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Abstract

We develop new tools for analyzing matrix multiplication constructions similar to the Coppersmith-
Winograd construction, and obtain a new improved bound on ω < 2.372873.

1 Introduction

The product of two matrices is one of the most basic operations in mathematics and computer science. Many
other essential matrix operations can be efficiently reduced to it, such as Gaussian elimination, LUP decom-
position, the determinant or the inverse of a matrix [1]. Matrix multiplication is also used as a subroutine in
many computational problems that, on the face of it, have nothing to do with matrices. As a small sample
illustrating the variety of applications, there are faster algorithms relying on matrix multiplication for graph
transitive closure (see e.g. [1]), context free grammar parsing [21], and even learning juntas [13].

Until the late 1960s it was believed that computing the product C of two n × n matrices requires
essentially a cubic number of operations, as the fastest algorithm known was the naive algorithm which
indeed runs in O(n3) time. In 1969, Strassen [19] excited the research community by giving the first
subcubic time algorithm for matrix multiplication, running in O(n2.808) time. This amazing discovery
spawned a long line of research which gradually reduced the matrix multiplication exponent ω over time. In
1978, Pan [14] showed ω < 2.796. The following year, Bini et al. [4] introduced the notion of border rank
and obtained ω < 2.78. Schönhage [17] generalized this notion in 1981, proved his τ -theorem (also called
the asymptotic sum inequality), and showed that ω < 2.548. In the same paper, combining his work with
ideas by Pan, he also showed ω < 2.522. The following year, Romani [15] found that ω < 2.517. The first
result to break 2.5 was by Coppersmith and Winograd [9] who obtained ω < 2.496. In 1986, Strassen [20]
introduced his laser method which allowed for an entirely new attack on the matrix multiplication problem.
He also decreased the bound to ω < 2.479. Three years later, Coppersmith and Winograd [10] combined
Strassen’s technique with a novel form of analysis based on large sets avoiding arithmetic progressions and
obtained the famous bound of ω < 2.376 which has remained unchanged for more than twenty years.

In 2003, Cohn and Umans [8] introduced a new, group-theoretic framework for designing and analyzing
matrix multiplication algorithms. In 2005, together with Kleinberg and Szegedy [7], they obtained several
novel matrix multiplication algorithms using the new framework, however they were not able to beat 2.376.

Many researchers believe that the true value of ω is 2. In fact, both Coppersmith and Winograd [10]
and Cohn et al. [7] presented conjectures which if true would imply ω = 2. Recently, Alon, Shpilka and
Umans [2] showed that both the Coppersmith-Winograd conjecture and one of the Cohn et al. [7] conjectures
contradict a variant of the widely believed sunflower conjecture of Erdös and Rado [12]. Nevertheless, it
could be that at least the remaining Cohn et al. conjecture could lead to a proof that ω = 2.
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The Coppersmith-Winograd Algorithm. In this paper we revisit the Coppersmith-Winograd (CW) ap-
proach [10]. We give a very brief summary of the approach here; we will give a more detailed account in
later sections.

One first constructs an algorithm A which given Q-length vectors x and y for constant Q, computes Q
values of the form zk =

∑
i,j tijkxiyj , say with tijk ∈ {0, 1}, using a smaller number of products than would

naively be necessary. The values zk do not necessarily have to correspond to entries from a matrix product.
Then, one considers the algorithm An obtained by applying A to vectors x, y of length Qn, recursively n
times as follows. Split x and y into Q subvectors of length Qn−1. Then run A on x and y treating them
as vectors of length Q with entries that are vectors of length Qn−1. When the product of two entries is
needed, use An−1 to compute it. This algorithm An is called the nth tensor power of A. Its running time is
essentially O(rn) if r is the number of multiplications performed by A.

The goal of the approach is to show that for very large n one can set enough variables xi, yj , zk to 0 so
that running An on the resulting vectors x and y actually computes a matrix product. That is, as n grows,
some subvectors x′ of x and y′ of y can be thought to represent square matrices and when An is run on x
and y, a subvector of z is actually the matrix product of x′ and y′.

If An can be used to multiply m ×m matrices in O(rn) time, then this implies that ω ≤ logm r
n, so

that the larger m is, the better the bound on ω.
Coppersmith and Winograd [10] introduced techniques which, when combined with previous techniques

by Schönhage [17], allowed them to effectively choose which variables to set to 0 so that one can compute
very large matrix products using An. Part of their techniques rely on partitioning the index triples i, j, k ∈
[Q]n into groups and analyzing how “similar” each group g computation {zkg =

∑
i,j: (i,j,k)∈g tijkxiyj}k is

to a matrix product. The similarity measure used is called the value of the group.
Depending on the underlying algorithm A, the partitioning into groups varies and can affect the final

bound on ω. Coppersmith and Winograd analyzed a particular algorithm A which resulted in ω < 2.39.
Then they noticed that if one uses A2 as the basic algorithm (the “base case”) instead, one can obtain the
better bound ω < 2.376. They left as an open problem what happens if one uses A3 as the basic algorithm
instead.

