i) = I, p*(j) =
J,p*(k) = K. We call an X block i of the K power good if p**(i) = I, and similarly, a Y block j and a Z
block & are good if p*(j) = J and p*(k) = K.
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We will analyze the value Vi ;i of 17 j x. To do this, we first take the XN -th tensor power of 17 j i,
the KN -th tensor power of Tk 7, ; and the K/N-th tensor power of T; i 7, and then tensor multiply these
altogether. By the definition of value, V7 j i is at least the 3KCN-th root of the value of the new trilinear
form.

Here is how we process the CN-th tensor power of 17 j . The powers of Ty 1 ; and T); g r are pro-
cessed similarly.

We pick values X; € [0, 1] for each good block i of the K tensor power of C' so that ) . X; = 1. Set to
0 all « variables except those that have exactly X; - N positions of their (X N-length) index mapped to ¢
by pi, for each good block 7 of the K tensor power of C.

The number of nonzero x blocks is ( 1e ﬁj}gll)

Similarly pick values Y; for the y variables, with ) ;Y; =1, and retain only those with Y;KCN index
positions mapped to j. Similarly pick values Z, for the z variables, with ), Zj = 1, and retain only those
with Z,ICN index positions mapped to k.

The number of nonzero ¥ blocks is ([,C ]’\C,]% b')' The number of nonzero z blocks is ([/c ]’\f]\sz]k)

For each i,j,k that are valid block sequences of the K tensor power of C' such that p* (i) = I, p(j) =
JpMEk) =K = PK—1—J,let ;) be variables such that X; = Z Qijks Y5 = Y ji and Zj, =
D Qijk-

After taking the tensor product of what is remaining of the XN'th tensor powers of 17 j i, Tk 1,7 and
T’ k.1, the number of x, y or z blocks is

' ([KSJ.VXA) (m’%) <vc§]'vzkl>'

The number of block triples which contain a particular x, y or z block is

KNX; KNY; ICN Z,,
-2l (’CNaz k] ) H ([ICNa,-jk]) 11 <[’CN0¢ijk]z‘>’
[aljk]ljk ( J k

where the sum is over the possible choices of «;;j that respect X; = Ej Qijk, Yj = >, ayjk and
Zr =Y, a;ji. We will approximate X as before by

KNX; KNY; KNZ,
Nihax = max ! J > ( >
[cijlije 1:[ <[’CN04ijk]j> 1;[ <[ICNaijk]i ]‘;[ [’CNaijk]i

Let 3;; be the choice of o}, achieving the maximum above. With a slight abuse of notation let c;;;, be

some choice of c;;;, that we will optimize over. Let for this choice of a; 5, X' = [, ([;C’]Cvﬁf;} j) I ( ICIJCV]Z:;C] )T ( IC’?VA;ZZ]Z )

Later we will need T = W /N.«, so let’s see what it looks like as N goes to co. Using Stirling’s
approximation, and the fact that for any fixed j or k, > . aijr = Y, Bijk. and for fixed 4, ) j Qijk =

> Bijk, we get

Bi
Tl/(3ICN) _ ( NG >1/(3ICN) Hzg ﬁz]]z;k
N H agz’ik

max

The number of triples is " - N/,
Set M = O(R) to be a large enough prime greater than X. Create a Salem-Spencer set .S of size roughly
M*'~¢. Pick random values wo, w1, w3, . . ., wicn in {0,..., M — 1}.
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The blocks for z, y, or z variables of the new big trilinear form are sequences of length 3CN; the first
KN positions of a sequence contain x-blocks of the I tensor power, the second IC/N contain y-blocks and
the last /N contain z-blocks of the K tensor power.

For an z-block sequence 4, y-block sequence j and z-block sequence k, we define

3KN
bo(i) = Y wy-ilf] mod M,
/=1

3KN
by(j) = wo+ Y _ we-j[f] mod M,
(=1

3KN
bo(k) =1/2(wo + Y (PK — (we - k[¢]))) mod M.
=1

We then set to 0 all variables that do not have blocks hashing to elements of S. Again, any surviving
triple has all variables’ blocks mapped to the same element of S. The expected fraction of triples remaining
is M'=¢/M? = 1/M*'*e,

As before, we do the pruning of the triples mapped to each element s of S separately. Similarly to
section 3, we greedily zero out variables first processing the triples that map to s and obey the choice of
@k, and then zeroing out any other remaining triples mapping to s. Just as the previous argument, after the
pruning, over all s, we obtain in expectation at least Q(YT'/(M¢ poly(NN))) independent triples all obeying
the choice of ;.

Analogously to before, we will let € go to 0 and so the expected number of remaining triples is roughly
YT/ poly(N). Hence we can pick a setting of the w; variables so that roughly YT'/ poly(N) triples remain.
We have obtained about YT'/ poly (V) independent trilinear forms, each of which has value at least

3}CNOZ,L ik
LI Viiwiiir
/Z:7j7k7p

This follows since values are supermultiplicative.
The final inequality becomes

KN KN KN 3KNay;
3KN . ijk
Vi /a0 (e ) ([KN-YA) (o) TL Vs

1:7j7k7p

1/(3KN)

KN KN KN 3K N,
1/(3KN) 1/Ny ik
Vigr 2 X / Poly(NT) <[ICN-Xi]> ([/CN-)@-]) ([ICN-Z;J) 1;[ Vip) Ll
2,3,K,p

We want to maximize the right hand side, as N goes to oo, subject to the equalities X; = > ; Cijkes

Y; = Zi Qijks Lk = Zi ik, and Zi X, =1.
As l/Nl/N goes to 1, it suffices to focus on

KN KN KN 3KNay;
> 1/(3KN) gk
Vigk 27T <[ICN-X¢]> ([ICN ) Yj]> ([ICN . Zk}) H ‘/%[P]J[PL]?[P]

Z'7]’7’6717

1/(3KN)
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Now, since for any permutation 7 on [K], Hi,y k.p Vilpl,jlpl klp) = Hi,j,k,p Vilr (o) [7 ()], k[ (p)]> WE €an
set X; = Xy (;) for any permutation 7 on the block sequence. Similarly for Y; and Zj. To do this, we set
Qijk = Qr(i),x(j),x(k) Or any permutation 7.

Here we are slightly abusing the notation: whenever 7 is called on a sequence of ' numbers, it returns
the permuted sequence, and whenever 7 is called on a number p from [K], 7(p) is a number from [K].

For a K-length sequence i, let perm(i) denote the number of distinct permutations over 7. For instance,
perm(123) = 6, whereas perm(110) = 3 since there are only three distinct permutations 110, 101, 011.
Similarly, for an ordered list of three K length sequences i, j, k, we let perm(ijk) denote the number of dis-
tinct triples (7(7), 7(j), w(k)) over all permutations 7 on K elements. For instance, perm(001, 220,001) =
3, whereas perm(001,210,011) = 6.

A set of KC-length block sequences is naturally partitioned into groups of sequences that are isomorphic in
this permutation sense. Each group has a representative, namely the lexicographically smallest permutation,
and all representatives are non-isomorphic. Let S; denote the set of group representatives for the set of
K-length sequences the values of which sum to I. (Sy and Sk are defined similarly.)

Similarly, a set of compatible triples of sequences can also be partitioned into groups of triples that are
isomorphic under some permutation and for two triples (4, j, k) and (¢/, 5/, k) in different groups we have
that for every permutation 7, (7(¢), 7(j), 7(k)) # (¢, 5, k’). The groups have representatives, namely the
lexicographically smallest triple in the group, and all representatives are nonisomorphic. Let S? denote the
set of group representatives of the triples the values of which sum to (1, J, K).

Given these definitions, if S = {i1,...,4s}, we can define the notation ( ) as the number

[ri pe?“m (]ies

of ways to split up N items into perm(i;) groups on n;, elements, perm/iz) groups on n;, elements, .

and perm/(is) groups on n;, elements. Whenever S is implicit, we just write (
Then we can rewrite the value inequality as

Vi > TYEN).

( KN )( KN ) ) < KN > H VBICNaijkperm(ijk)
. X ; LY ; . i[p].j[p] k[p]
o - e, perm (@) 0w ipermi)) \pen zpermon) AL

[n; perm 1) )

We now rewrite using Stirling’s approximation:

([/CN : giﬂm(i)]) = (NN TUCN - X,V Xopermt® —

]CICNNICN/(,CICN H(NXi)ICN-Xiperm(i)) _

i

NICN/ H(NXi)ICN-Xiperm(i) _

Hperm(i)lCN-Xiperm(i)NICN/ H(perm(i)NXi)lCN-Xiperm(i) —

7 )

KN-Xiperm (i) N *
. -Xiperm(i
1T permt <[perm<z'>NXz-]@-> '

i
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Similarly, we have

N

([/CN.YIjC,]ZeTm(j)O = Uperm(j)m”pe’"mm([perm(j)Nyj])K, and

<UCN ~ Z;C,]Zermw)]) = lgperm(k)’CN‘kaerm(k) <[P€7“m(]k\:7)NZk]k>K'

For each ijk € S3, set Vijk = HpE[IC] Viipl,jlp),k[p]- Then the inequality becomes

N ; N
> Tl/lC N-X;perm(s) . A\ N-Y;perm(j) .
Viduc 2 T/ L perm(i) permnx) Lm0 vy,

A

-Zyperm N 3Na;; kperm(z]k)
perm(k)N Zxp (’“)< ) . Ve
1;I [perm(k)N Z ] glk_IeSd ik

Now recall that we had a system of equalities X; Z Qijk, Y = Y, Qijk, and Zp, = Y v We
will show that if we restrict ourselves to the equations for ¢ € S, j 6 S,k € Sk and if we replace each
;) with the o variable with an index which is the group representative of the group that 75k is in, then if
we omit any two equations, the remaining system has linearly independent equations. If the system has full
rank, then each ;i can be represented uniquely as a linear combination of the X;, Y}, Z;. Otherwise, we
can pick a minimal number of «;;;, to view as constants (in a set A) so that the system becomes full rank.
Then we can represent all of the remaining c;;;, uniquely as linear combinations of the elements in A and
the X;, Y}, Zj.

The coefficient of each element y € {X;}; U {Y;}; U{Z;},r U A in the linear combination that c; jj, is
represented as is exactly a;1,/0y. Hence, we can rewrite the inequality as

N 3NX erm(ijk)Oa;ji /0X,
VSN > 'rl/IC / N-Xgperm(¢ P J ijk [
I,JJK = [perm(ﬁ)NXg]@ rg[ pGTTrL( ) lj_Ik ijk

N > N Yyperm(£ 3Nnge7"m(ijk)8ai ik/0Yy
| | perm p | | ik J ’
<[p6rm(€) N Yg t) = ik

N N-Zyperm(£) SNngerm(mk )0k /02, 3Nyperm(ijk)do k/ay
<[perm(€)NZg]g) H perm(6)== H Vij ’ H H Viik ’
¢ 0,5,k YEA (4,5,k)eS?

Now, we can maximize the right hand side using Lemma 1 by setting

H V3perm ijk)/perm(€)Oc;i, /00X,

nxy = perm(¢ ik ,

(4,5,k)€S®

3 k) 0)Oa; i, /0Ye
nye = perm(e) [ Vperm O pem©oeo

(3,5,k)€S3
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3perm(ijk)/perm(£)0a;; k/azg
nzy = perm(£ H VW,C !
(i,5,k)es3

nxy = n:ng/Zrmj,n@g = ny/ Znyj,nizz =nzy/ anj and
J J J

perm(i)X; = nz;, perm(j)Y; = ny; and perm(k)Zy, = nzy.
The inequality becomes

I, 8"
Vg 2 H] S
(%) Z]k
1/3 1/3
3pe7”m (ijk)/perm(€)Ooy;ji, /X, 3pe7‘m (ijk)/perm(€)Oo; 1 /OY
> verm(t) [ W, > _verm(t) I
¢ (i.4,k)€S3 ¢ (i.4,k) €53
1/3
3perm(ijk)/perm(€)Oaji/0Z, yperm(zjk)@a”k/ay
> _perm(() H Visk I IT v

The variables in A are not free. They are constrained by the linear constraints that y > 0 foreachy € A,
and oy, > 0 for all a1, ¢ A viewed as linear combinations of the elements of A (recall that all X;, Y}, Zj,
are already fixed).

The variables (3;;;, are also not fixed. Recall that they are the choices that achieve N, for the fixed

choices for X;, Y}, Z;, above. As N grows, [], ([Kljcvj\oféf;]]) I1; ([IC’JCV]Z?,CL) I (UCI?V]\;ZZJEC]Z) is maximized

when [, Bg%" is minimized. Thus we can compute the values f3;; as follows. i

For every «;j;, that we picked to be in A, add the corresponding (3;;;, to a set A. Recall that the 3,
are solutions to the same linear system as tfle ik, ie. Xy = Ej Bijk, Y5 = >, Bijk, and Zj, = Egﬁijk:-
Thus, we immediately get for any f3;;; ¢ A an expression as a linear function of the variables in A, the
exact same linear function that corresponds to «;;;, in terms of the variables in A. Now, to compute 3;;
achieving Ny .« we just form the convex system over the variables in A.

Minimize Hw Bw’ék, subject to 3;j > 0 for all ¢, 7, k.

(Above, for 3y, ¢ A, the LHS of the inequality is the linear function expressing Bijk in terms of the
variables in A.)

Let By =[], 8795 be the optimal value of the convex program above.

ijk
Now, we solve the following program over the variables in A:
Maximize 1
gk
Hz‘j Qiik
1/3 1/3
Ve ik 0)0a;5/0X 3 ik) A/ OY
Zpe’l“m H perm ijk)/perm(€)dov i, /0 X, Zperm(f) H szierm ijk)/perm(€)0a;jz1, /0Y,
(4,5,k)€S3 0 (i,5,k)€S3
1/3
3 k) £)0c; 1 /0Z, ijk)0c; 1, /O .
S permie) [ v o iz L e o
¢ (i,5,k)€S? YeA (i,,k)€S3

o > 0 forall 7, j, k.
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Let By be the solution of the above program. We can now return Vijx > By - Ba.
To finish the proof we need to show that the linear system has linearly independent equations. Here we
do it for the sequences over {0, 1,2} where in each index they sum to 2.

Lemma 2. Suppose that I > 0. Consider the linear system X; = Zj : (i,j,k)eS? a;’:jkaijk, Yi=>,. (i, k) €53 bgjkaijk
and 7, = Zj - (ij k) ES3 cf;-kaijk obtained by taking the system X; = Z Qijk, Y5 = Y, qyji and
Zy = Zj aijk for v € S1,5 € Sy, k € Sk and setting jjr = Qr(i)r(j)n for the permutation 7 that
picks the representative of (i, j, k) in S3.
Then there is a way to omit two equations, one from the equations for X; and one from the equations for
Y, so that the remaining equations over the cjy, for (i,j,k) € S 3 are linearly independent.

In fact, any way to omit an equation for the X; variables and an equation for the Y variables suffices: if
for some choice X;, Y; the remaining equations are linearly dependent, then since X; =, Zj, — Zi,# Xy
andY; = > . Zp — ) /5 Yj» then removing any other X/, Y} would also result in linearly dependent
equations.

Proof. Define k to be a sequence with exactly | /2] twos and one 1 if K is odd, otherwise no ones. Define
J to be a sequence compatible to k that has one 1 and (J —1)/2 twos if J is odd, and two ones and (J —2)/2
twos if J is even. Define i to be the sequence compatible with j and k. Pick the sorting of the sequences so
that (i, j, k) € S®. Omit the equations for X; and Y;.

Now suppose for contradiction that there are coefficients x;,y;, 21, so that for every (i,j,k) € S3,
wiagjk + yjb‘gjk + zkcfjk = 0. We want to show that z; = y; = 2, = O for all ¢, j, k.

We will describe a procedure that takes three compatible sequences 4, j, k, assuming that z; = y; =
2, = 0 and transforming them into new compatible sequences 7', j', k¥’ where k' has one less 2 than k and
the number of 2s in 7 and j did not increase when going to ¢’ and j’. The procedure proceeds by taking one
of the following steps:

1. Suppose there are positions 7, s so that i[r] = j[r] = 1,i[s] = j[s] = 0, k[r] = 0,
leti’ =4, j'[r] = 0,5'[s] = 1,5'[t] = j[t] fort ¢ {r,s}, and K'[r] = K'[s] = 1
t ¢ {r, s}
Note that ¢/, j/, k" are compatible and that 5’ and 7 have the same number of 1s and 2s, so that after
sorting, the equation x; a;, ke +yjrb ik +zkrc g =0 implies that zk/c 1 =0 and hence z;r = 0.

[s] = 2. Then
'It] = k[t] for

2. Suppose there are positions , s, ¢ so that i[r] = 0,i[s] = 1,i[t] = 0, j[r] = 2,j[s] = 0,4[t] = 0, k[r] =

0,k[s] = 1,k[t] = 2. Thenleti =1, j'[r] = 1,j'[s] = 0,5'[t] = 1 and K'[r] = 1L,K'[s] = LK'[t] = 1;
on all other positions j' = j and k' = k.
Note that ¢/, j/, k" are compatible. Consider the compatible ", 7/, k" with i = 4, j"[r] = 1, j"[s] =
L, j"[t] = 0, K"[r] = 1,k"[s] = 0,k"[t] = 2 and k" = k, j” = j otherwise. Since i" = i and since
k" has the same number of 1s and 2s as k, the equation for cv» j» 1 gives y;» = 0. Since i’ = " and
since j’ has the same number of 1s and 2s as j”, the equation for o j v gives zgr = 0.

3. Suppose that there are positions , s, ¢ so that i[r] = 2,i[s] = 0,i[t] = 0, j[r] = 0,5[s] = 1,j[t] = 0,
k[r] = 0,k[s] = 1,k[t] = 2. Then let j' = j, i'[r] = 1,i'[s] = 0,4/'[t] = 1 and K'[r] = 1L,K'[s] =
1,K'[t] = 1; on all other positions ' = ¢ and k¥’ = k.

Note that ¢/, j', k" are compatible. Consider the compatible ", 7/, k" with j” = j,i"[r] = 1,i"[s] =
Ld"t] =0, k"[r] =1,k"[s] = 0,k"[t] = 2 and k" = k, " = i otherwise. Since j” = j and since k"
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has the same number of 1s and 2s as k, the equation for v j» 1 gives x;» = 0. Since j' = j” and
since ¢’ has the same number of 1s and 2s as 7, the equation for v js 1 gives zpr = 0.

Now we show that one of the above steps is always applicable if we keep running the procedure starting
from i, j, k, and as long as k has more than the minimum number of 2s it can possibly have. First, by
construction, j contains at least one 1. The procedure never decreases the number of 1s in 4 and j so that
there is always at least one 1 in j. If there is a 1 in the same position in ¢ and 7, then step 1 can be applied.
Otherwise, wherever j is a 1, ¢ is a 0. If ¢ contains a 2, then step 3 can be applied. If < does not contain a 2,
then 7 contains a 1 since I > 0, and if j contains a 2, then step 2 can be applied. Otherwise, ¢ and j contain
only Os and 1s in distinct positions. However, then k contains the maximum number of 1s that it can have,
and hence the minimum number of 2s. O

4.1 Reducing the number of variables via recursion.

The number of variables in the above approach is roughly the number of triples in S3. Consider the number
of K-length sequences in S;. Each sequence is determined by the number of ways to represent [ as the
sum of K integers from {0, ...,n} and this is no more than I". For every such choice only some choices
of sequences in S are compatible. However, even if we ignore compatibility, the number of triples in 53
is never more than (I.J)" = O((Kn)?"). For the special case of n = 2, P = 2 as in the Coppersmith-
Winograd construction, the only sequences of S; compatible with a sequence s in S are those that have
0 wherever s is 2. Hence the only variability is wherever s is 0 or 1, and so the number of triples in S? is
O(I%J) < O(K3).

Here we consider a recursive approach inspired by an observation by Stothers. We show that this ap-
proach is viable for even tensor powers and that it reduces the number of variables in the value computation
substantially, from O(K?") to O(K?). This is significant even for the case of the Coppersmith-Winograd
construction when the number of variables was ©(K?).

Here we outline the approach. Suppose that we have analyzed the values for some powers K’ and K — K’
of the trilinear form from the construction with X’ < IC. We will show how to inductively analyze the values
for the IC power, using the values for these smaller powers.

Consider the X tensor power of the trilinear form C'. It can actually be viewed as the tensor product of
the K" and K — K’ tensor powers of C'.