Our contribution. We give a new way to more tightly analyze the techniques behind the Coppersmith-
Winograd (CW) approach [10]. We demonstrate the effectiveness of our new analysis by showing that the
8th tensor power of the CW algorithm [10] in fact gives ω < 2.3729. (The conference version of this paper
claimed ω < 2.3727, but due to an error, this turned out to be incorrect in the fourth decimal place.)

There are two main theorems behind our approach. The first theorem takes any tensor power An of a
basic algorithm A, picks a particular group partitioning for An and derives a procedure computing formulas
for (lower bounds on) the values of these groups.

The second theorem assumes that one knows the values for An and derives an efficient procedure which
outputs a (nonlinear) constraint program on O(n2) variables, the solution of which gives a bound on ω.

We then apply the procedures given by the theorems to the second, fourth and eighth tensor powers of
the Coppersmith-Winograd algorithm, obtaining improved bounds with each new tensor power.

Similar to [10], our proofs apply to any starting algorithm that satisfies a simple uniformity requirement
which we formalize later. The upshot of our approach is that now any such algorithm and its higher tensor
powers can be analyzed entirely by computer. (In fact, our analysis of the 8th tensor power of the CW
algorithm is done this way.) The burden is now entirely offloaded to constructing base algorithms satisfying
the requirement. We hope that some of the new group-theoretic techniques can help in this regard.
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Why wasn’t an improvement on CW found in the 1990s? After all, the CW paper explicitly posed the
analysis of the third tensor power as an open problem.

The answer to this question is twofold. Firstly, several people have attempted to analyze the third tensor
power (from personal communication with Umans, Kleinberg and Coppersmith). As the author found out
from personal experience, analyzing the third tensor power reveals to be very disappointing. In fact no
improvement whatsoever can be found. This finding led some to believe that 2.376 may be the final answer,
at least for the CW algorithm.

The second issue is that with each new tensor power, the number of new values that need to be analyzed
grows quadratically. For the eighth tensor power for instance, 30 separate analyses are required! Prior to
our work, each of these analyses would require a separate application of the CW techniques. It would have
required an enormous amount of patience to analyze larger tensor powers, and since the third tensor power
does not give any improvement, the prospects looked bleak.

Stothers’ work. We were recently made aware of the thesis work of A. Stothers [18] in which he claims an
improvement to ω. (More recently, a journal paper by Davie and Stothers provides a more detailed account of
Stothers’ work [11]). Stothers argues that ω < 2.3737 by analyzing the 4th tensor power of the Coppersmith-
Winograd construction. Our approach can be seen as a vast generalization of the Coppersmith-Winograd
analysis. In the special case of even tensor powers, part of our proof has benefited from an observation of
Stothers’ which we will point out in the main text.

There are several differences between our approach and Stothers’. The first is relatively minor: the CW
approach requires the use of some hash functions; ours are different and simpler than Stothers’. The main
difference is that because of the generality of our analysis, we do not need to fully analyze all groups of
each tensor power construction. Instead we can just apply our formulas in a mechanical way. Stothers, on
the other hand, did a completely separate analysis of each group.

Finally, Stothers’ approach only works for tensor powers up to 4. Starting with the 5-th tensor power,
the values of some of the groups begin to depend on more variables and a more careful analysis is needed.

(Incidentally, we also obtain a better bound from the 4th tensor power, ω < 2.37293, however we believe
this is an artifact of our optimization software, as we end up solving an equivalent constraint program.)

Acknowledgments. The author would like to thank Satish Rao for encouraging her to explore the matrix
multiplication problem more thoroughly and Ryan Williams for his support. The author is extremely grateful
to François Le Gall who alerted her to Stothers’ work, suggested the use of NLOPT, and pointed out that
the feasible solution obtained by Stothers for his 4th tensor power constraint program can be improved to
ω < 2.37294 with a different setting of the parameters. François also uncovered a flaw in a prior version of
the paper, which we have fixed in the current version. He was also recently able to improve our bound on ω
slightly to 2.37287.

Preliminaries We use the following notation: [n] := {1, . . . , n}, and
(

N
[ai]i∈[k]

)
:=
(

N
a1,...,ak

)
.

We define ω ≥ 2 to be the infimum over the set of all reals r such that n × n matrix multiplication
over Q can be computed in nr additions and multiplications for some natural number n. (However, the CW
approach and our extensions work over any ring.)

A three-term arithmetic progression is a sequence of three integers a ≤ b ≤ c so that b− a = c− b, or
equivalently, a+ c = 2b. An arithmetic progression is nontrivial if a < b < c.

The following is a theorem by Behrend [3] improving on Salem and Spencer [16]. The subset A com-
puted by the theorem is called a Salem-Spencer set.
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Theorem 1. There exists an absolute constant c such that for every N ≥ exp(c2), one can construct in
poly(N) time a subset A ⊂ [N ] with no three-term arithmetic progressions and |A| > N exp(−c

√
logN).

The following lemma is needed in our analysis.

Lemma 1. Let k be a constant. Let Bi be fixed for i ∈ [k]. Let ai for i ∈ [k] be variables such that ai ≥ 0
and

∑
i ai = 1. Then, as N goes to infinity, the quantity(

N

[aiN ]i∈[k]

) k∏
i=1

BaiN
i

is maximized for the choices ai = Bi/
∑k

j=1Bj for all i ∈ [k] and for these choices it is at least k∑
j=1

Bj

N

/ (N + 1)k.

Proof. We will prove the lemma by induction on k. Suppose that k = 2 and consider(
N

aN

)
xaNyN(1−a) = yN

(
N

aN

)
(x/y)aN ,

where x ≤ y.
When (x/y) ≤ 1, the function f(a) =

(
N
aN

)
(x/y)aN of a is concave for a ≤ 1/2. Hence its maximum

is achieved when ∂f(a)/∂a = 0. Consider f(a): it is N !/((aN)!(N(1 − a))!)(x/y)aN . We can take the
logarithm to obtain ln f(a) = ln(N !) + Na ln(x/y) − ln(aN !) − ln((N(1 − a))!). f(a) grows exactly
when a ln(x/y)− ln(aN !)/N − ln(N(1− a))!/N does. Taking Stirling’s approximation, we obtain

a ln(x/y)−ln(aN !)/N−ln(N(1−a))!/N = a ln(x/y)−a ln(a)−(1−a) ln(1−a)−lnN−O((logN)/N).

Since N is large, the O((logN)/N) term is negligible. Thus we are interested in when g(a) =
a ln(x/y) − a ln(a) − (1 − a) ln(1 − a) is maximized. Because of concavity, for a ≤ 1/2 and x ≤ y,
the function is maximized when ∂g(a)/∂a = 0, i.e. when

0 = ln(x/y)− ln(a)− 1 + ln(1− a) + 1 = ln(x/y)− ln(a/(1− a)).

Hence a/(1− a) = x/y and so a = x/(x+ y).
Furthermore, since the maximum is attained for this value of a, we get that for each t ∈ {0, . . . , N}

we have that
(
N
t

)
xtyN−t ≤

(
N
aN

)
xaNyN(1−a), and since

∑N
t=0

(
N
t

)
xtyN−t = (x+ y)N , we obtain that for

a = x/(x+ y), (
N

aN

)
xaNyN(1−a) ≥ (x+ y)N/(N + 1).

Now let’s consider the case k > 2. First assume that the Bi are sorted so that Bi ≤ Bi+1. Since∑
i ai = 1, we obtain (

N

[ai]i∈[k]

) k∏
i=1

BaiN
i =

(∑
i

Bi

)N (
N

[ai]i∈[k]

) k∏
i=1

baiNi ,
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where bi = Bi/
∑

j Bj . We will prove the claim for
(

N
[ai]i∈[k]

)∏k
i=1 b

aiN
i , and the lemma will follow for the

Bi as well. Hence we can assume that
∑

i bi = 1.
Suppose that we have proven the claim for k − 1. This means that in particular

(
N − a1N

[ajN ]j≥2

) k∏
j=2

b
ajN
j ≥

 k∑
j=2

bj

N−a1N

/(N + 1)k−1,

and the quantity is maximized for ajN/(N − a1N) = bj/
∑

j≥2 bj for all j ≥ 2.

Now consider
(
N
a1N

)
ba1N
1

(∑k
j=2 bj

)N−a1N
. By our base case we get that this is maximized and is at

least (
∑k

j=1 bj)
N/N for the setting a1 = b1. Hence, we will get

(
N

[ajN ]j∈[k]

) k∏
j=1

b
ajN
j ≥

 k∑
j=1

bj

N

/(N + 1)k,

for the setting a1 = b1 and for j ≥ 2, ajN/(N − a1N) = bj/
∑

j≥2 bj implies aj/(1− b1) = bj/(1− b1)
and hence aj = bj . We have proven the lemma.

1.1 A brief summary of the techniques used in bilinear matrix multiplication algorithms

A full exposition of the techniques can be found in the book by Bürgisser, Clausen and Shokrollahi [6]. The
lecture notes by Bläser [5] are also a nice read.