Recall that the indices of the variables of the X tensor power of C' are [C-length sequences of indices of
the variables of C'. Also recall that if p was the function which maps the indices of C' to blocks, then we
define p* to be a function which maps the K power indices 1/ to blocks as p*(v)) = 3=, p(¥[¢]).

An index of a variable in the K tensor power of C' can also be viewed as a pair (/,m) such that [ is an
index of a variable in the K’ tensor power of C' and m is an index of a variable in the XC — K’ tensor power
of C. Hence we get that p’*((I,m)) = p¥ (1) + p* X' (m).

For any I, J, K which form a valid block triple of the K tensor power, we consider the trilinear form
Tr, 7, consisting of all triples x;1; 2, of the K tensor power of the construction for which pR@) = 1,p* () =
J,p* (k) = K.

Ty, 1,k consists of the trilinear forms T; ;1 @ T7_; j_; i for all ¢, j, k that form a valid block triple for
the K" power, and such that I — i, J — j, K — k form a valid block triple for the IC — K’ power. Call such
blocks i, j, k good. Then:

Tk = Z Tk @T1— 7—j K —k-
good ijk
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10.

11.

12.

13.

. Define variables a;j, for (i, 7, k) € S® and X;, Y}, Zj forall i, j, k € S.

Form the linear system consisting of

Xi =265 ess perm(ijk) [perm(i) o,

Y, = Zi:(i,j’k)esg; perm(ijk)/perm(j)o i and

Zr = Xiijkess perm(ijk)/perm(k)aijr, where i, j range over elements of Sy and Sy re-
spectively with the lexicographically smallest element of S; and S; omitted, and k ranges over all
elements of Sk .

Determine the rank of the system.

If the system does not have full rank, then pick enough variables c;;, to treat as constants; place
them in a set A.

Solve the system for the variables outside of A in terms of the ones in A and X;, Y

iy Z1,. Now we
have Qi = aijk([Xi}, [Y}L [Xk],y S A)

Let Vijr = ILeix) Vitw).jiw).hlp)- Compute for every £,

perm(ijk) 9%k

nxe = perm(f) H Vv, perm@ oxe

ijk
(,5:k)€S?
gperm(ijk) 9%ijk
— perm(£) Y,
nye = perm(f) H Vi ¢
(i,4,k)€S?

gperm(ijk) Ok

nzy = perm(f) H ‘/;jkPETM(w L .
(i,4,k)€S3

Compute for every variable y € A,

perm(ijk
ny= I Vi
(4,4,k)€S3

day
e

Compute for each a;jj, its setting a;;,(A) as a function of the y € A when perm(¢)X, =
nxe/ Y2, nai, perm(€)Ye = nye/ > ny; and perm(€) Ze = nze/ 3y nzy.

Then set
Vi = (Y na) (3 nye) (3 nzo) ¥ T/ T o
4 Vi 0

yeA ij
as a function of y € A.

Form the following linear constraints L on y € A

y >0forally € A,
al.jk(A) > 0 for every ok ¢ A.

Solve the convex program, and let its solution be Bj:
Minimize [],; a;;;" subject to L.
Solve the program, and let its solution be Bs:

Maximize V/ ;- subject to L.

Return that Vy ;¢ > By - Bs.
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(The sum above is a regular sum, not a disjoint sum, so the trilinear forms in it may share indices.) The
above decomposition of 77 ;x was first observed by Stothers [18, 11].

Let Qijr = Tijr @ T1—i j—j Kk —k- By supermultiplicativity, the value W;;, of Q1. satisfies Wi, >
VijkVi—i j—j k. If the trilinear forms ();;; didn’t share variables, then we would immediately obtain a
lower bound on the value V7 ;i as Zij i VijikVi—i,j—j Kk —k. However, the trilinear forms ;;; may share
variables, and we’ll apply the techniques from the previous section to remove the dependencies.

To analyze the value Vjjx of T7 j i, we first take the /N-th tensor power of 17 j k, the N-th tensor
power of T’k 7 j and the IN-th tensor power of T'; i 7, and then tensor multiply these altogether. By the
definition of value, V7 ; i is at least the 3/N-th root of the value of the new trilinear form.

Here is how we process the N-th tensor power of 17 j ic. The powers of T’k ; y and T'j g 1 are processed
similarly.

We pick values X; € [0, 1] for each block ¢ of the K’ tensor power of C'so that ), X; = 1. Set to 0 all
x variables except those that have exactly X; - N positions of their index which are mapped to (¢, — 7) by
(p’C/,p’C_’C/), for all 7.

The number of nonzero x blocks is ([ N-]X(i]i)‘

Similarly pick values Y; for the y variables, with ;Y; = 1, and retain only those with Y; index
positions mapped to (j,J — j). Similarly pick values Z, for the z variables, with ), Z;, = 1, and retain
only those with Zj, index positions mapped to (k, K — k).

The number of nonzero ¥ blocks is ( [ N.];],j ]7')' The number of nonzero z blocks is ([ N']gk]k)'

For i, j,k = PK' — i — j which are valid blocks of the K’ tensor power of C' with good i, j, k, let o,
be variables such that X; = Zj Qijis Y5 = D aj and Zg, = > .

After taking the tensor product of what is remaining of the Nth tensor powers of 17 j i, Tk 1,7 and
T’ k.1, the number of x, y or z blocks is

FZ(wﬁ@D<wym>QNﬁM)

The number of block triples which contain a particular x, y or z block is

NX; NY; NZ;
= 5 T () TT (e ) T (e )
{aijn} @ Jklj i gkl i ijkle
where the sum is over all the possible choices of a;j. satisfying X; = Zj Qijks Y5 = > ok and Zy =
i Qi

Hence the number of triples is I' - X. As in Section 3, we will focus on a choice for a;;, over which
we will optimize, and let X’ be the value of the summand in X corresponding to the choice ;5. We also let
Bijk be the choice that maximizes N for fixed X;, Y}, Z as N goes to infinity. We will approximate X by

NWZHQﬁi)gQﬁngQﬁﬁﬁ’

since Nyax is within a poly (V) factor of N.

Again, we let T = /Ry ..

Set M = ©(R) to be a large enough prime greater than Y. Create a Salem-Spencer set S of size roughly
M*'~¢. Pick random values wg, w1, ws, . . ., w3y in {0,..., M — 1}.

The blocks for x, y, or z variables of the new big trilinear form are sequences of length 3V; the first N
positions of a sequence contain pairs (i, I — i), the second N contain pairs (7, J — j) and the last N contain
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pairs (k, K — k). We can thus represent the block sequences I of the K tensor power as (I, I2) where I is
a sequence of length 3N of blocks of the K’ power of C' and I is a sequence of length 3N of blocks of the
K — K’ power of C' (the first N are x blocks, the second N are y blocks and the third N are z blocks).

For a particular block sequence I = (I1, I2), we define the hash functions that depend only on I7:

3N
bo(I) = we-L[¢] mod M,
/=1

3N
by(I) =wo+ Y we-L[f] mod M,
/=1

3N
bo(I) = 1/2(wo + > _(PK' = (we - [1[¢]))) mod M.
/=1
We then set to 0 all variables that do not have blocks hashing to elements of S. Again, any surviving
triple has all variables’ blocks mapped to the same element of S. The expected fraction of triples remaining
is M'=¢/M? = 1/M'*¢. This also holds for the triples that have ;) positions in which they look like
xiyl 2k
As before, we do the pruning of the triples mapped to each element of S separately, first zeroing out
triples satisfying the choice for o), and then any remaining ones. The number of remaining block triples
over all elements of S is Q(YTRyay /M) = Q(YT/( poly(N)M?)). Analogously to before, we will
let £ go to 0, and so the expected number of remaining triples is roughly YT'/ poly(/N). Hence we can
pick a setting of the w; variables so that roughly YT'/ poly(N) triples remain. We have obtained about
YT/ poly(N) independent trilinear forms, each of which has value at least

3NOLZ"
T Vi - Vicig—jn)?Noin,
Z-7‘j7’€

This follows since values are supermultiplicative.
The final inequality becomes

e 007 w0 () () (o ) TL0G0 Vi

1/(3N)
N N N i,
Vi > 0Oy (1)) () () TLORs Vi
! J ivjk

We want to maximize the right hand side, as NV goes to oo, subject to the equalities X; = > ; Qijks

Y = >0 Qijhs Zk = D gy 3 Xi = 1, Xy = 32, Bijis Yj = 32, Bijks Zi = D_; Bijk, and subject to
Bijr maximizing N.
As N goes to infinity, N/ goes to 1, and hence it suffices to analyze

N N N
> T1/(BN) A o 3Naji
Visx 21 (V- X3]) \[V - Y;]) \[NV - Z4] i]jlk(Vz,y,k Vieig—jrc—k)""

1/(3N)
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Consider the equalities X; = Zj Qijks Yj = D ji, and Zy, = Y o If we fix X, Y, Zj, over all
1,7, k, this forms a linear system. As in our original analysis, we can remove an equation for some X; and
an equation for some Y}, and we will hope that the remaining equations are linearly independent. This will
not necessarily be the case but we will prove that, with some modification, it is the case when K is even. In
the following let’s assume that the equations are linearly independent.

The linear system does not necessarily have full rank, and so we pick a minimum set A of variables o,
so that if they are treated as constants, the linear system has full rank, and the variables outside of A can be
written as linear combinations of variables in A and of X}, Y}, Zj,.

Now we have that for every a;;i,

N 8aijk
yEAU{Xiqu/ ,Zk/}ilyjlykl

where for all oy, ¢ A we use the linear function obtained from the linear system.
9 z
Let 5ijkz = Z yeA Y 2 Jk . Let W” k= Vi,j,k: . V[_i7J_j7K_k;. Then,

daip Doy, k
Waijk _ WZZ Xi 3; WZ'LX/J 831/] WZk k BZ] W6“k
5,k — "Tijk ijk ijk i,5,k"
aa”k
90Xy — _ nTy
Define nxy =[], ik wk for any /. Set nx, = S, oy
Ba”k Oa”k
imi Yy Zp ; oy — _ NYe T, —
n?eﬁne similarly ny, = []; ik Wi n and nzg = [[; ;& kWi ; k , setting 1y, = S, i and nz, =
14
ZZ’ nzer”

Consider the right hand side of our inequality for Vjx:

e <[NJ-VX4> ([N]-Vifj]) ([N]-Vzu) [Twisi™ =

1,5,k

N yaaz k)
1/(3N) NX NY; NZ vea¥ ™3
0 g T (g T (1 T TS
irJ,
By Lemma 1, the above is maximized for X, = nxy, Y; = nys, and Z, = nz, for all ¢, and for these
settings ([ N].VXI_]) I n:UéVXE, for instance, is essentially (Y, nx,)"/ poly(IV), and hence after taking the
3N'th root and letting NV go to co, we obtain

aak

Vi = (S e [ w e
1,5,k

If A = () and if we pick a;jk = Bijk, then the above gives a complete formula for V; j i Otherwise,
to maximize the lower bound on V7 j x we need to pick values for the variables in A so that the values for
the variables outside of A (which are obtained from our settings of the X;, Y;, Zj, and the values for the A
variables) are nonnegative, and the variables (3;;, maximize X for the fixed values of X;, Y}, Z.

To obtain the values 3;;; we proceed as before. First we put a variable 3; 5, in A iff the corresponding
;1 18 in A. We also then represent the remaining /3;;;, as a linear combination of the variables in A (using
the same linear function as for the corresponding «; ;1 in terms of the variables in A). Then we solve the

following systems.
Ba,b k

V (z )
Let Vigr = (3, nae) 33 nye) 3 (30, nze) /3 Lk Wi,],kyEA o )
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1. a convex program over the variables in A that minimizes ], j ﬂﬁ” * under the linear constraints that

ijk
all ;5 > 0; let the solution of this system be B ;
2. aconcave program that over the variables in A that maximizes Virk /1L j afj,ﬁk
constraints that all c;;;, > 0; let the solution be By;

subject to the linear

Finally, return that Vi > B Bs.

The approach allows us to obtain a procedure similar to the one we had before but with fewer variables.
Next, we proceed to focus on the case when K is even. There we show how to further reduce the number
of variables, now by a constant factor, and in the process to make sure that the linear system defined by the
dependence of the X;, Y}, Z, variables on cj is linearly independent.

4.2 Even tensor powers

Given the approach outlined in the previous subsection, we will outline the changes that occur for even
powers so that we both reduce the number of variables and make sure that the linear system has linearly
independent equations. We prove the following theorem.

Theorem 6. Given a (p, P)-uniform construction C, the procedure in Figure 3 computes lower bounds on
the values Vi ji for any even tensor power K of C, given lower bounds on the values for the KC/2 power.
Hence in O(log K) iterations of the procedure, one can compute lower bounds for the values of any tensor
power which is a power of 2.

To analyze the value Vi i of Ty s, we first take the 2/N-th tensor power (instead of the Nth) of
17,5k, the 2N-th tensor power of T’k 1 ; and the 2N-th tensor power of T; i 7, and then tensor multiply
these altogether. By the definition of value, V7 j ki is at least the 6 N-th root of the value of the new trilinear
form.

Here is how we process the 2/V-th tensor power of 17 i, the powers of Tk 1,y and T'j ¢ 1 are processed
similarly.

We pick values X; € [0, 1] for each block i of the K’ = /2 tensor power of C' so that >, X; = 2 and
X; = Xj_; forevery i < I/2. Set to 0 all x variables except those that have exactly X; - NV positions of
their index which are mapped to (i, I — i) by (p/', p’), for all .

The number of nonzero x blocks is ([N'Xi]i<I/27[N'2)](\Z]i<I/2:2N'XI/2)'

Similarly pick values Y; for the y variables, with Y; = Y;_;, and retain only those with Y index
positions mapped to (j, J — 7). Similarly pick values Z, for the z variables, with Z;, = Zx _j, and retain
only those with Zj, index positions mapped to (k, K — k).

The number of nonzero y blocks is ([ NYily gl N%Z/\J[ /a2 N_Ym). The number of nonzero z blocks is
([N'Zk]k<1</2,[N'QZ]:}MK/Q,?N'ZK/Q)'

For i, j,k = PK' — i — j which are valid blocks of the X’ tensor power of C' let ;. be variables such
that X; = Zj Qjjks YJ = Zl Qijk and Z;, = ZZ Qjjk-

After taking the tensor power of what is remaining of the 2/Nth tensor powers of 17 j k', Tk 1,7 and
T’ k.1, the number of x, y or z blocks is

b= <[N2~]i<i1> ([Nz-j\ifoo ([Nz-]éfd)

The number of triples which contain a particular =, y or z block is now
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10.

11.

12.

. Define variables a5, and X;, Y}, Zj, for all valid triples 4, j, k, i.e. the good triples with ¢ < I /2 andif i = I/2,

then j < J/2.

. Form the linear system consisting of

Xi = ZjEJ(i) Qjjx when 7 < LI/2J,
Yj =2 ic1() Yijx T 2ier(s—j) %i,J—j When j < | J/2], and

Zk = Ziel(k) iyl + ZiEI(K—k) O % K—k fork < K/2 and ZK/2 = 221’61(1(/2) Qv K /2

. If the system does not have full rank, then pick enough variables a;;;, to put in A and hence treat as constants.

. Solve the system for the variables outside of A in terms of the ones in A and X;,Y;, Z;. Now we have

aijr = aige([Xil, [Ys], [Xkl,y € A) forall iz, ¢ A.
Compute for every /,

day iy,

3 ——=1=
nag= [ Wy fort< |I/2] and na|j/s) = 1if I'is odd, nay/s = 1/2if I is even,

i<I/2,5,k
39%ijk
nye = H Wijkayf for ¢ < [J/2], and, ny| ;)2 = 1if Jis odd, ny;/o = 1/2if J is even,
i<1/2,5,k
39%jk 6;;ijk
nzy = H V[/ijkaz’Z for ¢ < K/2and nzg /s = H Wik K2 2.
i<1/2,5,k i<I/2,5,k
. Compute for every variable y € A,
a“‘ijk
ny= [I ViVicig—jm—n) " .
i<I/2,5,k

. Compute for each vy, its setting c;;(A) as a function of the y € A when X, = nay/ Y, nx;, Yo =

nye/ > nyj and Zg = nze/ 3y nzy.

1/3 1/3 1/3

nyY
Mensec @) =2 [ 3] (S o) (8 w) e
(<1/2 <J/2 (<K/2 [T vigi(A)

as a function of y € A.

. Form the linear constraints L on y € A given by

y>0forally € A,
a;jk(A) > 0 for every oy, & A.

Solve the system

Minimize [[,; ijr(A)%*(A) subject to L.
Let the solution be Bj.

Solve the system

Maximize V7, (A) subject to L.

Let the solution be Bs.

Return that V; ;x > By Bs. 29

Figure 3: The procedure to compute V; ;i for even tensor powers.




v=2 1l ([N]\;jjli])? 11 ([N]\;Z]z‘):gm ([N]\Zji]i)2<[]\7]0\é[(j(/gjk]j) ([sz/zik]i> ({NJZ”Z;;//Z)])

Hence the number of triples is I" - N.

Set M = O(R) to be a large enough prime greater than X. Create a Salem-Spencer set .S of size roughly
M1'~¢ and perform the hashing just as before. Then set to 0 all variables that do not have blocks hashing to
elements of S. Again, any surviving block triple has all variables’ blocks mapped to the same element of S.
The expected fraction of block triples remaining is M=% /M? which will be 1/M when we let £ go to 0.

As before, let T = V' /Ry.¢. We let fBiji be the values maximizing the inner summand in N and hence
attaining Np,,x. We let a5 be values we optimize over.

After the usual pruning we have obtained Q(YT'/ poly(/V)) independent trilinear forms, each of which
has value at least

H(Vi,j,k Vi g—jrc—g) Nk,
05,k
where o, are the values maximizing R.

Because of symmetry, a;jx = ay—; j—j Kk, 80 letting Wiix = Vi jx - Vi j—j k—k, We can write the

above as

6N ; 6N« : 3N«
H (Wi jg)o ik H (Wi jge)” " 1238 (W g g9 )™ /27 /2.
i<I/2,j.k J<J/2.k

We can make a change of variables now, so that ay /3 j/2 . 1s halved, and whereever we had «a; /2 5/2,k
before, now we have 2a; 3 j/2 k-
The value inequality becomes

2N 2N 2N
VPl > (T poly(N < >< >( > W ji) OV %,
i<I1/2,5,k
Using Stirling’s approximation, we obtain that the right hand side is roughly

(2N)2N (2N)2N y
(NXpyg) VX172 T i o (N X)X (NY ) VY072 T o (NY)PNY5

(N Zgjp)™ 2 Mi<re/2(NZy)2N 2 i<I/2,5,k "

Taking square roots and restructuring:

N N
VT - 23N—N(X1/2+YJ/2+ZK/2)/2< ) < ) %
[N - Xilicr/2: NX1/2/2) \IN - Yjlj< /2, NY/2/2

[N Zili<rsn NZkp2/2) 1y ik

Because of the symmetry, we can focus only on the variables «; ), for which
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o i <1)/2
e if i =1/2,thenj < .J/2.

A triple (i, j, k) is valid if i and j satisfy the above two conditions and (i, 7, k) is good. When two of the
indices in a triple are fixed (say i, j), we will replace the third index by *. If i < I/2 is fixed, J (i) will refer
to the indices j for which (i, 7, x) is valid. Similarly one can define K (i), I(5),K(j), I(k) and J (k).

We obtain the following linear equations.

Xi =2 jeqq) Qigs Wheni < 1/2and Xpjp = 235 y172) Q1y2ie Yi = Lier(g) Qigs T 2ie1(g—g) Y i
when j < J/2 and Y; = 2 ZieI(J/Q) Qi(g/2)x and Zp = Zie[(k) sk + ZieI(K_k) Q4 K—k for
k< K/2and Zg/, =2 ZieI(K/2) QixK/2-

If we fix X;,Y}, Z, over all ¢ < /2,5 < J/2,k < K/2, this forms a linear system. This linear
system has the property that 3, X; = >, Y; = > Zj, so we focus on the smaller system that excludes
the equations for X|;/5) and Y| j/2). In the following lemma we show that the equations in this system are
linearly independent.

Lemma 3. The linear expressions X; = 3 ¢y Qijefori < [1/2], Yj =37 15y QijatDser(g—j) i, d—jix

Jor j < |J/2), Zi = Y icriry Qisk + Dicr(k—i) Y K~k Jor k < K/2and Zy s = 23 e 1 j2) Qixkc /2
are linearly independent.