Bilinear algorithms and trilinear forms. Matrix multiplication is an example of a trilinear form. n × n
matrix multiplication, for instance, can be written as∑

i,j∈[n]

∑
k∈n

xikykjzij ,

which corresponds to the equalities zij =
∑

k∈n xikykj for all i, j ∈ [n]. In general, a trilinear form has the
form

∑
i,j,k tijkxiyjzk where i, j, k are indices in some range and tijk are the coefficients which define the

trilinear form; tijk is also called a tensor. The trilinear form for the product of a k ×m by an m× n matrix
is denoted by 〈k,m, n〉.

Strassen’s algorithm for matrix multiplication is an example of a bilinear algorithm which computes a
trilinear form. A bilinear algorithm is equivalent to a representation of a trilinear form of the following form:

∑
i,j,k

tijkxiyjzk =

r∑
λ=1

(
∑
i

αλ,ixi)(
∑
j

βλ,jyj)(
∑
k

γλ,kzk).

Given the above representation, the algorithm is then to first compute the r productsPλ = (
∑

i αλ,ixi)(
∑

j βλ,jyj)
and then for each k to compute zk =

∑
λ γλ,kPλ.

For instance, Strassen’s algorithm for 2× 2 matrix multiplication can be represented as follows:

(x11y11 + x12y21)z11 + (x11y12 + x12y22)z12 + (x21y11 + x22y21)z21 + (x21y12 + x22y22)z22 =

(x11 + x22)(y11 + y22)(z11 + z22) + (x21 + x22)y11(z21 − z22) + x11(y12 − y22)(z12 + z22)+
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x22(y21 − y11)(z11 + z21) + (x11 + x12)y22(−z11 + z12) + (x21 − x11)(y11 + y12)z22+

(x12 − x22)(y21 + y22)z11.

The minimum number of products r in a bilinear construction is called the rank of the trilinear form
(or its tensor). It is known that the rank of 2 × 2 matrix multiplication is 7, and hence Strassen’s bilinear
algorithm is optimal for the product of 2×2 matrices. A basic property of the rankR of matrix multiplication
is that R(〈k,m, n〉) = R(〈k, n,m〉) = R(〈m, k, n〉) = R(〈m,n, k〉) = R(〈n,m, k〉) = R(〈n, k,m〉).
This property holds in fact for any tensor and the tensors obtained by permuting the roles of the x, y and z
variables.

Any algorithm for n × n matrix multiplication can be applied recursively k times to obtain a bilinear
algorithm for nk × nk matrices, for any integer k. Furthermore, one can obtain a bilinear algorithm for
〈k1k2,m1m2, n1n2〉 by splitting the k1k2×m1m2 matrix into blocks of size k1×m1 and them1m2×n1n2

matrix into blocks of sizem1×n1. The one can apply a bilinear algorithm for 〈k2,m2, n2〉 on the matrix with
block entries, and an algorithm for 〈k1,m1, n1〉 to multiply the blocks. This composition multiplies the ranks
and henceR(〈k1k2,m1m2, n1n2〉) ≤ R(〈k1,m1, n1〉)·R(〈k2,m2, n2〉). Because of this,R(〈2k, 2k, 2k〉) ≤
(R(〈2, 2, 2〉))k = 7k and if N = 2k, R(〈N,N,N〉) ≤ 7log2N = N log2 7. Hence, ω ≤ logN R(〈N,N,N〉).

In general, if one has a bound R(〈k,m, n〉) ≤ r, then one can symmetrize and obtain a bound on
R(〈kmn, kmn, kmn〉) ≤ r3, and hence ω ≤ 3 logkmn r.

The above composition of two matrix product trilinear forms to form a new trilinear form is called
the tensor product t1 ⊗ t2 of the two forms t1, t2. For two generic trilinear forms

∑
i,j,k tijkxiyjzk and∑

i′,j′,k′ t
′
ijkxi′yj′zk′ , their tensor product is the trilinear form∑

(i,i′),(j,j′),(k,k′)

(tijkt
′
i′j′k′)x(i,i′)y(j,j′)z(k,k′),

i.e. the new form has variables that are indexed by pairs if indices, and the coordinate tensors are multiplied.
The direct sum t1 ⊕ t2 of two trilinear forms t1, t2 is just their sum, but where the variable sets that they

use are disjoint. That is, the direct sum of
∑

i,j,k tijkxiyjzk and
∑

i,j,k t
′
ijkxiyjzk is a new trilinear form

with the set of variables {xi0, xi1, yj0, yj1, zk0, zk1}i,j,k:∑
i,j,k

tijkxi0yj0zk0 + t′ijkxi1yj1zk1.

A lot of interesting work ensued after Strassen’s discovery. Bini et al. [4] showed that one can extend
the form of a bilinear construction to allow the coefficients αλ,i, βλ,j and γλ,k to be linear functions of the
integer powers of an indeterminate, ε. In particular, Bini et al. gave the following construction for three
entries of the product of 2× 2 matrices in terms of 5 bilinear products:

(x11y11 + x12y21)z11 + (x11y12 + x12y22)z12 + (x21y11 + x22y21)z21 +O(ε) =

(x12 + εx22)y21(z11 + ε−1z21) + x11(y11 + εy12)(z11 + ε−1z12)+

x12(y11 + y21 + εy22)(−ε−1z21) + (x11 + x12 + εx21)y11(−ε−1z12)+

(x12 + εx21)(y11 + εy22)(ε−1z12 + ε−1z21),

where the O(ε) term hides triples which have coefficients that depend on positive powers of ε.
The minimum number of products of a construction of this type is called the border rank R̃ of a trilinear

form (or its tensor). Border rank is a stronger notion of rank and it allows for better bounds on ω. Most of
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the properties of rank also extend to border rank, so that if R̃(〈k,m, n〉) ≤ r, then ω ≤ 3 ∗ logkmn r. For
instance, Bini et al. used their construction above to obtain a border rank of 10 for the product of a 2× 2 by
a 2 × 3 matrix and, by symmetry, a border rank of 103 for the product of two 12 × 12 matrices. This gave
the new bound of ω ≤ 3 log12 10 < 2.78.

Schönhage [17] generalized Bini et al.’s approach and proved his τ -theorem (also known as the asymp-
totic sum inequality). Up until his paper, all constructions used in designing matrix multiplication algorithms
explicitly computed a single matrix product trilinear form. Schönhage’s theorem allowed a whole new fam-
ily of contructions. In particular, he showed that constructions that are direct sums of rectangular matrix
products suffice to give a bound on ω.

Theorem 2 (Schönhage’s τ -theorem). If R̃(
⊕q

i=1〈ki,mi, ni〉) ≤ r for r > q, then let τ be defined as∑q
i=1(kimini)

τ = r. Then ω ≤ 3τ .

2 Coppersmith and Winograd’s algorithm

We recall Coppersmith and Winograd’s [10] (CW) construction:

λ−2 ·
q∑
i=1

(x0 + λxi)(y0 + λyi)(z0 + λzi)− λ−3 · (x0 + λ2
q∑
i=1

xi)(y0 + λ2
q∑
i=1

yi)(z0 + λ2
q∑
i=1

zi)+

+(λ−3 − qλ−2) · (x0 + λ3xq+1)(y0 + λ3yq+1)(z0 + λ3zq+1) =

q∑
i=1

(xiyiz0 + xiy0zi + x0yizi) + (x0y0zq+1 + x0yq+1z0 + xq+1y0z0) +O(λ).

The construction computes a particular symmetric trilinear form. The indices of the variables are either
0, q + 1 or some integer in [q]. We define

p(i) =


0 if i = 0
1 if i ∈ [q]
2 if i = q + 1

The important property of the CW construction is that for any triple xiyjzk in the trilinear form, p(i) +
p(j) + p(k) = 2.

In general, the CW approach applies to any construction for which we can define an integer function p
on the indices so that there exists a number P so that for every xiyjzk in the trilinear form computed by the
construction, p(i) + p(j) + p(k) = P . We call such constructions (p, P )-uniform.

Definition 1. Let p be a function from [n] to [N ]. Let P ∈ [N ] A trilinear form
∑

i,j,k∈[n] tijkxiyjzk is
(p, P )-uniform if whenever tijk 6= 0, p(i) + p(j) + p(k) = P . A construction computing a (p, P )-uniform
trilinear form is also called (p, P )-uniform.

Any tensor power of a (p, P )-uniform construction is (p′, P ′) uniform for some p′ and P ′. There are
many ways to define p′ and P ′ in terms of p and P . For theK-th tensor power the variable indices are length
K sequences of the original indices: χ = χ[1], . . . , χ[K], γ = γ[1], . . . , γ[K] and ζ = ζ[1], . . . , ζ[K].
Then, for instance, one can pick p′ to be an arbitrary linear combination, p′[χ] =

∑K
i ai ·χ[i], and similarly

p′[γ] =
∑K

i ai · γ[i] and p′[ζ] =
∑K

i ai · ζ[i]. Clearly then P ′ = P
∑

i ai, and the K-th tensor power
construction is (p′, P ′)-uniform.
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In this paper we will focus on the case where ai = 1 for all i ∈ [K], so that for any index ψ ∈ {χ, γ, ζ},
p′[ψ] =

∑K
i ψ[i] and P ′ = PK. Similar results can be obtained for other choices of p′.

The CW approach proceeds roughly as follows. Suppose we are given a (p, P )-uniform construction
and we wish to derive a bound on ω from it. (The approach only works when the range of p is at least
2.) Let C be the trilinear form computed by the construction and let r be the number of bilinear products
performed. If the trilinear form happens to be a direct sum of different matrix products, then one can just
apply the Schönhage τ -theorem [17] to obtain a bound on ω in terms of r and the dimensions of the small
matrix products. However, typically the triples in the trilinear form C cannot be partitioned into matrix
products on disjoint sets of variables.