Proof. The proof will proceed by contradiction. Let P’ = PK/2. Assume that there are coefficients
ziyj.2, for 0 < @ < |1/2] —1,0 < j < [J/2] — 1, max{0, P — I — J} < k < |k/2], such that
This means that for all valid triples i, j, k, the coefficient in front of a;j; must be 0. Consider the
coefficient in front of a|7/9||/2)(p'—|1/2)—|J/2))- This coefficient is 2| /3|, unless both / and .J are odd.
If both I and J are odd, consider the coefficient in front of a|;/21.7/21(P'—|1/2]—|J/2))- That coefficient is
2| K/2]- Hence, R\K/2] = 0.
Now, we will show by induction that for all £,

T|1/2)—t = Y|J/2|—t = Z|K/2]—t = 0.

The base case is for ¢ = 0. This holds since the system does not contain equations for X |;/2) and Y| /3,
and since we showed that z| g /2| = 0.

Suppose that Ti1/2)—t = Y|J/2|—t = 2|K/2]-t = 0. We will show that Ti1/2]—t—1 = Y|Jj/2|—t—1 =
Z|k/2)—t—1 = 0. Whenever an index for x;,y;,2) is not defined, we can assume that the corresponding
variable is 0.

Suppose that I and J are not both odd.

Consider the coefficient in front of a;j;, fori = [1/2],j = [J/2] -t -1,k =K — (P — |[I/2] —
/2] +t+1) = |K/2] =t — L. Itis y| /o) —t—1 + 2| K/2)—t—1-

Consider the coefficient in front of a;j;, fori = [I/2] -t —1,5 = |J/2],k = K — (P — [1/2] —
LJ/2J +1+ 1) = LK/QJ —t—1.Itis $L]/2J_t_1 + Z\_K/Qj—t—l‘

Consider the coefficient in front of a;;, fori = [I/2| —t -1,k = |[K/2],j =J — (P = [1/2] —
LK/2) +t+1) = [J/2) =t = L Itis @ /941 + YLgj2)—t-1-

Hence,

Ylgj2)—t—1+ 2| Kk/2)—t-1 = T|1/2|—t—1 + 2| K /2| ~t—1 = T|1/2)]—t—1 T Y|J/2)—t—1 = 0.
Therefore, x| 1/2)—t—1 = Y|y/2)—t—1 = 2|K/2)—t—1 = 0.
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Suppose now that both I and J are odd. Then K is even.

Consider the coefficient in front of a;;;, fori = |I1/2] = (I-1)/2,j = [J/2]-t—1 = (J+1)/2—t—1,
k=K—-(PP-(I-1)/)2—(J+1)/2+t+1)=|K/2] —t—1.1Itis YlJ/2|—t—1 T 2| K/2]|—t—1-

Consider the coefficient in front of a;;;, fori = [I/2] —t— 1,5 = [J/2],k = K — (P' — |[I/2] —
[J/2] +t+1)=|K/2] —t—1.1tis T\1/2]—t—1 T Z|K/2]—t—1-

Consider the coefficient in front of a;;;, fori = |I/2] —t—1,k=[K/2],j=J— (P '—(I—-1)/2—
K/2 +t4+ 1) = LJ/2J —t—1.Ttis l’u/gj,t,l + yL]/QJ,tfl.

Hence, again

Ylgj2)—t-1+ 2| Kk/2)—t-1 = T|1/2)—t—1 + 2| K/2|~t—1 = T|1/2)]—t—1 T Y|J/2)—t—1 = 0.
Therefore, xLI/QJ_t_l = y\_J/2J—t—1 = Z[K/Qj—t—l =0. O

Because the equations are linearly independent, the rank of the system is exactly the number of equa-
tions. If the system has full rank, then we can determine each ;i as a linear combination of the X;, Y;, Zj.
Otherwise, we pick a minimum set A of variables o so that if they are treated as constants, the linear
system has full rank and the variables outside of A can be written as linear combinations of variables in A
and of X;, Y}, Z. (The choice of the variables to put in A can be arbitrary.)

Now, we have that for every valid o,

8a-~k
Qijk = Z Y 8Z )

yEAU{XH ]7Zk}1 7,k

where for all o, ¢ A we use the linear function obtained from the linear system.
_ Ok
Let 0;, = ZyEA Y=o Then,

g SNYS, X, 2%k 3Ny, v, “’“ 3N, 7, ik 3
WzggNka]k = vvzgk B ijk ijk Bk P Wi?,’gj‘,vk%k
D0y,
We now define nze = [[;<7/0 ;& Wik X for 0 < |1/2], nx|r/o) = 1if Iis odd and nw |15 = 1/2 if
I is even.
Consider
B N (NXI/z/ )6 dxllj/g NX;)5/2 3NZ[<1/2 Xlag}ek
Fx <[N - Xili<1/2, NXI/2/2) i<I/H2,j,k(W’J’k )/2 Kll/_[%k Wijk :

By Lemma 1, Fly is maximized for X, = nxe/ Y, nxey for £ < I/2and X;/9/2 = nxpsa/ Yy nae.
Then F is essentially (3, na)™ / poly(N).

Ba”k
Define similarly ny, = Hig/g ik Wik 7 for £ < | J/2], ny|j2) = 1if Jis odd and ny) ;o) = 1/2
80‘1]/6 6 0o

if J is even, and nze = [Li<z/2 1 lekazg for ¢ < K/2and nz2 = [li<sajk WZJZZK/Q /2.
We obtain that

ijk

N N N

3N Tigh
Vi = V2N poly(N) | ) nay > e > onze| Jpoly(N) [ Wik vea v :

0<1/2 0<J)2 (<K/2 i<I/2,5.k
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Taking the 3/N-th root and letting N go to oo, we finally obtain

1/3 1/3 1/3

Oajk
Viax 22 Y na > e > n 11 (VigVizig—jac—) 2=vea ¥ ou )1/ (68),
(<I/2 0<J/2 (<K/2 i<I/2,5,k

Now, as N goes to 0o, T/ (ON) goes to [ ], i ik ﬁzzék/afﬁk

To obtain the lower bound on V7, j x we need to pick values for the variables in A, while still preserving
the constraints that the values for the variables outside of A (which are obtained from our settings of the
X1,Y;, Zk and the values for the A variables) are nonnegative. We also need that f3;;;, attain N, given
the settings of the X,Y;, Zx. Since the f3;;;, are solutions of the same linear system as the o;;x, we proceed

as before. We place (31 in A whenever a;jr € A, and express the ;1 ¢ A in terms of the variables in

Bijk

4 ijli

that all 3;;, > 0. This is a convex program over the variables in A. Let the solution of this program be B;.
Then, we maximize

A using the same linear functions as the @;ji. We then minimize [ [, 4, ik 15} subject to the constraints

1/3 1/3 1/3

2 ang Z nye Z nz H (W,j,k‘ﬁfi,ij,K—k)(zyEAyazii;k)/ H @?ﬂik

<12 0<J)2 I<K/2 i<I/2,4k valid 4,5,k

subject to cv;j; > 0. This is only over the variables in A. Let B be the solution here.
Finally, we can output that V; j i > By - Bs.
The procedure is shown in Figure 3.

S Analyzing the CW construction

We can make the following observations about some of the values for any tensor power K. First, Vijx =
Viks = Vikr = Vikjr = Vjrx = Vkrg. For the special case I = 0 we get:

Claim 1. Consider Vjx which is a value for the K = (J + K) /2 tensor power for J < K. Then

(J+K)/2
Vosr > > <b, (J —b)/2,(K — b)/2> ¢

b<J,J=b mod 2

T

Proof. The trilinear form 7pjx contains triples of the form zyxys2: where s and ¢ are K length sequences
so that for fixed s, t is predetermined. Thus, Ty is in fact a matrix product of the form (1, @, 1) where @
is the number of y indices s. Let us count the y indices containing a positions mapped to a 0 block (hence
0s), b positions mapped to a 1 block (integers in [¢]) and L — a — b positions mapped to a 2 block (hence
g+ 1s). The number of such y indices is (a,b,ICKfafb) q°. However, since a-0+1-b+2-(K—a—0b) = J, we
must have J + K — 2a — b = J and a = (K — b)/2. Thus, the number of y indices containing (K — b)/2
0s, b positions in [g] and L —a — b= (J —b)/2 (¢ + 1)s is (b’(Jbe)Tﬁ)[é{b)/Q) q°. The claim follows since
we can pick any b as long as (J — b)/2 is a nonnegative integer. O
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Lemma 4. Consider V1 ; 2x—z—1 for any x and K. For both approaches to lowerbounding Vi ; 2x—z—1,
the number of o1, variables and the number of equations is exactly x + 1. Hence no variables need to be
added to A.

Proof. Wlog, x < 2K —xz — 1sothat z < K.

We first consider the general, nonrecursive approach to computing a lower bound on Vi 4 ox—z—1.

Consider first the number of X, Y,, Z, variables. There is only one X, variable- for the index sequence
that contains a single 1 and all Os otherwise. Consider now the Y, and Z, variables.

Since x < KC, there is an index sequence for the Y, variables for every j ranging from 0 to |x /2| defined
as the sequence with j twos and x — 25 < KU — j ones. For the Z, variables there is an index sequence for
every k defined as the sequence with k twos and 2/C — z — 1 — 2k ones. Since the number of ones must be
at least 0 and at most C — k, we have that 0 < 2K — z — 1 — 2k < K — k and k ranges from C — x — 1 to
K—[(x+1)/2].

The number of equations is hence [z/2| +1+ (K —[(z+1)/2]) - (K—2—1) = [z/2]|+1— [(x+
D2 +x+1=2+1.

Now let’s consider the number of variables ;. Recall, there is only one sequence i, namely the
one with one 1 and all zeros otherwise. Thus, for every sequence j that contains at least one 1, there
are exactly two variables «;;;: one for which the last positions of both 7 and j are 1, and one for which
the last position of j is 0 and the last position of 4 is 1. If x is even, there is a sequence j with no ones
and there is a unique variable «;; for it. Hence the number of «;;j variables is twice the number of Y
variables if x is odd, and that number minus 1 otherwise. That is, if = is odd, the number of variables is
21+ |z/2]) =2(14(x —1)/2) =z + 1, and if z is even, itis 2(1 + |z/2]) — 1 = = + 1. In both cases,
the number of ;i is exactly the number of equations in the linear system.

Now consider the recursive approach with even K. Here the number of X, variables is 1 and the number
of Y, variables is |2/2] + 1. Z, ranges between K —z — 1 and K — [(x + 1) /2] and so the number of these
variables is 1+ | (x+1)/2]. The number of equations in the linear system is thus |z /2| + 14| (z+1)/2]| =
x + 1. The number of «; ;. variables is also z + 1 since all variables have ¢ = 0 and j can vary from 0 to .

O

The calculations for the second tensor power were performed by hand. Those for the 4th and the 8th
tensor power were done by computer (using Maple and C++ with NLOPT). We write out the derivations as
lemmas for completeness.

Second tensor power. We will only give Vjx for I < J < K, and the values for other permutations of
1, J, K follow.

From Claim 1 know that Vpos = 1 and Vj13 = (2¢)7, and Voo = (¢ + 2)7.

It remains to analyze V112. As expected, we obtain the same value as in [10].

Lemma 5. Vi1, > 2%/3¢7 (g3 + 2)1/3,
Proof. We follow the proof in the previous section. Here I = 1, J = 1, K = 2. The only valid variables
are oo and 11, and we have that Zy = aqggo and Z7 = 2ag11.

We obtain nzg = nyo = 1, nz; = Wozl‘{i 2/2 = V81/2 =q% /2 and nzg = Wi, = Vi, = ¢°7.

The lower bound becomes

‘/112 > 2(q67—/2 + q37—)1/3 — 22/3q7(q37 + 2)1/3'
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The program for the second power: The variables are a = ago4,b = agi3,¢ = agee,d = aiis.
Ay = Z(a—l—b)—l-C,Al :2(b—|—d),A2 =2c+d, A3 = 2b, Ay = a.

We obtain the following program (where we take natural logs on the last constraint).

Minimize 7 subject to

q=>3,q€Z,

a,b,c,d >0,

3a+6b+3c+3d =1,
2In(g +2)+ (2(a+b) +c)In(2(a+b) +¢c) +2(b+d)In(2(b + d)) + (2¢ + d) In(2c + d)+
2bIn2b 4+ alna = 6b7In2q + 3crIn(¢* + 2) + dIn(4¢°7 (" + 2)).

Using Maple, we obtain the bound w < 2.37547691273933114 for the values a = .000232744788234356428,b =
.0125062362305418986, ¢ = .102545675391892355, d = .205542440692123102, 7 = .791825637579776975.

The fourth tensor power. From Claim 1 we have, Voos = 1, Voi7 = (; (1_1)/3 (7_1)/2)q1)7 = (4q)7,
4

b\T

Voo = (Xpeapmn mod 2 (b2s)2.(6-5)2)0)7 = (446037, Vozs = (Zpcz ms mod 2 (b 3_0)/2.5-8)2)4") =

4
(12 +4¢°)7, and Vous = (Cp<s p—1 mod 2 (b,(4—b)/2,(47b)/2)qb)7 = (6+12¢° +¢")".
Let’s consider the rest:

Lemma 6. Viis > 2%3(8¢° (¢°" +2) + (2¢)°7)/3.

Proof. Here I = J = 1, K = 6. The variables are agg4 and ag13.

The large variables are Z3 and Z3. The linear system is: Zs = qgo4, Z3 = 20Q013-

We can conclude that ag13 = Z3/2 and agoq = Za.

We obtain nxg = nyy = 1, and nzy = W0304 = (Vi12)® = 4¢°7(¢*" + 2), nz3 = W(?l/gz/2 =
(Vo13Vio3)?/2 = (2¢)%7 /2. The lower bound becomes

Vit > 2(4q37—(q37 + 2) + (2(])67/2)1/3 _ 22/3(8q37—(q37— + 2) + (2q)67—)1/3'

Lemma 7. Vigs > 2%/3(2(¢2 + 2)%™ + (4¢%7(¢*™ + 2)))3((44%7(¢*™ + 2))/(¢® + 2)°7 + (29)7) /3.

Proof. Here I = 1, J = 2 and K = 5. The variables are a4, ag13, g2z and Yy and 2, Zs.

The linear system is as follows: Yy = agoq + 22, 21 = @goe, Z2 = Q13 + Q2.

We solve: Qo4 = Zl, Q22 = Yb — Zl, ap13 = ZQ - }/0 + Zl.

We obtain nzg = 1, ny1 = 1/2, nyo = WiheWors, n21 = Wi WogaWiis, nze = Wi,

nyo + myr = (Woaa/Wors)? +1/2 = ((2a(a® + 2))7/((20)7)227 7 (¢ + 2)1%) +1/2 = (¢ +
237/ (4¢PT(¢7T +2)) + 1/2,

nzy = (WooaWoi3/Wo22)? = (Vi1 Vo1sVaiz2/ (Vo2eVies))® = (Viia/Voze)® = (4¢*7 (¢* + 2))?/(
2)°T. nze = (VorsVine)® = 46”7 (¢°7 + 2)(2¢)°" and nz1 + nze = (4¢°7(¢* +2))[(4¢°7 (¢*" +2)) /(
2)°7 + (29)°7).

We obtain

Vias 222/3(2(q2+2)?”+(4q3T(q3T+2)))1/3((4q3T(q3T+2))/(q2+2)3T—I—(2q)3T)1/3.

q* +
>+
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Lemma 8. Vizy > 2%/3((29)% + 4¢°7(¢°™ + 2))/3(2 + 2(29)%" + (¢* + 2)°7) /3.

Proof. Here I = 1,J = 3, K = 4 and the relevant variables are ago4, 13, (vg22, Qo31, and Yy, Zy, Z1, Zs.
The linear system is: Yo = ago4 + 031, Zo = Qoo4, £1 = 13 + 31, Z2 = 20i022.
We solve: agos = Zo, 31 = Yo — Zo, a1z = Z1 — Yo + Zo, a2 = Z2/2.
nyo = Wi Wois = (Vies/Via1)?, nyr = L.
nyo +nyr = (Vois + Vita) /Vite.
nzo = WinaWoziWeis = (VisoVorsViar/ (Vos1 Vios))® = (Viz)?,
nz = Wiy = (Voi1sViz)3, nza = ng/;/Q = (Vo2 Vi12)3/2.
nzo +nzi +nzg = Vi (1 + Viig + Viba/2).
We obtain:
Vise > 23 (Vils + Vi) V3 (2 4+ 2Vihs + Vi) /3 >

22/3((2(])3T+4q37(q37+2))1/3(2+2(QQ)3T+(q2+2)3T)1/3-
]

Lemma 9. Vazy > (2Vihy + Vi5)?/3(2+ 2V + Viho) V3 /Vioz > (2(¢® +2)% +4¢% (6% + 2))*3(2 +
2(29)* + (¢* +2)°") 3/ (¢* + 2)".

PFOOf. I=J= 2, K = 4, so the variables are 004, X013, X022, A103, *112, and X(), Yb, Z(), Zl, ZQ.
The linear system is as follows:
Xo = agoa+ao13+ao22, Yo = goa+ 103 +ao22, Zo = aood, Z1 = 013+ 103, Z2 = 2(p22+112).
We solve: agos = Zo,
age = 1/2(Xo + Yo — 22y — Zy),
ai12 = Z2/2 — age = 1/2(Z2 — Xo — Yo + 220 + Z1),
a3 = Xo— 2o — 1/2(X0 +Yy—2Zy — Zl) = 1/2(X0 Y, + Zl), and
o103 = 1/2(}/0 — X() + Zl)
nro = ‘/‘/(3?2/22 Wﬂ3/2W31/32 Wf()g/z = V0322/ V1312’
nyo = Woda Wiy *Wors Wit = Vi / Vo,
nzg = V0304V0322V1612/V0622 = V1612/V0322,
nzy = W()_Qg/QWfl/QQW(?l/??WEO/?;Q = VoisViia/ Vibos
nze = V5, /2.

Vaou > 2(Viha/ Vs + 1/2)2/3(‘/1612/‘/0322 + ViisVia/ Vis + ‘/1612/2)1/3 =

(2‘/()?52/V1312 + 1)2/3(2V1(512/%3’22 + 2V0313V1612/V0322 + V1612)1/3 =
(2Vihs + V1312)2/3(2 +2Vgs + ‘/()322)1/3/‘/022-

Lemma 10. Va33 > (2(¢2 + 2)%7 +4¢° (¢*™ + 2))Y/3((29)* + 46> (¢*7 + 2))%3/(¢" (¢*" + 2)1/3).

PI’OOf. I= 2, J=K = 3, so the variables are 013, 022, 031, X103, X112, and Xo, Yb, Z(), Zl.
The linear system is: Xo = ag13 + ap22 + ap31,
Yo = 31 + @103,
Zy = ap13 + 103, £1 = Q22 + Qo31 + Q112
We solve it as follows. Let w = 03 and A = {w}. Then:
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ap31 = Yo —w, ap13 = Zp —w

ag = Xo— Yo — Zop+2w,a112 =21 — Xo+ Zp —w

First, consider nw:

nw = (Vo13Va20) " - (Vo2 Va11)? - (V031V202)_1 - (Vio3Viso)' - (VitaVisr) ™t = 1.
nxo = (Woaz/Wii2)® = (Voo /Vir2)?, na1 = 1/2,

nyo = Woz1/Woa2)® = (Vos1/Vai2)?, nyr = 1,

nzo = (WorsWii2/Wo2)? = (Vo13Vi12)?, nz1 = Wiy = V.

nao +nwy = (Vooz/Vinz)® +1/2 = (Vi + Vitn) /(2Vi),

nyo +ny1 = (Vois/ Vi 2) + 1= (Vs + Viia)/Vila-

nzo +nz = (Vo13Vie)® + Ve = (Viis + Vile) - Vi, Hence,

Vass > 2232V + Vi32) A (Vis + Vi) /Vine >

22/3(2(q2 + 2)37’ +4q37'(q37 +2))1/3((2q)3r _|_4q37(q37' + 2))2/3/(22/3(]7((]37' + 2)1/3) _
(2(6* +2)°" +4¢°7(¢* + 2)' (20" + 4¢¥ (6" + 2))*/(¢" (¢*” + 2)"/%).

In order for the above formula to be valid, we need to be able to pick a value for w = a3 between 0
and 1 so that Yy — w, Zg — w, Xg — Yy — Zoy + 2w, Z1 — Xg + Zo — w are all between 0 and 1, whenever
Xo, Yo, Zy, Z7 are setto Xo = nxg/(nxo+nz1), Zg = Yo = nyo/(nyo+ny1), and Z1 = nz1/(nzo+nz1).