The first CW idea is to partition the triples of C into groups which look like matrix products but may
share variables. Then the idea is to apply procedures to remove the shared variables by carefully setting
variables to 0. In the end one obtains a smaller, but not much smaller, number of independent matrix
products and can use Schönhage’s τ -theorem.

Two procedures are used to remove the shared variables. The first one defines a random hash func-
tion h mapping variables to integers so that there is a large set S such that for any triple xiyjzk with
h(xi), h(yj), h(zk) ∈ S one actually has h(xi) = h(yj) = h(zk). Then one can set all variables mapped
outside of S to 0 and be guaranteed that the triples are partitioned into groups according to what element
of S they were mapped to, and moreover, the groups do not share any variables. Since S is large and h
maps variables independently, there is a setting of the random bits of h so that a lot of triples (at least the
expectation) are mapped into S and are hence preserved by this partitioning step. The construction of S uses
the Salem-Spencer theorem and h is a cleverly constructed linear function.

After this first step, the remaining nonzero triples have been partitioned into groups according to what
element of S they were mapped to, and the groups do not share any variables. The second step removes
shared variables within each group. This is accomplished by a greedy procedure that guarantees that a
constant fraction of the triples remain. More details can be found in the next section.

When applied to the CW construction above, the above procedures gave the bound ω < 2.388.
The next idea that Coppersmith and Winograd had was to extend the τ -theorem to Theorem 2 below

using the notion of value Vτ . The intuition is that Vτ assigns a weight to a trilinear form T according to how
“close” an algorithm computing T is to an O(n3τ ) matrix product algorithm.

Suppose that for some N , the N th tensor power of T 1 can be reduced to
⊕q

i=1〈ki,mi, ni〉 by substitu-
tion of variables. Then, as in [10] we introduce the constraint

Vτ (T ) ≥

(
q∑
i=1

(kimini)
τ

)1/N

.

Furthermore, if π is the cyclic permutation of the x,y and z variables in T , then we also have Vτ (T ) ≥
(Vτ (T ⊗ πT ⊗ π2T ))1/3 ≥ (Vτ (T )Vτ (πT )Vτ (π2T ))1/3.

We can give a formal definition of Vτ (T ) as follows. Consider all positive integers N , and all possible
ways σ to zero-out variables in theN th tensor power of T so that one obtains a direct sum of matrix products⊕q(σ)

i=1 〈kσi ,mσ
i , n

σ
i 〉. Then we can define

Vτ (T ) = lim supN→∞,σ

q(σ)∑
i=1

(kσi m
σ
i n

σ
i )τ

1/N

.

1Tensor powers of trilinear forms can be defined analogously to how we defined tensor powers of an algorithm computing them.
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We can argue that for any permutation of the x, y, z variables π, and any N there is a corresponding per-
mutation of the zeroed out variables σ that gives the same (under the permutation π) direct sum of matrix
products. Hence Vτ (T ) ≤ Vτ (πT ) and since T can be replaced with πT and π with π−1, we must have
Vτ (T ) = Vτ (πT ), thus also satisfying the inequality Vτ (T ) ≥ (Vτ (T )Vτ (πT )Vτ (π2T ))1/3.

It is clear that values are superadditive and supermultiplicative, so that Vτ (T1 ⊗ T2) ≥ Vτ (T1)Vτ (T2)
and Vτ (T1 ⊕ T2) ≥ Vτ (T1) + Vτ (T2).

With this notion of value as a function of τ , we can state an extended τ -theorem, implicit in [10].

Theorem 3 ([10]). Let T be a trilinear form such that T =
⊕q

i=1 Ti and the Ti are independent copies of
the same trilinear form T ′. If there is an algorithm that computes T by performing at most r multiplications
for r > q, then ω ≤ 3τ for τ given by qVτ (T ′) = r.

Theorem 2 has the following effect on the CW approach. Instead of partitioning the trilinear form into
matrix product pieces, one could partition it into different types of pieces, provided that their value is easy
to analyze. A natural way to partition the trilinear form C is to group all triples xiyjzk for which (i, j, k) are
mapped by p to the same integer 3-tuple (p(i), p(j), p(k)). This partitioning is particularly good for the CW
construction and its tensor powers: in Claim 1 we show for instance that the trilinear form which consists of
the triples mapped to (0, J,K) for any J,K is always a matrix product of the form 〈1, Q, 1〉 for some Q.

Using this extra ingredient, Coppersmith and Winograd were able to analyze the second tensor power of
their construction and to improve the estimate to the current best bound ω < 2.376.

In the following section we show how with a few extra ingredients one can algorithmically analyze an
arbitrary tensor power of any (p, P )-uniform construction. (Amusingly, the algorithms involve the solution
of linear systems, indicating that faster matrix multiplication algorithms can help improve the search for
faster matrix multiplication algorithms.)

3 Analyzing arbitrary tensor powers of uniform constructions

LetK ≥ 2 be an integer. Let p be an integer function with range size at least 2. We will show how to analyze
the K-tensor power of any (p, P )-uniform construction by proving the following theorem:

Theorem 4. Given a (p, P )-uniform construction and the values for its K-tensor power, the procedure in
Figure 1 outputs a constraint program the solution τ of which implies ω ≤ 3τ .

Consider the the K-tensor power of a particular (p, P )-uniform construction. Call the trilinear form
computed by the construction C. Let r be the bound on the (border) rank of the original construction. Then
rK is a bound on the (border) rank of C.

The variables in C have indices which are K-length sequences of the original indices. Moreover, for
every triple xχyγzζ in the trilinear form and any particular position ` in the index sequences, p(χ[`]) +
p(γ[`]) + p(ζ[`]) = P . Recall that we defined the extension p̄ of p for the K tensor power as p̄(ψ) =∑K

i=1 p(ψ[i]) for index sequence ψ, and that the K tensor power is (p̄, PK)-uniform.
Now, we can represent C as a sum of trilinear forms XIY JZK , where XIY JZK only contains the

triples xχyγzζ in C for which p̄ maps χ to I , γ to J and ζ to K. That is, if C =
∑

ijk tijkxiyjzk, then
XIY JZK =

∑
i,j,k: p̄(i)=I,p̄(j)=J tijkxiyjzk. We refer to I ,J ,K as blocks.

Following the CW analysis, we will later compute the value VIJK (as a function of τ ) for each trilin-
ear form XIY JZK separately. If the trilinear forms XIY JZK didn’t share variables, we could just use
Theorem 2 to estimate ω as 3τ where τ is given by rK =

∑
IJ VIJK(τ).
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1. For each I, J,K = PK− I − J , determine the value VIJK of the trilinear form∑
i,j: p(i)=I,p(j)=J tijkxiyjzk, as a nondecreasing function of τ .

2. Define variables aIJK and āIJK for I ≤ J ≤ K = PK − I − J .

3. Form the linear system: for all I , AI =
∑

J āIJK , where āIJK = āsort(IJK).

4. Determine the rank of the linear system, and if necessary, pick enough variables
āIJK to place in S and treat as constants, so the system has full rank.

5. Solve for the variables outside of S in terms of the AI and the variables in S.

6. Compute the derivatives pI′J ′K′IJK .

7. Form the program:

Minimize τ subject to

rK = 1∏
I A

AI
I

∏
I≤J≤K

(
ā
āIJK
IJK

a
aIJK
IJK

)perm(IJK)

· V perm(IJK)·aIJK
IJK ,

āIJK ≥ 0, aIJK ≥ 0 for all I, J,K
āI′J ′K′ > 0 if āI′J ′K′ /∈ S and there is some āIJK ∈ S, pI′J ′K′IJK > 0,∑

I≤J≤K perm(IJK) · āIJK = 1,

ā
perm(IJK)
IJK ·

∏
āI′J′K′ /∈S,pI′J′K′IJK>0(āI′J ′K′)

perm(I′J ′K′)pI′J′K′IJK

=
∏
āI′J′K′ /∈S,pI′J′K′IJK<0(āI′J ′K′)

−perm(I′J ′K′)pI′J′K′IJK for all āIJK ∈ S,∑
J aIJK =

∑
J āIJK for all I( unless one is setting aIJK = āIJK).

8. Solve the program to obtain ω ≤ 3τ .
(We note that if we only have access to VIJK when they are evaluated at a fixed
τ , we can perform the minimization via a binary search, solving each step for a
fixed guess for τ and decreasing the guess while a feasible solution is found.)

Figure 1: The procedure to analyze the K tensor power.
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However, the forms can share variables. For instance, XIY JZK and XIY J ′ZK
′

share the x variables
mapped to block I . We use the CW tools to zero-out some variables until the remaining trilinear forms no
longer share variables, and moreover a nontrivial number of the forms remain so that one can obtain a good
estimate on τ and hence ω. We outline the approach in what follows.

Take the N -th tensor power CN of C for large N ; we will eventually let N go to∞. Now the indices of
the variables ofC areN -length sequences ofK length sequences. The blocks ofCN areN -length sequences
of blocks of C.

We will pick (rational) values AI ∈ [0, 1] for every block I of C, so that
∑

I A
I = 1. Then we will set

to zero all x, y, z variables of CN the indices of which map to blocks which do not have exactly N · AI
positions of block I for every I . (For large enough N , N ·AI is an integer.)

For each triple of blocks of CN (Ī , J̄ , K̄) we will consider the trilinear subform of CN , X ĪY J̄ZK̄ ,
where as before CN is the sum of these trilinear forms.