The inequalities we need to satisfy are as follows:
e w>0,w<1,
o w < Y. Notice that w > Yy — 1 is always satisfied since Yy < 1.

o w>1/2(Yo+ Zy— Xo) andw < 1/2(1 4+ Yy + Zp — Xo),

o w< Zy+2Z1—Xy=1—Xj. Notice that Z; — Xg+ Zy—w < 1always holds as Z; — Xo+ Zp—w =

1—X0—U)§1—X0§1&SX020.

When ¢ = 5, forall 7 € [2/3,1], Yy > 0,1/2(1+ Yo+ Zp — Xo) > 0,1 — Xo > 0,and 1/2(Yp + Zp —
Xp) < 0, so that w = 0 satisfies the system of inequalities. Thus the formula for our lower bound for V33

holds.

Now that we have the values, let’s form the program. The variables are as follows:
a for 008 (and its 3 permutations),
b for 017 (and its 6 permutations),
c for 026 (and its 6 permutations),
d for 035 (and its 6 permutations),
e for 044 (and its 3 permutations),
f for 116 (and its 3 permutations),
g for 125 (and its 6 permutations),
h for 134 (and its 6 permutations),
1 for 224 (and its 3 permutations),
7 for 233 (and its 3 permutations).
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We have
Ag=2a+2b+2c+ 2d + e,

A1 =2b+2f 4 29 + 2h,
A2 =2¢c+ 29+ 2i+ 7,
Az =2d+ 2h + 27,
A4:2€+2h+i,

A5 = 2d+ 2g,
Aﬁ =2c+ f,
A7 = 2b,

Ag = a.

The rank is 8 since ) _; A; = 1. The number of variables is 10 so we pick two variables, c, d, to express
the rest in terms of. We obtain:

a= Ag,

b= A7/2,

[ =46 — 2,
g=A5/2—d,

e=Ap—2(a+b+c+d)=(Ay— 243 — A7) — 2¢ — 2d,
h:A1/2—b—f—g:(A1/2—A7/2—A6—A5/2)—|—20+d,
G=As)2—d—h=(A3/2— A1J2 + Ar/2 + Ag + A5/2) — 2¢ — 2d,
i:A4—2€—2h:(A4—2A0+4A8+3A7—A1—|—2A6+A5)+2d.

We get the settings for ¢ and d:
¢ = (f255°/n1)10 = fej/n?,

d = (%5 /(h%i%))1/6 = egj/(hi).

Above we also get that h, ¢ > 0.
We want to pick settings for integer ¢ > 3 and rationals a, b, e, f, g, h,i,7 € [0, 1] so that

® 3a+6(b+c+d)+3(e+f)+6(g+h)+3(i+7)=1,
A c e 173 6 i 1737
o (4+2) [Ii—o A7" = Vel Ve VE Vi Vate Vish Vi Vs Vass.

We obtain the following solution to the above program:
q¢ = 5,a = .1390273247112628782825070 - 1075, = .1703727372506798832238690 - 10~*, ¢ =
.4957293537057908947335441-1073, d = .004640168728942648075902061, ¢ = .01249001020140475801901154, f =
.6775528221947777757442973-1073, g = .009861728815103789329166789, h = .04629633915692083843268882, j =
.1255544141080093435410128, ¢ = .07198921051760347329305915 which gives the bound 7 = .79098
and
w < 2.37294.

This bound is better than the one obtained by Stothers [18] (see also Davie and Stothers [11]).
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The eighth tensor power. Let’s first define the program to be solved. The variables are
a for 0016 and its 3 permutations,
b for 0115 and its 6 permutations,
c for 0214 and its 6 permutations,
d for 0313 and its 6 permutations,
e for 0412 and its 6 permutations,
f for 0511 and its 6 permutations,
g for 0610 and its 6 permutations,
h for 079 and its 6 permutations,
7 for 088 and its 3 permutations,
j for 1114 and its 3 permutations,
k for 1213 and its 6 permutations,
[ for 1312 and its 6 permutations,
m for 1411 and its 6 permutations,
n for 1510 and its 6 permutations,
p for 169 and its 6 permutations,
g for 178 and its 6 permutations,
r for 2212 and its 3 permutations,
s for 2311 and its 6 permutations,
t for 2410 and its 6 permutations,
u for 259 and its 6 permutations,
v for 268 and its 6 permutations,
w for 277 and its 3 permutations,
x for 3310 and its 3 permutations,
y for 349 and its 6 permutations,
z for 358 and its 6 permutations,
« for 367 and its 6 permutations,
B for 448 and its 3 permutations,
~ for 457 and its 6 permutations,
0 for 466 and its 3 permutations,
e for 556 and its 3 permutations.

Here we will set a;jx = ajji in Figure 1, so these will be the only variables aside from ¢ and 7.

Let’s figure out the constraints: First,
a7b7c7d7€7f’g?h’7Z.7j7k7l7m7n7p7Q?r787t7u7U7w7:’r7y727067/8177576 Z 03’ and
3a+6(b+ct+d+e+f+g+h)+3(i+j)+6(k+l+m+n+p+q) +3r+6(s+t+u+v)+
3(w+x)+6(y+2z+a)+38+67+30+3e=1.

Z

ow,
a+b+tct+d+e+f+g+h)+i,
b+j+k+l+m+n+p+q),
c+k+r+s+t+u+v)+w,
d+l+s+z+y+z+a),

A s
W N = O
I
NN NN
~ N~

3Because the solver had issues with complex numbers when the variables were too close to zero, we actually made all the
variables a, . .., e > 10712,
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Ay=2(e+m+t+y+8+7)+4,
As =2(f+n+u+z+vy+e),
As=2(g+p+v+a+d)+e

A7 =2(h+q+w+a+7),
Ag=2(i+q+v+2)+p,
Ag=2h+p+u+y),
Ajg=2(g+n+t)+a,

A =2(f +m+s),

Apg =2(e+1) +r,

A1z =2(d+ k),
Arg =2c+7j,
Ay = 2b,

A16 = a.

We pick A = {¢,d,e, f,g,h,l,m,n,p,t,u,v, z} to make the system have full rank.
After solving for the variables outside of A and taking derivatives we obtain the following constraints

These constraints say that a®b°cc . .

g = iwy,
dqwep = ioy’k,
ew?e % = idvtr,
fwaep? = idvy3s,
galeff? = id%~’x
haeB? = i6v2y,
lw?eB = qGary*r,
mwaef = §ovy3s,

na’B = govyz,
paff = qdy,
ta? = woz,
uQy = wey,
vy? = wep,
20y = aef.

. €¢ is minimized for fixed {A;}. In order for these constraints to

make sense, we need the following variables to be strictly positive:

(j,'lU,Oé,ﬂ,’y,é,6>O.

We enforce this by setting each of them to be > 0.001.
We want to minimize 7 subject to the above constraints and

8 6b 6e 1/6f 1,69 3j 6p 164
(g+2)° < %115‘/0214‘/0313‘/0412VO511‘/()610%79‘/()88‘/1114‘/1213Vl312V1411V1510V169V178

38 V6'Y

3r I
‘/2212%311‘/2410%59‘/268‘/277 3310V3 V358V367V4 457V466 556/HIA

We used Maple’s NLPSolve function.

We get that if ¢ = 5, 7 = 2.372873/3, the LHS above is 78 = 5, 764, 801, and the following setting of
the variables give that the RHS is > 5, 764, 869 > 75:
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a=10"12 a = 0.024711033362156497625293641813361857267810948049323, b =
4.0933714418648223417623975259049800943950530358140 - 10712, 3 =
0.015880370203959747034259370693003799652355555845066, ¢ =
4.9700778192090709371705828474373904840448203393459 - 10710, d =
2.4642347901810136898379263038819155118509349149757 - 108,45 =
0.054082292653929341218607523117198621556713679757052, ¢ =
5.9877570284688664381218758275595932304175525490625 - 10~ 7, ¢ =
0.069758008722266984849017843747408939180295331034341, f =
0.77156448808538933150722586711750971582192947240494 - 1075, g =
0.52983950128034326037497209046428788405010465887403 - 104, v =
0.040046641571711314433492115175175954920762507686159, h =
0.18387001462348943300252056220731292525021789276520 - 103,14 =
0.29005524124777324373406185342769490287819068441477 - 1073, j =
5.3715725038689209206942456757488242329477901355954 - 10710, k =
3.5695674552470591186014287061508526632570913566224 - 1078, =
0.10923009134097478837797066708874185351400056825099 - 107°, m =
0.17684246950304933497450078052746832435602523682383 - 104, n =
0.15663818945376287447415436456239357793706037184565 - 1073, p =
0.73409662109732961408223347345964492527079778590723 - 1073, 7 =
0.16764883352937940526243936192267192973298560336126 - 1072, r =
0.14639881189784405030877368068543655891464735174483 - 107, s =
0.29848770392390959859941267468188698487145412996821 - 104, =
0.33218019947247834546581006549523999898236448292393 - 1073, u =
0.20080211976124063644558623218619814328206004629865 - 1072, v =
0.61930501551874305634339087686496176594322763092592 - 1072, w =
0.89656566129138098551467176743513414171575628678639 - 1072,z =
0.41832937379685333587766950542202808564878271854680 - 1073,y =
0.31772334392895171600663212877010686299491490690525 - 102, 2 =
0.012639340385481828627518968856579987271690613148088.

The values for the S8th power.

From Claim 1 we have:

Voors = 1, Voris = (8¢9)", Vo214 = (Xp<2.p=0 mod 2 (b,(z_b)/;(m_b)/g)qby = (84 28¢%)7, Vo313 =
((1,21;,6)(] + (372’5)(13)7 = (56¢ + 56¢°)",

Voarz = (70¢* +168¢%+28)7, Vos11 = (28043 +168¢+56¢°)7, Vos1o = (56+420¢> +280¢* +284°)7,
Vorg = (280q 4 560¢> + 168¢° + 8¢7)7, Vogs = (70 4 560¢> + 420¢* + 56¢° + ¢°)7.

Lemma 11. Vi1 > 22/3(2V3 4 + V5,)Y/3.

Proof. I = J =1, K = 14, and the variables are «pg, ag17. The system of equations is
Zg = agos,
Z7 = 204017.
Solving we obtain cvgog = Zg and ag17 = Z7/2.
nze = Wigs = Vie and nzg = Wgi7/2 = Vi /2.
The inequality becomes:
Vit > 2732V + Vi) 2.

41



Lemma 12. Vigis > 2%3(Vi34 + 2Vihe) /3 ((Vias/Vozs)? + Vi) V2.

Proof. I =1,J = 2,K = 13, and the variables are aggs, 217, ag26. The system of equations becomes
Yo = agos + @026,

Y1 = 2a017,

Z5 = agos,

Zg = ap17 + Q026-

We can solve the system:

aoos = Zs, 26 = Yo — Zs, ap17 = Y1/2.
nyo = Wehe = (VoasVorr)?,

ny1 = Wiiz/2 = (VorrVaie)? /2,

nzs = W/ Wihe = (Vias/(Voze Vorr))?, nze = 1.
nyo +ny1 = Vg7 (2Viae + Vile) /2.

nzs +nze = (Vo2sVorr)? + Vids)/ (VoosVorr)>.

Vigis > 2%3((2Vihe + Vi)Y (Viir + Vids / Vihe) /2.

Lemma 13. Vigiz > 2(Viys/Vids + 1)V (VA Vibs /Viss + Vit Vids + Vibe Vite/2)'/?.

Proof. I =1,J =3, K = 12, and the variables are aggs, 17, 026, Qo35. The system of equations is:
Yo = agos + ao3s,
Y1 = ap17 + @026,

Z4 = Qqps,
Z5 = ap17 + (o35,

We solve the system:
aoos = Z4, 26 = Z6/2, 17 = Y1 — Z6/2, 35 = Yo — Z.
nyo = W5 = (VossVorr)?,
ny1 = Wiz = (VorrVazs)?,
nzy = (Woos/Woss)® = (Visa/(Voss Voir))?,
nzs = 1,
nze = (Woze/Woi7)3/2 = (Vo2sVate/ (Vor7Vizs))? /2.
nyo + ny1 = Vg7 (Viss + Vids),
nzg +nzs +nze = 2V, + 2(Visa/Voss)® + (VoosVite/Vas)?]/2Viq-

1/3
Wiy VO%GVﬁﬁ) "

Viziz > 223(Vks + Vibs)'/3 <2V0317 + 73 V3
035 125

Lemma 14.

Vil VibeVibs N2 (Vs s s s os )Y
Viann > 2 <% +1+ m 5+ Vo1rViza + Voss Vite :
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Proof. I =1, J =4, K = 11, the variables are agsg, ®017, @026, C035, ®o44. The linear system becomes
Yo = agos + @044,

Y1 = ap17 + aoss,

Y2 = 2ap26,

Z3 = agos,

Zy = ao17 + Qo44,

Z5 = ap26 + Q035-

We solve it:
oo = 43,
a6 = Yo /2,

g4 = Yo — 23,
ao17 = Zs — Yo + Z3,
ap3s = Zs — Yo /2.

nyo = (Woaa/Wo17)? = (VoasVor7/ (Vor7Vaza))® = Vi /Vida.
ny; =1,
nyz = W(i’%/ (23W69’35)3: ‘/()?’2621325/ (2@5‘/?16)’
nz3 = W%08W017?{W0§4 = (Vi34/Voua),
nzy = W%N = V0317V1334’
nzs = Wyss = %35‘{}%6' -
o+ -+ = -+ 1+ s,
VG

nzg 4z +nz = gt 4 Vi Vida + Vs Vide:

The inequality becomes

Vil VibeVibs NP (Vs s s os s )Y
Viair > 2 < +1+ > < + Voi17Vize + V()35V116) :
Vi, (2VihsVide) Vi

Lemma 15.

V3 V3 V3 1/3 V3 V3 V3 V3 V3 V3 1/3
Visio > 2 ( 035 11+ 026 134> (125134 + VoirVida + VouVils + — 05 s 116) :
Viky ViuaVile Viss 2V Vids)

Proof. I = 1,J = 5, K = 10. The variables are aqos, @017, 2026, 035, X044, C053- Lhe linear system
becomes

Yo = agos + aoss,
Y1 = ap17 + apad,
Y2 = ag2e + aoss,
Zy = aos,

Z3 = ao17 + Qo53,
Zy = 026 + (o44,
Z5 = 201035.

We solve it:
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apos = 42,
o35 = Z5/2,
aps3 = Yo — Zo,
ao26 = Yo — Z5/2,
ap17 = 43 — Yo + Zo,
Qogs = Zy — Yo + Zs /2.
nyo = (Woss/Worr)® = Vs /Vidas
nyy =1,
nyz = (Woze/Woaa)® = Vo Viza/ (ViuaVise)-
29 = (WoosWoir/Wos3)® = VissVida/Viisss
nz3 = W(:)317 = %317‘/13347
nzy = W044 = V044V116’
nzs = Wo35W044/(2W026) (V035V125V044V116)/(2V0326V1334)~
nyo -+ nyy +nys = 15+ 1+ 323533
nZQIin- nzs + nz;-}- nzs = V1%/§V134 + ‘/017‘/134 + V044V316 + VO%EQ%;;@?%;:)/PM'
ence we ovtain

VS VS VS 1/3 V3 VS V3 VS V3 VS 1/3
V151o 22< 035 +1+ 026 134> ( 125 Y134 —i—V0317V1%4+%344V1316+ 035Y125 Y044 116> .
V134 %344‘/1316 V035 (2V 26‘/134)
Il
Lemma 16.
Ve Vs Vi VeV NP (VB s os Lo s VeuVdsVisVie )
1/16922<+1+ ) (+V Vior + Vi Vioe + > .
Vi (VisVie) | (@ViuVibsVide) Vibe 0171z T TS5 O VibsVisa

Proof. I =1,J = 6,K = 9 so the variables are agog, 17, ®026, X035, C044, X053, Q2. The linear system
becomes

Yo = aogos + @62,

Y1 = ap17 + aos3,

Yo = 26 + @oad,

Y3 = 2ap3s,

Z1 = Qo8>

Za = ap17 + Q625

Z3 = ap26 + Q0535

Zy = Qo35 + Qoa4.

We solve it:
apog = 21,
ag3s = Y3/2,

ape2 = Yo — Z1,

Qogs = 2y — Y3/2,

ao26 = Yo — Z4 + Y3/2,

aos3 = 23 — Yo+ Z4 — Y3/2,
ap17 = Za — Yo + 21,
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nyo = Wea/ Wotr = Vise/ Vids:

ny; =1,

nyz = W026/W053 = V026V134/(V035V116)

nys = WO35WO26/ (2Wo44W053) V134V026/ (2‘/()?114‘/1325‘/1316)’
nz = W(?OSng?/WgﬁQ = ‘/1?)16V1325/%326’

nzz = ng? = V0317V1325’

nz3 = W053 = V035V116’

nz4 = Wo44W053/ W026 = (V()44V125V035V116)/ (V()326V1?§4)-

n + n + n + n 026 + 1 + V026V134 V1634V0326
yo yl y2 y3 (V0335 V1316) (2V0344 V1325 Vl 16)
V116V1

VS,V VA VB
25 044 Y125 Y035 116
S+ Vi Vids + Vs Vide + V3 VE,

nz1 +nzg +nzz3+nzy =

VS VS V3 V6 V3 1/3 V3 V3 V3 VS VS VS 1/3
‘/169 Z2< 026 +1+ 026 Y134 134 ¥ 026 ) ( 116 ¥ 125 _|_V'0317V1325_’_‘/0335V~1316+ 044 Y125 %035 116> .
Vi (VissViie) (Vi VisVide) Vs Vi Viba
]
Lemma 17.

3\ 1/3
Vizs > 2(Vihy + Vite + Vids + Vig)'/? (1 + Voir + Vibe + Viss + V0244> :
PFOOf. I = 1, J = 7, K = 8, so the variables are 008, X017, X026, X035, X044 5 X053, X062, Q71 - The linear
system is
Yo = agos + aor1,
Y1 = ap17 + aoe2,
Y2 = 26 + aoss,
Y3 = ap3s + aoas,
Zy = Qos»
Z1 = ao17 + Qor1,
Zo = Q26 + 062,
Z3 = ap3s + Q053,
We solve the system:
apos = Zo,
Qogs = Z4/2,
agr1 = Yo — Zo,
o35 = Y3 — Z4/2,
ap17r = 21 — Yo + Zp,
Qos3 = 23 — Y3+ Z4/2,
ape2 = Y1 — Z1 + Yy — 2o,
ap2e = Z2 — Y1+ Z1 — Yo + Zo.
nyo = Wi Wsa/ WorrWoze)® = Viir/Vids,
nyL = W062/W026 = V116/V125’
nys =1,
nys = Wss/ Wiss = Visa/Vids:
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nzo = Wins W1z Weae/ (Won Woez) = Vii7VoirVite Voo Vids/ (Vor Voir Vo2 Vite) = Vids,
nzy = W(?NW(?QG/W[%Q = V0317V1325,
nza = Wg’zﬁ = V0326V1325’
nz3 = W§53 = %%5‘/1325’
nzg = W5’44W5’53/ (2W5’35) = %?Z4V1?’25/ 2.
nyo + ny1 + nyz + nys = (Viir + Vg + Vids + Vi%,) /Vids,
nzo +mne1 +nz + nzg + nzg = Vids(1+ Viig + Vabe + Viis + Viia/2)-

V3 1/3
Vizs > 2(Vihs + Vite + Vids + Vig)'/? (1 + Voir + Vobe + Voss + %44> .

Lemma 18.

2/3 1/3
V- > 9 %326 4 1 / ‘/2324‘/1316 4 V1316‘/0317V1325 4 V1316 /
2= \VEs 2 V8 7 2 '
116 026 026

Proof. I = J =2, K =12, and the variables are a = «aqos, b = ag17, ¢ = Qgog, d = 197, € = Q116

The linear system is:

X() =a+b+ C,
Yo=a+c+d,
Z4 = a,
Zs =b+d,
ZG = 2(0 + 6).
It has 5 variables and rank 5. We solve it:
a = Zy,

c=(Xo+Yo—224—7Z5)/2,
6226/2—02 (Z6—X0—}/Z]+2Z4—|—Z5)/2,
d=Yy—Zys—c=(—Xo+ Yo+ Z5)/2
b=275—d=(Z5+ Xo—Yy)/2.
nzo = (WoesWorr/ WiisWior))/? = (VieVor7Vais/ (V26 ViorVizs))®/? = Vide/Vile-
nxry =1/2,
nyo = WoasWior/(Wo1rWii6))*? = (Voze/Viie)®,
ny; = 1/2,
nzy = (WoosWiie/Woze)? = (Va2aVie/ Vi)
nzs = (WorrWiorWite/Woze)*'? = (Vor7VizsViie/ Voze)®s
nzg = Vig/2
Hence:

2/3 1/3
Vo > o (Vs L\ (VBaVis | VWiV | Vile)"”
2r=\vE, 2 V8 7 2 ‘
116 026 026

Lemma 19. For ¢ = 5,7 = 2.372873/3, Vas11(q, 7) > 35517.87580.
In general,

3
Vids

1/3 1/3 1/3
VibaViss Ve VB VEVEs  VEVEVE\ Y [ ViteVasaViss
Vazip > 2 +1/2 +1 + —_—
(VizaVo2eVi2s

3 3 6 3 3 3
V125 ‘/134 ‘/[)35 V224 ‘/224%35
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The variable f is constrained as in our framework (see the proof).

Proof. I = 2, J = 3, K = 11, so the variables are ¢ = Qa008, b= a017,C = 026, d= Qp35, € = X107, f =
x116-

The linear system is:
Xo=a+b+c+d,

Yo=a+d+e,
Z3 = a,
Zy=b+e,
Z5:C+d+f.

The system has 6 variables but only rank 5. We pick f to be the variable in A. We can now solve the
system for the rest of the variables:
a=Zs,
d=Xo+Yy—Zy — 25— 273+ f,
e= 23+ Zy+ Zs — Xo— [,
b=Xo— 23— 75+ f,
c=275+2Z5+ Z4 — Xog— Yy — 2f.

— (W01t Wo35\3 _ [ V224Vo35 3
nxo = (WOQGWlO?) - (V125V134) >
nry =1/2,

_ 3 _ 3
nyo = (Woss/Woze)” = (Voss/Vi2s)°,
ny; =1, ,
Naa — (WoosW10rWihe)? _ (VazsViza V)3

3 (W§35W017) (V0235V224)3 ’
nas — Wihe Wity _ (V125Vo17Visa)®
LT W, Vs

— (Wa26Whor\3 _ (Vin5V134V026 13
nzs = (W017W035) _( V224 Vo35 ) K
nf = Wi16Wo17Woss _ ViieVa24Voss

Wi07Whe Vi34 Vo26Vi2s *

The inequality is

1/3 1/3 1/3
Vasi1 > 2 <%+1/2> / (VO%E) +1> / <‘63?33V1?§4‘/1625 n ‘/1625‘/1%4‘/0326) / <(VH6V224V035)>f

3 1/3 3 6 1/3 3 1/3
V125V134 V125 V()35V224 V224V035 Vi3aVo2e Vizs

The variable f needs to minimize the quantity bInbd + clnc + dInd + elne + f1In f, subject to the
linear constraints that a,b,c,d, e, f € [0, 1], where a, b, c,d, e are the linear expressions we obtained by
solving the linear system above, and where Xo = nzg/(nzo + nz1), Yo = nyo/(nyo + ny1), nzs =
nzs/(nzs + nzy + nzs), nzg = nzy/(nzs + nzy + nzs), and nzs = nzs/(nzs + nzy + nzs).

We maximize our value lower bound by first finding the value f = .433584923533081 minimizing
F(f) = a®ccd?e®f/, then finding the value f” = .433607696886902 maximizing Va311(f)/F(f), and
finally concluding that V5311 > F(f/) > V2311(f//)/F(f”) > 35517.8758.

O
Lemma 20. For g = 5,7 = 2.372873/3, Vaa1o > 1.089681104 - 10,
In general,
3/2:,3/2\ 1/3 3/2+,3/2 1/3
Vi > o [ (Vo26Vo2a Voss)*2 Vite Vids Vi Vo Vi + (ViagVisa) + (Vozs Va2 Vi2s)*2 \
2410 = 372 5 372,32 116 V134 372
Vigs (V24 Voss ) (2Vos5)
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1/3
Viby (V7 Vs Vizs)*/? 41 (VossVids)%/2 ( V224 Vo35 V134 >f
VEuVes  (VoosVa2aVoss ViteVasa)3/2 2(Vo26Va2aVa16Vi34)3/2 (Va33VoaaVi2s)

where [ is constrained as in our framework (see the proof).

Proof. I = 2, J = 4, K= 10, and so the variables are a = 008, b= ap17, C = (026, d= @035, € = (X044,

[ = aio7, 9 = a116, h = aq2s.
The linear systemis: Xo =a+b+c+d+e,

Yo=a+e+f,
Yi=b+d+y,
Yo = 2(c+h),
Zy = a,
Z3=0b+ f,
Zy=c+e+g,
Zs =2(d+ h),

We omit the equations for X; and Y5. The system has rank 7 and has 8 unknowns. Hence we pick a
variable, f, to place into A.
We now solve the system:
a = ZQ,
b=123— [,
e=Yy— 2y~ f,
d=1/2(Xo+ Y1 — Z4s — Zy — 275+ 2f),
h:Z5/2—d:1/2(Z5—X0—Yi—|—Z4—|—ZQ—|—2Z3—2f),
g:Y1—b—d:1/2(—X0+§/1+Z4+ZQ),
c=Zy—e—g=-Yo+ [ +1/2(Xo - Y1+ Z4+ Z3).
Calculate:
nzo = (VoosVa2aVoss)*/ 2/ (VireVizaVias)*/2,
nx; =1/2,
ny0 = Vi /Vars
ny1 = (VossViteVisa)* 2/ ((Vozs Vaaa Vi) (3/2)),
nys = 1/2,
nz = Vip9/2) (ViteVizaVizs)*2/ ((Voss Vozs )/ 2Via),
nzz = Vi1 Vass Vi / Visss
nzy = (VO26V224V116V134V125)3/2/V0%/52,
nzs = ‘/1625/27
nf = Vi VassVisa/ (VaasVids Vosa)-

We obtain:

1/3 1/3
(Vozs Va2 Voss)*/2 1) (‘/()3514 (VossVi16Viza)>/? 1) y

Vi > 2 5 2
2410 > </(V116V134V125)3/2 2 Vi (VooeVa2aVins)(3/2) 2

1/3
(‘/2(249/2)(‘/116‘/134‘/125)3/2 n Ve Vaha Vids n (Voze Va4 Vi16VizaVizs)>/? n V1625> (V224V035V134)f

/((VossVoze )3/ 2 Vi) Viss Vo2 2 Va33V125Voua
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We have some constraints on f that we obtain from our settings in the linear system solution and from
the settings X; := x;/(nxo + nx1) fori € {0,1}, Y; := ny;/(ny2 + ny1 + nyo) for j € {0,1,2} and
Zy = nz/(nze + nzg + nzy + nzs) for k € {2,3,4}.

Constraint 0 is from a := Z5 > 0. It does not contain f. One can see that sinze nz; > 0 for all
1 € 2,3,4,5, this constraint is always satisfied.

Constraint 1 is from b := Z3 — f > 0 and is

f<2Zs.

For f = 0.00327216658358239, 7 = 2.3729/3 and ¢ = 5, Z3 — f > 0.01 and this constraint is satisfied.
Constraint 2 is from e := Yy — Z5 — f > 0, and hence

f <Yy — 2.

For f = 0.00327216658358239, 7 = 2.3729/3 and ¢ = 5, Yy — Z2 — f > 0.04 and this constraint is
satisfied.
Constraint 3 is from d := 1/2(Xo+ Y1 — Z4 — Zo — 2735+ 2f) > 0, and it is

f> (ZQ+QZ3+Z4—X0—Y1)/2.

For f = 0.00327216658358239, 7 = 2.3729/3 and ¢ = 5, 1/2(Xo + Y1 — Z4 — Zo — 275 + 2f) > 0.26
and this constraint is satisfied.
Constraint 4 is from h := Z5/2 —d =1/2(Z5 — Xo — Y1+ Z4 + Zo + 2735 — 2f) > 0, and is

< (Z5—X0—Y1+Z4+ZQ+2Z3)/2.

For f = 0.00327216658358239, 7 = 2.3729/3 and g = 5, 1/2(Z5 — Xo— Y1+ Zs+ Zo+273—2f) > 0.29
and this constraint is satisfied.

Constraint 5is from g :=Y; —b—d = 1/2(—=Xo+ Y1 + Z4 + Z3) > 0. It doesn’t contain f and is
satisfied for all 7 € [2/3, 1] when ¢ = 5.

Constraint 6 is from ¢ := Zy —e —g = =Yoo+ [+ 1/2(Xo — Y1 + Z4 + Z5)
0.00327216658358239, 7 = 2.3729/3 and ¢ = 5, —=Yp + f + 1/2(Xo — Y1 + Z4 + Z3)
constraint is satisfied.

The final constraint is that the following should be minimized under the above 7 constraints

For f =

> 0.
> 0.19 and this

alna+blnb+clnc+dlnd+elne+ flnf+glng+ hilnh,

where a, b, ¢, d, e, g, h are the linear functions of f as above (for fixed ¢,7). For ¢ = 5, 7 = 2.372873/3, we
first compute the value f that maximized F'(f) = a®bPc¢d%e® ff g9h" under our settings for a, b, ¢, d, e, g, h
and under the linear constraints on f above. We obtain f’ = 0.00327237690111682. Then, we mini-
mize Vaa10(f)/F(f) over the linear constraints on f obtaining f” = 0.00332911459461995. Finally, we
conclude that Vo419 > F(f/) . V2410(f”)/F(f”) > 1.089681104 - 10°.

O
Lemma 21. Vasg > 2.479007361 - 10° for g = 5,7 = 2.372873/3.
In general,
1/3 1/3
Vs > 2 (vz)%ﬁvzf”ggv(im?% . 1) / (%%5 L VeV 1) "
N VE)% 5 V2524 ‘/1?)1 6 V1534 2 ‘/2??33 VE)% 5 V2324

49



3 /3 1/3 3 /9 176 173 1/3 3 /3 1/3 1/3 6 16 173 173 \ 1/3
(‘/224‘/116‘/134 +‘/(J17‘/224V()35V116V134 +‘/()35V224‘/116V134 +V()35V224V116V134> %

3 3 3 3 6 6 3 3 3 3 3 3
VO44V026 VO26 V233V044V125 VO44V125 VO26 V233V044V125
2 12 173 \ 9 2 \J
( VO26 V233V044V125 > < VE)26V233VE)44V125 )
3 1/3 2 172 )
V224V035V116 Viza Vo35 V224V116

where g and j are subject to the constraints of our framework (see the proof).

Proof. I = 2, J = 5,K =9, and the variables are a = 008, b= Qp17, C = (026, d= 35, € = (44,
f = aos3, 9 = a107, h = 116, 7 = a125. The linear system is
Xo=a+b+c+d+e+f,

Y0:a+f+g,
Yi=b+e+h,
Zy = a,
ZQZb+g,
23:C+f+h,
Z4:d+6+j.

The system has rank 7 but it has 9 variables, so we pick two variables, g and j, and we solve the system
assuming them as constants.
a= 27,
b=22—g
h=7Z1+Zy+Zs+Zy—Xo—g—3J
e=Y1—-b—h=Y1—-21—-27Zy—Z3— Zy+ Xo+ 29+ j,
c=23—f—h=—Z4+29+j+Xo—Yy— 2o,
d=Zy—e—j=-27-29—Xo— Y1+ 21+ Z3+ 275 + 274,
f=Y%—21—g.

nxry = Vo}e V2§33 V0§44 V1225 ,
Vias V224 V116 Visa
nx; = 1/2,
nyo = Vo?é5/ Vz%s’
nyy = Voz44V1225’
Voiss V324
2 = 1’3 3 13
nz = V2243‘/1163V134’
3‘/0449‘/0266 5 3
nzy = V0173‘/224;/0356‘/116g/134
;/0263‘/2333‘/044;/125
nzz = V035V2324V1316V134’
s V0644V1325 5
nzy = V0335V2324V1316V1334 ,
026 V233 V044 Vins
_ V026V2233V0244V1325

ng = — -
g Viba V0335 ViigVisa’

nj = V26 V233 Voaa Vs
= vz v
Voas Vs Vite

_l’_

1/3 1/3
V259 > 9 (‘/()%6‘6%3%3214‘/1325 + 1> <‘/0335 ‘/0344‘/1325 + 1) %
T\ Vs Vo VideVida 2 Vibs Vs Vona
1/3
<V2324‘/1316V13z),4 n Vo7 VebaViss Vit Visa n Vs Vona Vil Visa n ‘/()%5‘6624V1316‘/1%34> «
VihaVise Vi Vasa Viaa Vids VihaVids Viibs Vass Viua Vids
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<V026 Vs ViaaVids > I ( Vo6 Va33V04a Vids )j
Viba Vs Vi16 V134 VizsVenaVite /)

Now let’s look at the constraints on g and j:

Constraint 1: since b = Zs — g > 0 and Z was set to nza/(nz1 + nzo + nzs + nzy), we have that

g < nzy/(nz1 + nze + nzs + nzy).

Constraint 2: since e = Y1 — 71 —2Z5— Z3s— Z4+ Xo+2g+j > 0 and we set Xg = nzg/(nxo+nwy),
Y1 = ny1/(nyo + ny1 + nya), Zo = nza/(nz1 + nzo + nzs + nzg), and 7y + Zo + Zs + Z4 = 1, we get

29+ j > —ny1/(nyo + ny1 + ny2) + nza/(nz1 + nze + nzs + nzy4) + 1 — nxg/(nxg + nxy),

Constraint 3: since c = —Z4 + 29+ j + Xo — Yo — Zo > 0 and Z4 = nzy4/(nz1 + nze + nzs + nzy),
we get:
29+ j > (nzg + nzq)/(nz1 + nze + nzs + nzg) — nxo/(nxo + nxy) + nyo/ (nyo + ny1 + ny2),

Constraint 4: since d = —2j — 29 — Xo — Y1+ Z1 + Z3 + 2725 4+ 274 > 0, we get:
g+7 <05(1+ (nzg+nzq)/(nzy +nze +nzs+nzq) —ny1 /(nyo + nyr +ny2) — nzg/(nxe + ney)),

Constraint 5: since f = Yy — Z; — g > 0, we get:
g < nyo/(nyo + ny1 + ny2) — nz1/(nz1 + nze + nzs + nzy),

Constraint 6: since h =21 + Zo+ Z3+ Zy — Xg— g — j > 0, we get

g+7<1—nzxy/(nxo+ nzy).

We first find the values of g and j that maximize F(g,j) = a®’c®d%®ffg9h" under the above 6
constraints. These settings are ¢’ = 0.426490605423260 - 1073, 5’ = .467539258441983 and give F =
0.218734398504605437. Then, we find the settings for g and j that minimize v(g, j) = Vaso(g, 7)/(a®bPcd®e f£gInM)
subject to the above 6 constraints. These are ¢” = 0.000421947422353580, j” = 0.467186674565410
and give v(g”,7"”) = 1.13334133895458700 - 105. Finally, we obtain that Vasg > v(g”,j")F(g'5") >
2.479007361 - 10° for ¢ = 5,7 = 2.372873/3.

O
Lemma 22. For T = 2.372873/3 and q = 5, Vg > 4.108912286 - 105.
In general,
3/9 1/3
V268 >9 ‘/0335 _ ‘/03/5 %
TV Vi VvV VTV
3/21,3/2+ ,3/2 3/2 3/21,3/2+ ,3/2+ ,3/2+ ,3/2 1/3
Voss Vot Vists VitsVits | s o Vo Vasa Vit Vs Vs, Vi Vil
372+ ,3)2 + V16 V125 + 32 + 5 X
Visa Vigs Voss
3/2+,9/21,9/2 3/2+,3/21,3/2+,3/2+,3/2 3/2+,3/2+,3/2,3/2\ 1/3
Voss Vigs Vige  VairVisViba | Voss Vara Vits Viss Vise sy VouVass Vide Vizs Vise |,
V3/2V9/2V3/2 V3 V3/2 125 V134 2V3/2V3/2
224 V035 V116 035 035 026 Y035

V224Vo35 V116 V233V044 V116

where g and k are constrained by the constraints of our framework (see the proof).

<V125V026V134 ) g ( Vi34 Vose ) F
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PI’OOf. I = 2, J = 6,K = 8, and the variables are a = 008, b= ap17, C = 026, d = @035, € = O044,
f = 053, § = 062, h= 107, = 116, ] = (X125, k= a134. The linear system becomes
Xo=a+b+cH+d+e+ f+g,

Yo=a+g+h,
Yi=0b0+f+1,
Yo=c+e+],
Z():a,
Z1=b+h,
Zy=c+g+i,
Zy=d+ f+7,
Zy=2(e+k).

The system has rank 9 and 11 variables, and so we pick two of the variables, g and k to put in A. We
solve the system:
CL:Z(),
e=(e+k)—k=24/2—k,
h=(a+g+h)—a—g=Yo—Zy—g,
b:(b—Fh)—h:Zl—}/o—f—Zo‘{'g,
d = (c+g+i)+(d+f+7)—g— b+ f+i)—(cte+i)+b+e = (Zo+Z1+Zo+ Z3+Z4/2) - Yo—Y1— Yok,
c=(cte+j)—et+(a+btc+dt+e+f+g)—a-b-—d-—e—g—(d+[f+j)+d)/2=
(Yo — Zy+ 2k + Xo — 220 — Z1 + Yo — 29 — Z3) /2,
f=(a+tbtc+dt+etft+g)—a—b—c—d—e—g=Xo—Zo—(Z1—Yo+Zo+g)— (Yo—Zy4+2k+
Xo—QZQ—Z1+Y0—2g—Zg)/2—(<Z0+Z1+ZQ+23+Z4/2)—)/b—Yl—Yg—k)—(Z4/2—k)—g:
—2Z0+k+3Y0/2 —9—321/2 — Z4/2 + Xo/2+ Y1+ Yo/2 — Z3/2 — 7o,
i = (c+g+i)—c—g=2Ty— Yo—Zy+2k+Xo—220—7Z1 +Yy—29— Z3)/2 — g =
(=Yo+ 2y — 2k —Xo+220+ Z1 — Yo+ Z3+275)/2,
j=d+f+j)—f—-d=Zs—((Zo+Z1+ Za+Z35+ Z4J2) - Yo —Y1 - Yo — k) — (—2Zp + k +
3Y0/2—9—371/2—Z4)2+4 X0 /2+Y1+Ya)2—Z5/2—Z2) = Zo+Z1/2—Yo/2+Y2/2+g— X0 /2+ Z3/2,

nxo = (Vo2eVaoa)>/?(Vozs Vias) >/ / (Vi Vias ) >/ 2 (Viza Vizs)*/?),

nry =1/2,

nyo = (VoosVa24)>? (Voss Vaas ) 2V / (Vids Vs Vass (Vi Vizs )3/ 2 (Viza Vias)®/?),
ny1 = V1325/ Vz?ésv

nys = (VozeVa24)>/2(Voss Vias) 32 (VisaVias )32 | (Vi Vi (Vite Vias)3/2),

nys = 1/2,

nzo = V1325V2%3V1%4/ (‘/2324‘/0%5)’

nz1 = Vi VidsVihs Vass (ViteVizs) 3/ 2 (VizaVias)®? /(Voe Vaoa)* 2 (Voss Vizs )/ 2),
nzy = ‘/2%3‘/1316’

nzz = Vi Vi (VitgVizs)> 2 (VizaVizs )2/ (Voze Vaza ) >/ 2 (Vozs Vizs)*/2),

nz4 = %%3%%14‘/1316/(2%326)’

ng = Viz25Vo2eViza/ (Va24 Vo35 Vite)s
nk = VoasVi34/ (VassVoaaVite).-
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We obtain

1/3
(VoeVa24)>/? (Vo35 Vias)?/? +1)2 »
(Vi16Vi25)3/2(Vi34Va2s)3/2

Vogg > 2 (

1/3

(VozeVa24)/?(Voss Vaas) 2 Vig Vs (VoosVaoa)??(Voas Vias )32 (Viza Vias )3/ 1/9
VB V-V (VirgVizs) 2(VigiVigs)32 V3 VoV (VitgVizs)®/? Iy
125 Y035 233( 116 125) ( 134 125) 233 035 233( 116 125)

Vs Viss (ViteVias) >/ 2 (VizaVias )?/?
(Vooe Va24)3/2(Voss Vazs)3/2

Vs VisaVidy | Vo Vids Vs Vs (ViteVizs )2 (Visa Vins)*/?
( 155 VaasVisa | Vii7Vias Vois Vaa (Vi Vias )" (VisaVios) VRV +

VibaViss (Voze Va24)3/2 (Voss Vazs) /2

%%3%:14%%6) e " <V125V026V134>g < Vi Voze )k
2V Va24 Vo35 V116 Va33Voaa V16

The linear constraints on g and k are as follows:

Constraint 1: since e = Z;/2 — k > 0, we get that k < Z,/2, but since we set Z4/2 = nzy/(nzo +
nzy + nzy + nzz + nzy), we get

k< mnz4/(nzo + nz + nze + nzs + nzy).

Constraint 2: since d = (Zo + Z1 + Zo + Zs + Z4/2) — Yo — Y1 — Yo — k > 0, we get that & <
(Zo+ Z1+ Zo + Zs + Zy/2) — Yy — Y1 — Y and by our choices for the Y}, Z;, we get

k < nys/(nyo + ny1 + ny2 + nys).

Constraint 3: since h = Yy — Zg — g > 0 and we set Yy = nyo/(nyo + ny1 + nys + nys) and
Zy = nzo/(nzo + nz1 + nzo + nzg + nzy), we get

g < nyo/(nyo + ny1 + ny2 + nys) — nzo/(nzo + nz1 + nza + nzg + nza).

Constraint 4: since b = Z1 — Yo + Zy + g > 0 and we set Z; = nz1/(nzo + nz1 + nze + nzs + nzy),
we get

g > nyo/(nyo + ny1 + nyz + nys) — (nzo + nz1)/(nzo + nzi + nza + nzz + nzg).

Constraint 5: since ¢ = (Xo — 272y — 71 — Z3 — Zy + Yo + Yo + 2k — 2g) /2 > 0, we get

g —k < (nyo + ny2)/(2(nyo + ny1 + ny2 + nys)) + (—2nzp — nz; — nzg — 2nz4)/(2(nzo + nz1 +
nzy +nzz +nzq)) + nxoe/(2(nxg + nxy)).

Constraint 6: since f = Xo/2+3Yy/2+ Y1+ Y2/2—-220—32Z,1/2—Z3/2— Zo — Z4/2+ k — g > 0,
we get that

g—k < (nzo/2)/(nxzo+nz1) + (3nyo + 2ny1 + ny2) /(2(nyo + ny1 + nya + nys)) — (dnzo + 3nzy +
nzs + 2nzg + 2nz4)/(2(nzp + nzy + nzg + nzz + nzy)).

Constraint 7: since i = (—Xo — Yo — Yo + 2720 + Z1 + 222 + Zs + Z4) /2 — k > 0, we get

kE < —(nyo + ny2)/(2(nyo + ny1 + ny2 + ny3)) — nzo/(2(nzo + nx1)) + (2nzo + nz1 + 2nze +
nzg + 2nzy)/(2(nzo + nzy + nze + nzs + nzy)).

Constraint 8: since j = —Yy/2 4+ Y2/2 — Xo/2+ Zo + Z1/2+ Z3/2 4+ g > 0, we get

g > —nxo/(2(nxo+nz1))+(—nyo+nye)/(2(nyo+ny1 +ny2 +nys)) — (2nzo +nz1+nzs) /(2(nzo +
nzi + nzo + nzs + nzy)).

Setting ¢ = 5 and 7 = 2.372873/3 we first find the values g = ¢’ and k = £’ for which F(g,k) =
a®bbccd?e® ffgInlitj7kF is maximized for our settings for a,b,c,d,e, f, h,i,j above, given the 8 con-
straints on g and k above. We obtain ¢’ = 0.305326266603096 - 1073,k = 0.327470701886469, and
F(g', k") = 0.223663404773788599. We then minimize G(g, k) = Vags/(a®b?ccd?e® ff g9hMit j7kF) for
the settings and over the 8 constraints on g, k. We obtain that GG is minimized for gg = 0.000305373765871005, k =
0.327509292231427 and for these settings it is 1.83709636797664943 - 10°. We then obtain that

Vags > G(g'k')F(g, k) = 4.108912286 - 10°.
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Lemma 23. When q = 5 and 7 = 2.372873/3, Vorr > 4.850714396 - 10°.

In general,

V3 1/3 V3 V3 V3 V3 V6 VG V6 VG 1/3
V277 > 2 (1 + 116 > ( 0177026 Y125 + ‘/0326‘/1325 + 026 ¥ 125 + 134 Y026 125> %
2Vihe Vil Vite  VibsVahaVile

: 1/3 c d
<V0317 Vie L1 %%5‘/2324‘/1316) / (%%5‘/2224‘/1216) <V044V233V116> .

=t + ==
3 3 3 6 2 2 2 2
Viss ~ Viss Voze Vias Vi34 VoasVizs Viz4Voze
where a, c,d are constrained by constraints from our framework (see the proof).
Proof. I = 2, J=K = 7, and the variables are a = 017, b= 026, C = (035, d= 044, € = X053, f =

ap62, g = ao71, h = o7, 7 = a116,J = 125, k = a134. The linear system is
Xo=a+b+c+d+e+ f+yg,

Yo=g+h,

Y1:a+f+’i,
Yo=b+e+],
Zo=a+h,

leb+g+i,
Zy=c+ f+7,
Z3:d+e+k:.

The system has rank 8 and 11 variables, so we pick 3 variables, a, ¢, d , and put them in A. We solve the
system:

h=(a+h)—a=2Zy—a,
g=(g+h) —h=Yy—2Zo+a,
k=(a+h)+(b+g+i)+(c+f+j)+d+e+k)—(9g+h)—(a+f+i)—(b+e+j)—c—d=
o+ 21+ 2o+ 735 —Yy—Y — Yo —c—d,
e=(d+e+k)—d—k=2Zs—d—(Zo+2Z1+Z2+Z3—Yo—Yo—c—d) = —Zo— 21— Zo+ Yo+ Y1+ Yo+,
b=(a+b+c+d+e+f+g)—(a+f+i)+(b+g+i)—29—c—d—(d+e+k)+d+k)/2=
X0/2—)/1+Zl — (3/2)Y0—|-(3/2)Zg—a—c—d/2+Z2/2—Y2/2,
i=0b4+g+i)—b—g=-Xo/2+Y1+Y/2—Zy/2+c+d/2—Z3/2+ Y>/2,
f:(a—i—f—i—i)—a—i:—a—I—X0/2—Yb/2+Z0/2—c—d/2+Zg/2—Y2/2,
J= (et fri)—c—f=2a/24+a—Xo/2+ Yo/2 = Zo/2+ d/2 + Y2 2.

nao = Vi Vivs/ (ViteVibs)s

nx; =1/2,

nyo = %235‘/2?24‘/0217‘/13163/ (‘/()2)26‘/1225‘/1634)’
ny, = ‘/()5,5‘/2324‘/1316/(‘/0326‘/1625‘/134)7
ny2 = Vi35Vs24Vi1e/ Voas Visa)»

nys = 15

nzg = %?6‘/1225%217‘/1%43/(‘/()2?5‘6324‘/1316)7
nzy = ‘/()326‘/1625‘/15,4/(%55%324)’ B

nz2 = Vo Vias Visa/ (Vozs Vaaa Vite)s

nzg = Vi,
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na =1,
nec = Vo235 V2224V1216/ (V1%4‘/E)226V1225)9
nd = VousVazsVite/ (Vi Vo2e)-

3 1/3
Varr > 2 <V§’26V1325 - 1/2) <V0%5V2324VE)317VI316 " ViissVonaViie " ViissVanaVile 1) y
T VitV Vi Vids Visa Vi Vids Visa Vb Vi

<V0326V1325V0317V1%4 + V(J326V1325V1634 + %326‘/1625‘/1634 + V8 )1/3 <V0235V2224V1216>C (V044V233V116>d
%%5 V2324V1316 VO%5V2324 %%5 ‘/2324‘/1316 1 V1234V0226V1225 V1234V026 .

We now consider the constraints on a, ¢, d.

Constraint 1: since k = Zy + Z1 + Zo + Z3 — Yy — Y1 — Yo — ¢ — d > 0, by our settings of the Y;, Z;
we get that

c+d < nys/(nyo + ny1 + nys + nys).

Constraint 2: since e = —Zg— 21 — Zo+ Yp+ Y1 + Yo+ ¢ > 0, by our settings of the Y;, Z; we get that

¢ > nys/(nyo + ny1 + nys + nys) — nzs/(nzg + nzy + nza + nzs).

Constraint 3: since h = Zp — a > 0 and we set Zy = nzo/(nzo + nz1 + nzz2 + nz3), we get that

a < nzy/(nzo + nzy + nze + nzs).

Constraint 4: since g = Yy — Zp + a > 0 and we set Yy = nyo/(nyo + ny1 + nya + nys), we get that

a > nzy/(nzg + nzy + nze + nzg) — nyo/(nyo + ny1 + nya + nys).

Constraint 5: since b = Xo/2 — (3/2)Yy — Y1 — Y2/2+ (3/2) 20+ Z1+ Z2/2 —a —c—d/2 > 0, we
get that

a+c+d/2 < (3nzo+2nz1 +nz2)/(2(nzo +nzi +nze+nzz)) + (—nyr — 3nyo/2 — ny2/2) /(nyo +
ny1 + nya2 + nys) + nxo/(2(nxo + nx1)).

Constraint 6: since i = —Xo/2 + Yo/2+ Y1 + Y2/2 — Zy/2 — Z2/2 4+ ¢+ d/2 > 0, we get that

c+d/2 > —(nyo + 2ny1 + ny2)/(2(nyo + ny1 + nya + ny3)) + nao/(2(nzo + nw1)) + (nzo +
nz2)/(2(nzo + nz1 + nza + nz3)).

Constraint 7: since j = —Xo/2 + Yo/2 + Y2/2 — Zp/2 + Z3/2 + a+ d/2 > 0, we get that

a+d/2 > (nzg —nz2)/(2(nzo + nz1 + nza + nz3)) — (nyo + ny2)/(2(nyo + ny1 + ny2 + nys)) +
nxo/(2(nzo + nxy)).

Constraint 8: since f = —a —c—d/2+ Xo/2 — Yo /2 — Yo /2 + Zy/2 4+ Z2/2 > 0, we get that

a+c+d/2 < (—nyo — ny2)/(2(nyo + ny1 + ny2 + nys)) + (n20 + n22)/(2(nzo0 + nz1 + nza +
nzs)) + nxo/(2(nxo + nxy1)).

Now, let F(a,c,d) = a®’ctdde ffgIntitji k¥ for the settings of b, e, f, g, h,i,j, k in terms of a, ¢, d
as above. We first find the settings a’, ¢/, d’ that maximize F' under the constraints from 1 to 8 above. Then,
we find the settings a”, ¢, d” that minimize Va77(a, ¢, d)/F(a, ¢, d) under the same 8 constraints. Finally,
we conclude that Vor7 > F(a'dd')/F(a”, ", d")Varz(a”, ", d").

From Maple we get that a’ = 0.970387372073004-1075, ¢’ = 0.0816678275096020, d’ = .346697875753760, a” =
0.971619435812525-107°, ¢’ = 0.0822791888760284, d”" = .345469920458090, and thus Va77 > 4.850714396-
10°.

O

Lemma 24. When q = 5 and 7 = 2.372873/3, we have V3319 > 1.242573275 - 109.

Furthermore,
ViV \ ' (Vi . "
V331022<1+V3 V3 T +1 X
026 V134 116 V224
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1/3 d
(‘/2?:’33‘/1316‘/2324 4 %317‘/2%3 i %:326‘/13:,34 T ‘/1%5%326‘/1334 ) <V0235V1216V2224> 7

3 3 3 3 2 2 2
V134‘/E)26 2‘/116‘/224 ‘/125%26‘/134

where b and d are constrained as in our framework (see the proof).

Proof. I=J= 3,K = 10, and the variables are a = Q008 , b= 017, C = (026, d= @35, € = (X116, f =
1925, 9 = 134, h = a197. The linear system is as follows:

Xo=a+b+c+d,

Yo=a+d+g+h,

Zy = a,
Zs=b+h,
Zy=c+e+g,
Z5 =2(d+ [).
The system has rank 6 and 8 variables, so we pick two variables, b and d, and add them to A. We solve
the system:
a= Zs,

h=({b+h)—b=2Z3—b,
f=(dtf)—d=Zs/2d

:(a—l—b—l—c+d)—a—b—d:Xo—Zg—b—d,
g=(a+d+g+h)—a—d—h=Yy—Zy—Zs+b—d,

= (C+€+g)—c—g:Z4—(X0—22—b—d)—(}/()—ZQ—Zg+b—d) =279+ 73+ 74— Xo—Yo+2d.

nro = %326‘/1%4/(‘/1316‘/2324)’

nry =1,
Yo = ‘/()356V1?§4/ (V1316V2324),
ny; =1,

nz = V2333V1616V2624/ (%626‘/1634)’
nzg = V1316V2324V0317V2?§3/ (%326‘/1%’)4)7
nzy = V1316V2324’

nzs = ‘/1625/ 2,

nb=1,
nd = V0235V1216V2224/ (V1225V0226V1234)-

1/3 1/3
‘/3310 >9 (‘/026‘/134 + 1) / (‘/134‘/026 + 1) / %
RN GREN V6V

<V2%3V1616V2624 V6 Va2 Vo7 Vass IR VB0 VSR 70 /2> V8 %
Vi34 Vide Vi Vida Ho T 120
(‘Ww‘ffu> ’
Vi Vs Visa
We now give the constraints on b, d:
Constraint 1: since h = Z3 — b > 0 and Z3 = nz3/(nze + nzs + nzy + nzs), we get
b < mnzs/(nze + nzs + nzy + nzs).

Constraint 2: since f = Z5/2 —d > 0 and Z5/2 = nz5/(nze + nzg + nzy + nzs), we get
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d < nzs/(nze + nzs + nzy + nzs).

Constraint 3: since ¢ = Xg — Z2 — b — d > 0, we get that

b+ d < nxog/(nzy+ nxi) —nze/(nze + nzs + nzy + nzs).

Constraint 4: since g = Yy — Zo — Z3 + b — d > 0 and since Yy = nyo/(nyo + ny1) and Zy =
nzy/(nze + nzs + nzg + nzs), we get

d—b < nyo/(nyo +ny1) — (nzg +nz3)/(nz2 + nzz + nz4 + nzs) = Cy.

Constraint 5: since e = Zy—(Xo—Zo—b—d)—(Yo—Zo—Z3+b—d) = 2d— Xo—Yy+2Z2+Z3+ 7, > 0,
we get that

d > (nzo/(nxo + nz1) + nyo/(nyo + ny1) — (2nze + nzs + nzq)/(nze + nzs + nzy + nzs)) /2.

We first find the settings ¥', d’ for which F(b,d) = a®’cd?e® ffg9h" is maximized for our settings
for a,c,e, f,g, h above in terms of b and d. With MAPLE we get b = 0.00790328517086545,d =
0.0936429784188324.

Then we find the settings b, d” for which V3310(b, d)/F (b, d) is minimized. We get b’ = 0.00790325512918024,d" =
0.0936943525122263. Finally, we output that V3s19 > F(b',d’) - Vaz10(b”,d")/F(b",d") > 1.242573275 -
10°.

O

Lemma 25. For g = 5,7 = 2.372873/3, V349 > 3.209787942 - 10°.
In general,

1/3 3 3 1,3 3 173 1/3
1/3 Vo344 V2324 Visy Voi17Vaas | ViaeViza
Vasg > 2 (Vs Vidy + VisaVids <+1+ + + +1)  x
( o P ) e T vans T v,

(V233 VoaaVi2s ) b <V233 VoaaVi2s > ¢ < Vi16V233 V044 ) g
V224 V035 Vi34 V224V134 Vo35 VoasVisy '

Above, b, ¢, g are constrained as in our framework (see the proof).

Proof. I =3,J =4, K =9, so the variables are a = aqos, b = 17, ¢ = Qpog, d = Qp35,€ = Qoaa, [ =
a107,9 — (116, h = Oé125,i = 04134,]' = (¥143. The linear system becomes

Xo=a+b+c+d+e,

Yo=a+e+ f+7,

Yi=b+d+g+1,

Z1 = a,
Zgzb—l—f,
Zz=c+g+],

Zy=d+e+h+i.

The rank is 7 and the number of variables is 10 so we pick 3 variables, b, ¢, g, to place into A. We solve
the system:
a= 2,
h=a+0b+f)+(c+g+j)+d+e+h+i)—(a+e+f+j)—(b+d+g+i)—c=
(Z1+ 2o+ Z3+ Zy) — (Yo + Y1) — ¢,
f=0b+f)—b=2Z—b,
j=(c+g+tj)—c—g=2Z3—c—g,
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e=(ate+f+j)—a—f—j=Yo—Z1—Zs—Z3s+b+c+y,
d=(a+b+c+d+e)—a—-b—c—e=Xg—Yy+ Zo+ Z3—2b—2c—g,
i=0b+d+g+i)—-b—d—g=—-Xo+Yo+Y1—Zo— Z3+ b+ 2c.

_ /3 3
nxo = Vizs/Vizss
nry =1,

_ /3 3
nyo = V0514/ ‘/'2324’
nyy = V134/V224’
nys = 1/2,

_ 13 /3 1/3 3 13
nz = ‘/1??4‘/1625‘/22:431/(‘/044‘/035)’
nza = V()317V2324/‘§0447 5
nz3 = V1§4V2324V026/ Voaas
nzg = VigsVanys

nb = Va33VoaaVias / (Va4 Vo35 Viza),
ne = Vo33 VoaaVias/ (Va4 VizaVoss),
ng = Vi16Vas3Voaa/ (Voze Viss)-

1/3 1/3 1/3
Vit +1> / <Vo?i;4 V1?§4 1) / (V1%4V1325V2324 4 V()317V2624 4 ‘/1??,4‘/2324‘/0?% —i—V1325V2324> %

Vaag > 2 <035 — ==+
Vids Vi Vaby 2 Vi Viss Vi Vi

( Vo33VoaaVi2s ) b <V233 Vo4aVi2s ) ¢ (V116V233 Voaa > g
V24 V035 V134 Vo24V134 Vo35 Vo6 Visa '

We now look at the constraints on b, c, g:

Constraint 1: since h = (Z1 + Zo+ Zs+ Zs) — Yo+ Y1) —¢c = Y2/2 —¢c > 0, and Y>/2 =
nya/(nyo + ny1 + ny2), we get

¢ < nya/(nyo + ny1 + nyz).

Constraint 2: since f = Z3 — b > 0 and Zy = nza/(nz1 + nze + nzs + nzy), we get
b < mnzy/(nz1 + nze + nzs + nzy).

Constraint 3: since j = Z3 — ¢ — g > 0 and Z3 = nz3/(nz1 + nza + nzs + nzy), we get
c+ g <nz3/(nz1 +nze + nzs + nzy).

Constraint 4: sincee = Yy — Z1 — Zo — Z3 + b+ c+ g > 0, and Yy = nyo/(nyo + ny1 + ny2) and
Z1 =nz1/(nz1 + nze + nzs + nzy), we get

b+ c+ g > (nz1 + nzy + nzs)/(nzr + nze + nzg + nzy) — nyo/(nyo + ny1 + nya).

Constraint 5: since d = Xog — Yy + Zo + Z3 — 2b — 2¢ — g > 0 and Xy = nzo/(nxg + nxy), we get
2b+2c+ g < nxzo/(nxo + nx1) — nyo/(nyo + ny1 + nyz2) + (nze + nzs)/(nz1 + nza + nzg + nza).

Constraint 6: since i = —Xo + Yp + Y1 — Zo — Z3 + b+ 2¢ > 0, we get that b + 2¢ > nxo/(nxo +
nxl) — (nyo +ny1)/(ny + 0+ ny1 + nya) + (nze + nz3)/(nz1 + nze + nzs + nzy).

58



Now, we first find the values b’ = 0.00106083709584428, ¢’ = 0.0371057688416268, ¢’ = 0.0507162807556667
that maximize F(b,c,g) = a®bPctd?e ffg9h"i';j7 under our settings for a,d, e, f, h, i, j as functions of
b, c,g over the above 6 linear constraints. Then we find the values b = 0.00105515376175534, c” =
0.0370594417928395, ¢” = 0.0505876038619197 that minimize V349(b, ¢, g)/F (b, ¢, g) over the above
6 linear constraints. Finally, we conclude that Vay9 > F(V',c,g') - Vag(V', ", ¢")/F(", ", ¢") >
3.209787942 - 10°.
]

Lemma 26. When q = 5,7 = 2.372873/3, V358 > 6.082545902 - 10°.
In general,

L Voir Vi

1+
Viss Vs Viss

3 3 \1/3 /1,3 3 3 \1/3 ‘/1%4‘/2324 e
Vasg > 2 (Vs + Vins) '~ (Voas + Visg + Vaig) 2V3 13 X
125 V233
<V116V035V224 > 4 < Vo4aVi25 Vo33 ) ¢
Vo26V134V125 VoouVizaVoss )

Here b, ¢, h, e are constrained as in our framework (see the proof).

PI’OOf. I = 3,J = 5,K = 8, so the variables are a = @008, b= 17, C = 0026, d = 035, € = Op44,
f = (X053, g = X107, h= 116, = 1925, ] = (X134, k= 143, | = a152. The linear system becomes
Xo=a+b+c+d+e+f,

Yo=a+f+g+1,

Yi=b+e+h+k,

Zp = a,
Z1:b+g,
ZQZC+h+l,
Zys=d+ f+i+k,
Z4:2(6+j).

The system has rank 8 and 12 variables, so we pick 4 variables, b, ¢, h, e to put in A. We then solve the
system:
CL:ZO,
g=(0b+g)—b=21 -,
j=(e+j)—e=2Zs/2 e,
l=(c+h+l)—c—h=Zy—c—h,
f=la+f+9+l)—a—g—1=Yo—20—2Z1—Za+b+c+h,
d=(a+b+c+d+e+f)—a—-b—c—e—f=Xo—Yo+2Z1+Z2—2b—2c—e—h,
i = (ctd+itj)—c—d—j = (Z1+2Z2+Z3+Z4/2)— Yo+ Y1) —c—d—j = (Zo+Z1+ 2o+ Z3+ 24 /2~
Yo—Y1)—c—(Xo—Yo+ 21+ Z2—-2b—2c—e—h)—(Zy/2—e) = —Xo—Y1+ Zo+ Z3+2b+c+2e+h
k=b+e+h+k)—b—e—h=Yr—b—e—h.

nro = ‘/()%5/‘/1325’
nry =1,
nyo = Vo§35/ Vz}&
ny1 = Viza/Vszss
nys = 1,
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nzo = VidsVass/Viss,

nz1 = VasaViirViss [ Visss
nz = ‘6%3V1?)25‘/E)326/ ‘/()%5’
nz3 = V1325V2333’

nzy = ‘/1??34‘/2324/ 2,

nb=1,
nc=1,
nh = Vi16Vo35Va24/ (Vo2 Vi34 Vias),
ne = VosaVi25Va33/ (V224 V134 V035)-

V3 1/3 V3 V3 1/3 V3 V3 V3 VS V3 V3 V3 V3 V3 V3 1
‘/358 > 2 <VE)§>5 + 1) <‘/0§5 + V1§4 + 1) < 1%/53 233 + 017V1325 233 + 026V1325 233 + ‘/1325‘/2?33 + 1342 224)
125 233 233 035 035 035

Vo26V134 V125 Vo24V134 Vo35
Let’s look at the constraints on b, ¢, h, e:
Constraint 1: since g = Z; — b > 0 and we set 71 = nz1/(nzo + nzy + nzy + nzs + nzy), we get
b < nzi/(nzyp + nz1 + nze + nzs + nzy).

<V116V035V224 ) h ( Vo44V125 Vo33 ) ‘

Constraint 2: since j = Z;/2 — e > 0 and we set Z4/2 = nzy/(nzo + nz1 + nzs + nzs + nzy), we get
e <nzy/(nzo + nz1 + nze + nzs + nzy).

Constraint 3: since | = Zo — ¢ — h > 0 and Zy = nzo/(nzo + nzy + nzy + nzs + nzy), we get
c+h <nzo/(nzo+ nz1 + nze + nzs + nzy).

Constraint 4: since f =Yy — Zg — Z1 — Zo+ b+ c+ h > 0and Yy = nyo/(nyo + ny1 + ny2) and
Zy =nzo/(nzo + nz1 + nzo + nzg + nzy), we get
b+ c+h > (nz+nz +nze)/(nzg + nz + nze + nzs + nzy) — nyo/(nyo + ny1 + nyo).

Constraint 5: sinced = Xo—Yp+ 21+ Z2 —2b—2c—e—h > 0 and Xy = nxo/(nxo+nxy), we get
20+2c+e+h < nxo/(nxo+nxi)—nyo/(nyo+nyi+ny2)+(nz1+nz2)/(nzo+nzi+nze+nzs+nzs).

Constraint 6: sincei = —Xo— Y1+ Zp+ Z3+2b+c+2e+h =Yoo — Z4/2 — Xo+ Yo — Z1 — Zo +
2b+c+2e+h >0, we get

2b+ c+2e+h > nxg/(nxo + nx1) — (nyo + ny2)/(nyo + ny1 + ny2) + (nz1 + nze + nzq)/(nzo +
nzy + nzg + nzz + nzy).

Constraint 7: since k =Y, —b—e — h > 0, we get

b+e+h < nyi/(nyo +nyr + ny2).

Assume that 7 = 2.372873/3. Now, we first find the setting &’ = 0.000101938664845774,¢ =
0.00885151618359280, ¢’ = 0.0974448528665440, h' = 0.00670556068057964 that maximizes F'(b, ¢, h,e) =
a®bPctdde f1gInhitj7k*1'. Then we find the setting [b” = 0.000102396163321746, ¢’ = 0.00884748699884917, ¢"" =
0.0970349718925811, h” = 0.00671965662663561 that minimizes V3s5(b, ¢, h,e)/F(b,c, h,e) and con-
clude that Vasg > F(V', ¢/, 1/, e') - Vasg (b, " B, e") JF (b, " b e") > 6.082545902 - 10°.
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Lemma 27. When q = 5,7 = 2.372873/3, V37 > 8.305250670 - 10°.

In general,

|7 1/3 1/3 1/3
Vg7 > 2 <V0335 + 1> (Voss + Vids + Vaba + Voss/2) / (Voir + Vide + Vids + Visy) 7 x
125

<V()26V134V125 ) b <VE)44V233V125 > d
Voss V24 V116 VossVizaVaoa )

Here a,b, c,d, e are constrained as in our framework (see the proof).

PVOOf. I = 3,J: 6,K = 7 so the variables are a = 04017,17 = (026, C — Ozogg,,d: Qp44, € = Oéo53,f =
62,9 = 04107,h = 04116,i = 04125,j = 04134,]{ = 0414371 = 152,M = Q161- The linear system is as
follows.
Xo=a+b+c+d+e+f,
Yo=f+g+m,
Yi=a+e+h+l,
Yo=b+d+i+k,
Z0:a+g,
Zi=b+h+m,
Zy=c+ fH+i+l,
Zy=d+e+j+k.

The rank is 8 and the number of variables is 13, so we pick 5 variables, a, b, ¢, d, e, and place them in A.
Now we solve the system.
g=(a+g)—a=2Zy—a,
f=(a+b+c+d+e+f)—a—-b—c—d—e=Xo—a—b—c—d—e,
m=(f+g+m)—f—g=Yo—Zp—Xo+2a+b+c+d+e,
j=(c+j)—c=(Zo+ 21+ Zo+ Z3) — (Yo + Y1+ Y2) —c,
k=(d+e+j+k)—d—e—j=—(Zo+2Z1+Z2)+ Yo+ Y1+ Ys)—d—e+ec,
i=0b+d+i+k)—b—d—k=(Zo+Z1+Z2)— (Yo+Y1)+e—b—c,
l=(c+f+itl)—c—f—i=-Xo—(Zo+2Z1)+ Yo +Y1)+a+2b+c+d,
h=(a+e+h+l)—a—e—1l=Xo+(Zo+7Z1)—Yo—2a—2b—c—d—e.

nry = %%5/1/1325,
nry =1,

nyYyo = VO326/ Vz%s’
nyr = V1325/ Vz%&
ny2 = V2324/ Vz?és’
nys = 1/2,

nzo = V()317V2?§3’
nz = VIP)IGVQ%B’
nz2 = ‘/1325‘/2%3’
nz3 = V1?§),4V2?§37
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na =1,

nb = Voo Vi34 Vias/ (Voss Va2a Viie),

nec=1,
nd = VoaaVazzVias /(Voss VizaVaoa),
ne = 1.

Vs a Vise |, Vids | Van Ve 3 173 3 173 3 13 3 173 \1/3
Vaer > 2 <V3 + 1) <V3 tye tys T 1/2> (Vo17Vass + ViteVass + VigsVazs + VizaVass) '~ X
125 233 Va3 Vazg

(VO26V134V125 > b <V(J44V233Vm5 > d
Voss V224 V116 VossVizaVaoa )

Now we consider the constraints on a, b, ¢, d, €.

Constraint 1: since g = Zg —a > 0

a < nzy/(nzo + nzy + nze + nzs).

Constraint 2: since f = Xg—a—-b—c—d—e >0

a+b+c+d+e<nry/(nwg + nrwy).

Constraint 3: sincem =Yy — Zg— Xo+2a+b+c+d+e>0

2a+b+c+d+e > nxo/(nwo+nzi)+nzo/(nzo+nzi+nze+nzs)—nyo/ (nyo+nys +nys+nys) = Cs.

Constraint4: since j = (Zo+ Z1+ Za+ Z3) — Yo+ Y1 +Y2) —c>0

¢ < nys/(nyo + ny1 + nys + nys).

Constraint 5: since k = Z3 — Y3/2 —d—e+c¢c >0

d+e—c<nz3/(nzop + nzi + nzo + nzs) — nys/(nyo + ny1 + nya + nys).

Constraint 6: since i = Yo — Z3 + Y3/2+e—b—c>0

b+ c—e < (ny2+nys)/(nyo + ny1 + ny2 + nys) — nzs/(nzo + nz1 + nzo + nzs).

Constraint 7: since | = Zo + Z3 — Xo— Yo — Y3/24+a+2b+c+d >0

a+2b+c+d> (ny2 + nys)/(nyo + ny1 + nyz2 + nys) + nxo/(nxe + nxy) — (nze +nzs)/(nzo +
nzy + nzy + nzs)..

Constraint 8: sinceh =Y, + Yo+ Y3/2 — Zo — Zs+ Xg—2a —2b—c—d—e >0

2a+2b+ c+d+ e < (ny1 + ny2 + nys)/(nyo + ny1 + ny + nyz) + nxo/(nxo + nei) — (nze +
nz3)/(nzo + nz1 + nze + nz3).

Assume that 7 = 2.372873/3. Now, we first find the setting ¢’ = 0.896351957010172 - 10750 =
0.00188722012414286, ¢ = 0.0476091293800089, d’ = .133911483061472, ¢ = 0.0188038856390314
minimizing F(a,b,c,d,e) = a®bbctd®effgInitjik*1'm™ under the settings of f, g, h,i,j, k,1,m in
terms of a,b,c,d,e and under the above 8 constraints on a,b,c,d,e. Then we find the setting o’ =
0.897911747394834-107°, 0" = 0.00189912343335534, ¢’ = 0.0479980389640663, d” = .133369689001539, ¢’ =
0.0189441262665244 maximizing Vg7(a, b, ¢, d, e)/F(a,b, ¢, d, e) over the same 8 constraints. Finally, we
conclude that Vagy > F(a', b, c,d',e") - Vagr(a”,b",c",d", ") F(a",b", ", d", e") > 8.305250670 - 10°.

O

Lemma 28. When q = 5,7 = 2.372873/3, we have Vg > 6.908047489 - 10°.
In general,

1/3 1/3
Vigg > (VO%S‘/%A‘JF Vi Vids Vibs i ‘/1%5V23:),3) <V1%4V0%5 Visa i 1) v

V2324 2 V1325 ‘/2333 ‘/2324 2
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1/3 e
(‘/()324‘/1325‘/2%3 + ‘/()317‘/5324 + Vo326V2324 + V2324 V2624 ) / (%%14‘/1225‘62:),3) <V116V035V224>g_

6 1/6 3 1/3 3 1/3 3 3 1/3 2 1/2 1/2
V035V134 V134V035 V134V035 V134 2‘/125‘/233 Vo35V134V224 Vo26V134Vi25

Here, b, c, g, e are constrained as in our framework (see the proof).

Proof. I = J = 4, K = 8 and the variables are a = aqgg, b = ag17,¢ = ag26,d = Q35,6 = Qoad, [ =
a107,9 = 116, h = 04125,i = Oz134,j = (X143, k= Oégoﬁ,l = (215, T = (¥224. The linear system becomes
Xo=a+b+c+d+te,

Xi=f+g+h+i+7,

Yo=a+e+ f+j+k,

Yi=b+d+g+i+l,

Zy = a,
Z1=b+ f,
Zy=c+g+k,

Zz=d+h+j+1,
Zy=2(e+1i+m).
The rank is 9 and the number of variables is 13 so we pick 4 variables, b, ¢, e, g, and we put them in A.
We now solve the system.
a = Zo,
f=0+f)—b=2Z1 -1

kZ(C—i-g—l—kJ)—c—g:Zg—c—g,
d=(a+b+c+d+e)—a—-b—c—e=Xo—Zyp—b—c—e,
j=(a+e+f+j+k)—a—e—f—-k=Yo—Zo—Z1—Za+b+c+g—e,
i=((f+g+h+i+tj)+b+d+g+i+tl)—(d+h+j+1)—f—29-0)/2=(X1+Y1—235—71)/2—g,

h=(f+g+h+i+j)—f—g—i—j=X1/2-Yo-Y1/24+ 2o+ Z1/2+ Zo+ Z3/2 —c—g+e,
m:(e+i+m)—e—i:(—X1—Y1—|-Z3+Zl)/2—|—Z4/2+g—e,
l:(b—i—d—i—g—i—i—l—l)—b—d—g—z':(—Xo—X1/2+Y1/2+Z0+Zl/2+Z3/2)+c+e.

nao = Viss Vise/(Vins Vaba)s

nwy = Vis, /Vibs,

nxe = 1/2,

nYo = V13§4V0?§5/ (V1325V2?§3),

ny1r = ‘/}334/ Vibas

nys = 1/2,

nzo = ‘/()14‘/1625‘/2633/ (‘/()%5‘/1634)’

nz = ‘/()317V2?)24‘/1325V23§3/ (‘/i%4‘/63:35)’
nzz = V1325V2%3V0326V2324/ (V1334V03§>5),
nz3 = V1325V2?§3V2324/ ‘/1??34’

nzy = Vay/(2),

nb=1,
nc =1,
ne = VO?Z4V1225V2233/ (V0235V1234V2224),
ng = Vi16Voss Va2a/ (Vo2 Vi34 Vias).

1/3 13
Vs > <‘/E)??35V1%4 +V1334 +1> / ({/1?5341/0?%5 _|_V1334 1> / .

, , , +z
‘/1?’25 V2333 V2324 2 ‘/1525 VQ?E’)S V2324 2
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1/3
(%%14‘/1(525‘6%3 4 %317‘/2324‘/1325‘/2%3 4 ‘/()326‘/5324‘/1325‘/2%3 4 ‘/2324‘/1325‘/2%3 4 ‘/'2624> %

6 1/6 3 173 3 173 3
Voas Viza VisaViss VinaViss Vizg 2
3 12 172\ € g
(Vo44v125v233> <V116V035V224>
Vs Vi34 Vaas Vo26V134V125

Let’s look at the constraints on b, c, g, e.

Constraint 1: since f = Z7 — b > 0 we get

b <mnzi/(nzg+ nz1 + nze + nzs + nzy) = Cy.

Constraint 2: since k = Z3 — c — g > 0 we get

c+ g <nz/(nzg+nz +nze +nzs +nzy) = Cs.

Constraint 3: sinced = Xg — Zg —b—c—e > 0 we get

b+ c+ e < nxzo/(nxg+ nxy +nxy) —nzo/(nzo + nzy + nze + nzs +nzy) = Cs.

Constraint 4: since j =Yy — Zg— Z1 — Zas+b+c+ g — e > 0 we get

b+c+g—e>—nyo/(nyo+ny1 +ny2) + (nzo +nz1 +nz2)/(nzo +nz1 +nze +nzg +nzy) = Cy.

Constraint 5: since i = (X1 + Y1 — Z3 — Z1)/2 — g > 0 we get

g < nz1/(2(nxo + nxy + nx2)) + ny1 /(2(nyo + nyr + ny2)) — (nz1 + nz3)/(2(nzo + nzp + nee +
nzs +nzy)) = Cs.

Constraint 6: since h = X1/2 — Yy —Y1/2+ Zo+ Z1/2 + Zo+ Z3/2 —c — g+ e > 0 we get

c+g—e <nxi/(2(nxo+ nx1+nwe)) — (nyo + ny1/2)/(nyo + ny1 +ny2) + (nzo + nz1/2 + nze +
nzs/2)/(nzo + nz + nza + nzz + nzg) = Cs.

Constraint 7: sincem = (—X1 — Y1+ Z3s + Z1)/2 + Z4/2+ g — e > 0 we get

e—g < —nz1/(2(nxg + nxy +nx2)) —ny1/(2(nyo + ny1 +ny2)) + (nzg/2 +nz1 /2 4+ nzs) /(nzo +
nzy +nzy +nzz +nzy) = Cr.

Constraint 8: since | = (—Xo — X1/2+Y1/2+ Zo+ Z1/2+ Z3/2) + ¢+ e > 0, we get

c+e > (2nzo+nz1)/(2(nwo+nz1+nw2)) —ny1/(2(nyo+ny1 +ny2)) — (2nzo+nzi +nzs) /(2(nzo+
nz1 +nzg +nzz + n24)) = Cks.

To summarize, the linear constraints on b, ¢, g, € are
b<Ci,c+g<Cybtc+e<C5C,<bt+tct+g—e,g<Csct+tg—e<Cse—g<C7,C3<c+e.

Assume that 7 = 2.372873/3. First, we compute the setting b’ = 0.648069822559251 - 1074, ¢/ =
0.00291873112245236, ¢’ = 0.0169690155126008, ¢’ = 0.0106131481064985 minimizing F'(b,c, g,e) =
a®bbccd?e® ffgInlit j7kF1'm™ under the above linear constraints and using the settings of the rest of the
variables in terms of b, ¢, g, e. Then we find the setting b = 0.648072770234329-10~4, ¢ = 0.00294155294463157,¢” =
0.0166122266309863, ¢” = 0.0105674995477950 maximizing Viss(b, ¢, g,¢e)/F (b, ¢, g, e) under the lin-
ear constraints. Finally, we conclude that Vg > F(V/,c, ¢, ¢e') - Vaug(b", ", ¢g", ") JF(b", ", ¢",€e") >
6.908047489 - 10°.
O

Lemma 29. For ¢ = 5,7 = 2.372873/3, we have V57 > 1.076904071 - 109.
In general,

1/3 3 3 173 3 1/3
3 (Vs Vi V ViV, Vi
Visz > 2 (VihaVisss + Visy Vs + Ving Vs /2) <V0335 + % +1 VO:),N + ‘/02,26‘/1325 + ‘/1325 +1 X
233 233 134 035 V224 134
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(VO35V134V224 ) b <V()35V134V224 > ¢ <V116V035V224 ) g
Vo4aVi25 Vo33 Vo4aV125 Vo33 Vo2sVi2sVisa )

Here a,b,c,e, g, h are constrained by our framework (see the proof).

Proof. I = 4,J = 5, K = 7 and so the variables are a = ag17,b = 26, ¢ = Qo35,d = a4, € = Qp53,
f = ai07,9 = a116,h = Q125,1 = 134, = @143,k = a152,1 = @206, m = 215,17 = 224. The linear
system becomes
Xo=a+b+c+d+e,
Xi=f+g+h+i+j+k,
Yo=e+f+Ek+1
Yi=a+d+g+75+m,
Zoza+f,
Zi=b+g+1,
Zo=c+h+k+m,
Zy=d+e+i1+75+n.

The rank is 8 and the number of variables is 14 so we pick 6 variables, a, b, ¢, ¢, g, h, and place them in
A. We then solve the system.
f=(a+f)—a=2Zy—a,
l=0b+g+l)-b—g=2Z1-b—g,
k=(e+f4+k+l)—e—f—-1=Yo—Zo—Z1+a+b+g—e,
d=(a+b+c+d+e)—a—b—c—e=Xo—a—b—c—e,
m=(c+h+k+m)—c—h—-k=-Yo+Zog+7Z1+Zo—a—-b—c—g—h+e,
j=(a+d+g+j+m)—a—d—g—m=-Xo+Yo+Y1—-Zo—2Z1—Zy+a+2b+2c+h,
= (f+g+h+i+j+k)—f—g—h—j—k:X1+X0—2Y0—Y1—|—221+Z2—|—Zo—a—2c—3b—29+e—2h,
n=d+e+i+j+n)—d—e—i—j=—-Xo—-X1+Yo—-Z1+Zs+a+b+c+29g—e+h.

nro = %344/‘/2324’

nwy = Vis, /Vibs,

nxe = 1/2,

nyo = Vo?é5/ Vz%s’

nyr = V13?34/ Vz%&

nys = 1,

nzo = V()317V2?§3V2324/ ‘/13%4’
nz1 = Vs VissVise/ Visss
nzz = ‘/2%3‘/1325‘/2324/ V1334’
nz3 = ‘/2324‘/2%3’

na =1,
nb = Vo35 Vi34Va24/ (VoaaVias Vass),
ne = VossVizaVaoa/ (VoaaVizs Vass),

ne =1,
ng = Vi16Voss Vaza/ (V26 Vizs Viza),
nh = 1.
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‘/2157 > 2 < 044 + 134 + 1/2> ( 035 + 134 + 1) < 017Y233%224 + 026 Y125 %233 + 125 Y233 Y224 + ‘/2?:'33‘/2324
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Vo44V125 Vo33 Vo44V125 Vo33 Vo26V125V134

Now we look at the constraints on a, b, ¢, e, g, h.

Constraint 1: since f = Zyg — a > 0 we get

a < nzy/(nzo + nz + nze + nzs3) = Cy.

Constraint 2: since l = Z; — b — g > 0 we get

b+ g < nzi/(nzo+ nz1 + nza + nzsg) = Co.

Constraint 3: since k =Yy — Zg— Z1 +a+b+g—e >0 we get

a+b+g—e>—nyy/(nyo + ny1 + ny2) + (nzo + nz1)/(nzo + nz1 + nze + nzz) = Cs.

Constraint 4: sinced = Xo —a — b —c—e > 0 we get

a+b+c+e<nxy/(nry+ nry + nre) = Cy.

Constraint 5: sincem = —Yy+ Zo+ 21+ Za —a—b—c—g—h+e > 0 we get

a+b+ctg+h—e < —nyo/(nyo+ny1 +nyz) + (n20 +nz1 +nz2)/(nzo +nz +nze+nzs) = Cs.

Constraint 6: since j = —Xo+ Yo+ Y1 — Zg— 21 — Zo+a+ 2b+ 2c+ h > 0 we get

a+2b+2c+ h > nxg/(nxg + nry + nxa) — (nyo + ny1)/(nyo + ny1 + ny2) + (nzo + nzy +
nzs)/(nzo + nz1 + nze + nzsg) = Cs.

Constraint 7: sincet = X1+ Xo —2Yo—Y1+2Z21+ 2o+ Zp —a—2¢c—3b—2g+e—2h > 0 we get

a+2c+3b+2g — e+ 2h < (nz1 + nxg)/(nzo + nr1 + nxa) — (2nyo + ny1)/(nyo + ny1 + nya) +
(2nz1 + nze + nzy)/(nzp + nzy + nzg + nzs) = C.

Constraint 8: sincen = —Xo - X1+ Yo —-2Z1+Z35+a+b+c+2g—e+ h >0 we get

a+b+c+29—e+h > (nxg+ nz)/(nxg + nxy + nxy) — nyo/(nyo + ny1 + ny2) + (nz; —
nz3)/(nzo + nzi + nzo + nzz) = Cs.

(Vo35V134V224 ) b <V(135V134V224 > ‘ <V116V035V224 > g

We summarize the constraints:
a<C,b+9g<CyC3<a+b+g—ea+bt+c+e<Cia+b+c+g+h—e<Cs,

Ce<a+2b+2c+h,a+2c+3b+2g—e+2h<C7,Cs<a+2b+c+29g+h—e.

Assume that 7 = 2.372873/3. We first find the setting @’ = 0.741706133871556-10~°, ' = 0.932955091664049-
1073, ¢ = 0.0155807738472934, ¢/ = 0.00300527533017264, ¢’ = 0.00130480061845205, 1’ = 0.0583385585882298
minimizing F'(a, b, c,e, g, h) = a®bbccdde® f1gInlit 7 kF1lm™n™ given the settings of d, f, 4, j, k,1,m,nin
terms of a, b, ¢, e, g, h and under the above 8 linear constraints. Then we find the setting a” = 0.739069714604175-
1072,0" = 0.000939491122183629, ¢’ = 0.0157716913296529, ¢ = 0.00299817541165094, ¢” = 0.0012986122878164
0.0581626623406867 maximizing Vys7(a, b, c,e, g, h)/F(a,b,c,e, g, h) under the same linear constraints.
Finally, we conclude that Vys7 > F(a', V', ¢ €', g/, B')-Visz(a” 0, " €’ g B JF(a”, 0", " e, g" h") >
1.076904071 - 106,
O

Lemma 30. For g = 5,7 = 2.372873/3, Vigs > 1.244977753 - 106,
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In general,

Vs Vi \ ' (ViiVehs | Vibs Vs \*
”%22<w3+1+2ws vave, Ty, T o 8
134 134 1257134 224 224

V3 VG V6
<125 134026 1 Vi3 Vi + Vida Vg +

3 173 \ 1/3
V134V233 %
VS V3 VS
116 Y035 ¥V 224

2

(V224V116V035 > ¢ (V035V134V224 ) b (Vo35V134V224 > d ( Vo26V125 V134 ) ‘ (‘/1216‘/()2;),5‘6224 ) !
V125 V134 V026 V044 V233V125 VoaaVa33V125 V116 Vo35 V224 V3 VELVEs)

Here a,b,d, e, f,p are constrained by our framework (see the proof).

Proof. I = 4, J = K = 6 so the variables are a = «ag26,b = p35,¢ = Qoaa,d = Qps3,€ = Qpg2, [ =
a116,9 = @125, h = Q134,71 = 0143,] = a152,k = 61,1 = @06, M = a215,n = 24,p = ai233. The
system becomes
Xo=a+b+c+d+e,
Xi=f+g+h+i+j+k
Yo=e+k+1,
Yi=d+f+j+m,
Yo=a+c+g+i+n,
ZQZCL+f+l,
Zy=b+g+k+m,
Zo=c+e+h+j+n,
23:2(d+i+p).

The rank is 9 and the number of variables is 15 so we pick 6 variables, a, b, d, e, f, p, and place them in
A. Now we solve the system. For ease of solution we let Xo/2 = (Zy + Z1 + Z2 + Z3/2) — (Xo + X1)
al’ldY?)/2:(Z0+Zl+Z2+Z3/2)—(Y0+Y1+Yé)
c=(a+b+c+d+e)—a—-b—d—e=Xo—a—b—d—e,
l=(a+f+)—a—f=Zy—a—f,
h=0+h+p) —b—p=Y3/2-b—p=(Zo+2Z1+Z2+Z3/2) — (Yo + Y1+ Y2) —b—p,
i=(d+i+p) —d—p=2723/2—d—p,
k=(e+k+l)—e—1=Yo—Zp+a+ f—e,
j=d+f+j+m)—d—f4+(c+e+h+j+n)—c—e—h—(+m+n+p)+i+p)/2= (V1 —Y3/2—
Xo—X2/2+Zo+Z2+2b—2f+2p)/2 = (()/E)+2Y1+Y2)—(Zo—|—2Z1+Zg+Zg)+X1+2l)—2f+2p)/2,
n=(c+e+h+j+n)—c—e—h—j=(Zo—Xo—Y3/2-Y1+ Xo/2—Zp)/2+a+b+d+ f=
(=3Xo —2X1 +2Yo+ Y1 +2Yo — Zo+ Zo)/24+a+ b+ d + f,
m=(U+m+n+p —l—n—p=Xeo/d+X0/2—-2y/2—2Z3/2+Y3/4+Y1/2-b—d—p =
(Z0/2+ Z1+ Z2/2+ Z3/2) — X1 /2 — (Yo + Y2)/2 = b—d — p,
g = (b—l—g—i—k—i—m)—b—k—m = Z1—|—Z2/2—|—3ZO/2—X2/4—X0/2—Y6—}/'3/4—Y1/2—a—|-d—f+€—|-p =
(Z0/2 = Z2/2 = Z3/2) + (X1)/2+ (=Yoo + Y2)/2 —a+d — f+e+p.
nwo = Vi /Vasas
nwy = Visy /Vibs,
nxre = 1/2,
nyo = Vii6Viss Vaba/ (Visa Vs Vids),
ny1 = Vivs/ Vs,
ny2 = Visa/Vass,
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nys = 1/2,

nzp = ‘/1%4‘/2%3‘/0626‘/1325/ (V1316V0%5V2324),
nz = ‘/1:325V2%3’

nz = ‘/2%3‘/2324’

nz3 = ‘/2%3/ 2,

na = Va24Vi16Vo35/(Vias VizaVoos),
nb = Vo35V134 Va4 /(Voaa Vo33 Vias),
nd = Vi35Vi34Va24/(VoaaVazzVias),
ne = VooeVi25Vi3a/ (ViieVo3s Va2a),
nf = ‘/1216‘/02:35‘6224/(‘/1225‘/1%4‘/()226)7
np = 1.

1/3 13
Vige > 2 <V0%14+Vf)’34+1/2> / <V1316V0?§5V2324 " Vibs n Vi n 1> "

3 3 3 /3 1/3 3 3 9
V34 Viay VigsVigaVags  Visg  Vags o 2

V3 V3.6 13 V6 1/3
1343 2333 0263 125 + ‘/1325 ‘/2?%3 4 ‘/2333‘/2324 + 233 %
V116VE)35V224 2

< V224V116 V035 ) ¢ < Vo35 V134 V224 > b < Vo35 V134 V224 > d ( Vo2eVi2s V134) ¢ <V1216V0235V2224 > !
Vi25V134 V026 Vo44Va33 V125 Vo44Va33 V125 Vi16 Vo35 V224 VA VA Ve

The constraints on the variables are as follows.
Constraint 1: sincec = Xg—a—-b—d—e >0,

a+b+d+e<nxg/(nxg+ nxy + nxy) = Cy,

Constraint 2: since l = Zg —a — f >0,

a+ f <nzy/(nzo+ nz1 + nza + nzg) = Co,

Constraint 3: since h = Y3/2 — b —p > 0,

b+p < nys/(nyo + ny1 +ny2 + nys) = Cs,

Constraints 4: since i = Z3/2 —d —p > 0,

d+p <nz3/(nzp+ nz + nzy + nz3) = Cy,

Constraint 5: since k =Yy — Zg+a+ f —e >0,

a+ f—e>nz/(nz+nz +nze +nzs) — nyo/(nyo + ny1 + ny2 + ny3) = Cs,

Constraint 6: since j = (Y7 — Y3/2 — Xo — X2/24+ Zop + Zo +2b—2f +2p)/2 > 0,
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f=b—p < (ny1 —nys3)/(2(nyo +ny1 + ny2 +nys)) — (Xo + X2/2)/(2(nzo +nx; + nxs)) + (nzp +
nz)/(2(nzo + nz1 + nze + nzs3)) = Cs,

Constraint 7: since n = (Zo — Xo — Y3/2 = Y1+ X2/2 — Zy)/24+a+b+d+ f >0,

a+b+d+ f > (nzg—nxa)/(2(nzo + na1 + nae)) + (nys + ny1)/(2(nyo + ny1 + nyz + nys)) +
(nzo — nz2)/(2(nzo + nz1 + nze + nzs3)) = Cf,

Constraint 8: since m = Xo/4+ Xo/2 — Zp/2 — Z3/2 + Y3/4+Y1/2—b—d —p >0,

b+d+p < (nxo+nz2)/(2(nxo+ nw1+nxe)) — (nzo +nz2)/(2(nzo +nzy + nza +nzs)) + (ny1 +
ny3)/(2(nyo + ny1 + ny2 + nyz)) = Cs,

Constraint 9: since g = —Xo/4— X /2—-Yy—Y3/4—Y1/2+Z1+32Zy/2+ Z2/2+d—a— f+e+p > 0,

a+ f—d—e—p< —(nxo+ nxe)/(2(nxo + nzy + na2)) — (2nyo + ny1 + nys)/(2(nyo + ny1 +
nys + nys)) + (3nzo + 2nz1 + nz2)/(2(nzo + nz1 + nze + nzs)) = Cy.
The constraints are then

a+b+d+e<Cra+ f<Cb+p<C35,d+p<Cy,Cs<a+f—e,

f=b—p<Cs,Cr<a+3b+d+ f,b+d+p<Cs,a+f—d—e—p<Cy.

Assume that 7 = 2.372873/3. We first find the setting o’ = 0.207580266779174-1073, b’ = 0.00534699819473600, d’ =
0.00534718758229032, ¢’ = 0.209237614926190-1073, f' = 0.105519087916149-1073, p’ = .297000529499192
minimizing F(a,b,d, e, f,p) = a®b’ccd?e® ff gInhitj7 kF1lm™n"pP for the setting of the rest of the vari-
ables in terms of a, b, d, e, f, p under the above 9 constraints. Then we find the setting a”’ = 0.207390670828811-

1073, 1" = 0.00542620227211836, d” = 0.00542637317018223, ¢’ = 0.209046704420474 - 1073, f" =
0.105664774141390-10~3, " = .296860032116101 maximizing Vigg(a, b, d, e, f, p)/F(a, b, d, e, f,p) un-
der the same linear constraints. Finally, we conclude that Vygg > F(a', V', d’ €', f',p")-Vigs(a”, 0", d" e", f",p")/F(a", V",
1.244977753 - 106.

L]

Lemma 31. When g = 5,7 = 2.372873/3, V556 > 1.421276476 - 106.
In general,

Voss |, Vit s 3 173 s o, VEs\Y?
Vsse > 2 <V3 tye, 1) <V026V233 + VigsVazg + Voga Vozs + 5 ) X
233 V233

(%44V125V233 > ¢ < V116 V044 V233 ) ¢ <V044V125V233 ) ‘
Vo35 V134V224 Vi3, Voze VossVigaVaoa )

Here, a,b,c, e, f, h,i are constrained by our framework (see the proof).

Proof. Since I = J = 5 and K = 6, the variables are a = «g26,0 = @35,¢ = agaa,d = aps3, € =
a11e, [ = Q125,9 = 0134, h = 143,71 = a152,] = @206,k = 215,10 = Q224,m = Q233,11 = Q242,p =
ags51. The system is
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Xo=a+b+c+d,
X1:e+f+g+h+i,
Yo=d+i+j+D,
Yi=c+e+h+k+n,
Zo=a+e+],
Zi=b+f+k+p,
Zy=cH+g+i+l+n,
Zs =2(d+ h+m).

The rank is 8 and there are 15 variables, so we pick 7 variables, a, b, ¢, e, f, h, i, and place them into A.
We then solve the system:
d=(a+b+c+d) —a—b—c=Xg—a—b—c,
j=(a+e+j)—a—e=2Zy—a—e,
m=(d+h+m)—(a+b+c+d)+a+b+c—h=23/2—Xo+a+b+c—h,
p=(d+i+j+p)—(a+b+c+d)—(at+e+j)+2a+b+c—it+e=Yy—Xo—Zo+2a+b+c—i+te,
E=0b+f+k+p) —(d+i+j+p)+(a+b+c+d)+(a+e+j)—20—f—-2a—c+i—e=
Yo+ Xo+Zyg—2b—f—2a—c+i—e,
n=(c+tet+h+k+n)—(b+f+k+p)+(d+i+j+p)—(a+btct+d)—(a+e+j)—h+2b0+f+2a—i=
Yi—-Z1+4Yy—Xo—Zyg—h+2b+ f+2a—1,
g=(e+f+g+h+i)—e—f—h—i=X1—e— f—h—1,
l=(c+g+i+l+n)—(e+f+g+h+i)—(c+e+h+k+n)+(b+f+k+p)—(d+i+j+p)+(a+b+
ct+d)+(at+e+j)—cte+2h+i—20—2a=Zos— X1 —Y1+ 21— Yo+ Xo+Zy—c+e+2h+i—2b—2a.

o = Vibs/V3ss.
nwy = Viyy /Viks,
nry =1,

nyYyo = Vo?fﬁ/ V2%3>
nyr = ‘/1??34/ ‘/2??33’
nys =1,

nzo = VD?)QGVZ%B’
nzy = V1325V2?§3’
nzz = ‘/5354V2%3’
nzg = ‘/2%3/ 2,

na =1,

nb=1,

ne = VouaViasVass/ (Voss VizaVaoa),
ne = Vi16VoaaVass/ (Vi Vo2s)
nf=1,

nh=1,

ni = VouaVi2s5Vas3/ (Vozs VizaVaoua).

Finally,

Voss |, Vit 28 3 1,3 3 /3 5 s, Vs 3
Vss6 > 2 <V3 tys, 1) (V026V233 + VigsVazg + Voo Vozs + 9 ) X
233 V233
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<V044V125V233 > ¢ < V116 Voa4Vass3 > ¢ <V044V125V233 > '
Vo35 Vi34 V224 VA, Vose VossVizaVasa )
Now let’s consider the constraints:

Constraint 1: d = X9 —a — b — ¢ > 0, and so

a+b+c<nxy/(nxg+ nxy +nxg) = Ch,

Constraint 2: j = Zg —a — e > 0, and so
a+e<nzy/(nzg+ nz +nze + nzz) = Ca,

Constraint 3: m = Z3/2 — Xo+a+ b+ c— h > 0, and so
h—a—b—c<nzs3/(nzg+ nz + nza + nzs) — nxo/(nxe + nxry + nxy) = Cs,

Constraint4: p =Yy — Xo—Zp+2a+b+c—i+e>0,and so
i—2a—b—c—e < nyo/(nyo+nyi1+ny2) —nxo/(nro+nri+nre)—nzy/(nzo+nz +nze+nzs) = Cy,

Constraint5: k=21 — Yo+ Xo+ Zy —2b— f —2a —c+1i—e > 0, and so
2a4+2b+c+e+ f—i < nxg/(nzo + nry + nre) —nyo/(nyo + ny1 + ny2) + (nzo + nz1)/(nzo +
nzy +nzy +nzz) = Cs,

Constraint 6: n =Y + Yy — Xo—Zog— Z1 —h+2b+ f+2a — i > 0, and so
h+i—2a—2b—f < (nyo+ny1)/(nyo+ny1 +ny2) —nxo/(nee+nwy +nze) — (nzo+nz1)/(nzo+
nz +nzz+n23) = (s,

Constraint 7: g = X1 —e— f —h—14 >0, and so
e+ f+h+i<nwi/(nwg + nry + nas) = Cy,

Constraint 8: | = Xog— X7 — Y1 — Yo+ 2o+ 21+ 2y —c+ e+ 2h +1i— 2b— 2a, and so

2a +2b+c—e—2h —i < (nxg — nxr)/(nxo + nzy + nxa) — (nyo + ny1)/(nyo + nyr + ny2) +
(nzp + nz1 + nz2)/(nzo + nzy + nzy + nzz) = Cs.

Summarizing, the constraints are

a+b+c<Ciya+e<Cy,h—a—-b—c<Cs5,i—2a—b—c—e <y,

2a+2b+c+e+f—i<Cs,h+i—2a—2b— f < Cgs,e+ f+h+i<C7,2a+2b+c—e—2h—1i < Cs.

Assume that 7 = 2.372873/3. We first find the setting a’ = 0.562995312066963-10~%, 0" = 0.00122955027040296, ¢’ =
0.00354992813988773, ¢’ = 0.207509360036833-1073, f/ = 0.0122589343738679, 1’ = 0.0618610336237278, i’ =
0.00354992819549840 minimizing F(a, b, c, e, f, h,i) = a®bPctd?e® ffgIn" it ik Ilm™n pP for the set-
ting of the rest of the variables in terms of a, b, ¢, e, f, h, 7 and under the above 8 linear constraints. We then
find the setting a” = 0.576154034796757-10~4, 0" = 0.00124475629509324, ¢’ = 0.00351600913306182, ¢ =
0.204880209163357-1073, " = 0.0122439331719230, " = 0.0618847419702464, i" = 0.00351595877192500
maximizing Vss6(a, b, c, e, f,h,i)/F(a,b,c,e, f,h,i) under the above linear constraints. We then con-
clude that Vssg > F(a’, b/, C/, 6/7 f/, h/,i/) . V556(a”, b”, C”, e//7 f”, h”,i”)/F(a”, b//,CH, 6”, f”, h//, i”) >
1.421276476 - 10°. O
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