Consider values aIJK for all valid block triples I, J,K of C which satisfy

AI =
∑
J

aIJ(P ·K−I−J) =
∑
J

aJI(P ·K−I−J) =
∑
J

a(P ·K−I−J)JI .

The values aIJK will correspond to the number of index positions ` such that any trilinear formX ĪY J̄ZK̄

of CN we have that Ī[`] = I, J̄ [`] = J, K̄[`] = K.
The aIJK need to satisfy the following additional two constraints:

1 =
∑
I

AI =
∑
I,J,K

aIJK ,

and
PK = 3

∑
I

I ·AI .

We note that although the second constraint is explicitly stated in [10], it actually automatically holds as
a consequence of constraint 1 and the definition of aIJK since

3
∑
I

IAI =
∑
I

IAI +
∑
J

JAJ +
∑
K

KAK =

∑
I

∑
J

IaIJ(PK−I−J) +
∑
J

∑
I

JaIJ(PK−I−J) +
∑
K

∑
J

Ka(PK−J−K),J,K =

∑
I

∑
J

(I + J + (PK − I − J))aIJ(PK−I−J) = PK
∑
I,J

aIJ(PK−I−J) = PK.

Thus the only constraint that needs to be satisfied by the aIJK is
∑

I,J,K aIJK = 1.
Recall that

(
N

[Ri]i∈S

)
denotes

(
N

Ri1 ,Ri2 ,...,Ri|S|

)
where i1, . . . , i|S| are the elements of S. When S is im-

plicit, we only write
(
N

[Ri]

)
.

By our choice of which variables to set to 0, we get that the number of CN block triples which still have
nonzero trilinear forms is

(
N

[N ·AI ]

)
·

 ∑
[aIJK ]

∏
I

(
N ·AI

[N · aIJK ]J

) ,
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where the sum ranges over the values aIJK which satisfy the above constraint. This is since the number
of nonzero blocks is

(
N

[N ·AI ]

)
and the number of block triples which contain a particular X block is exactly∏

I

( N ·AI
[N ·aIJK ]J

)
for every partition of AI into [aIJK ]J (for K = PK − I − J).

Let ℵ =
∑

[aIJK ]

∏
I

( N ·AI
[N ·aIJK ]J

)
. The current number of nonzero block triples is ℵ ·

(
N

[N ·AI ]

)
.

Our goal will be to process the remaining nonzero triples by zeroing out variables sharing the same
block until the remaining trilinear forms corresponding to different block triples do not share variables.
Furthermore, to simplify our analysis, we would like for the remaining nonzero trilinear forms to have the
same value.

The triples would have the same value if we fix for each I a partition [aIJKN ]J of AIN : Suppose that
each remaining triple X ĪY J̄ZK̄ has exactly aIJKN positions ` such that Ī[`] = I, J̄ [`] = J, K̄[`] = K.
Then each remaining triple would have value at least

∏
I,J V

aIJKN
IJK by supermultiplicativity.

Suppose that we have fixed a particular choice of the aIJK . We will later show how to pick a choice
which maximizes our bound on ω.

The number of small trilinear forms (corresponding to different block triples of CN ) is ℵ′ ·
(

N
[N ·AI ]

)
,

where

ℵ′ =
∏
I

(
N ·AI

[N · aIJK ]J

)
.

Let us show how to process the triples so that they no longer share variables.
Pick M to be a prime which is Θ(ℵ). Let S be a Salem-Spencer set of size roughly M1−o(1) as in the

Salem-Spencer theorem. The o(1) term will go to 0 when we let N go to infinity. In the following we’ll let
|S| = M1−ε and in the end we’ll let ε go to 0, similar to [10]; this is possible since our final inequality will
depend on 1/M ε/N which goes to 1 as N goes to∞ and ε goes to 0.

Choose random numbers w0, w1, . . . , wN in {0, . . . ,M − 1}.
For an index sequence Ī , define the hash functions which map the variable indices to integers, just as

in [10]:

bx(Ī) =
N∑
`=1

w` · Ī[`] mod M,

by(Ī) = w0 +

N∑
`=1

w` · Ī[`] mod M,

bz(Ī) = 1/2(w0 +

N∑
`=1

(PK − w` · Ī[`])) mod M.

Set to 0 all variables with blocks mapping to outside S.
For any triple with blocks Ī , J̄ , K̄ in the remaining trilinear form we have that bx(Ī) + by(J̄) = 2bz(K̄)

mod M. Hence, the hashes of the blocks form an arithmetic progression of length 3. Since S contains no
nontrivial arithmetic progressions, we get that for any nonzero triple

bx(Ī) = by(J̄) = bz(K̄).

Thus, the Salem-Spencer set S has allowed us to do some partitioning of the triples.
Let us analyze how many triples remain. Since M is prime, and due to our choice of functions, the x,y

and z blocks are independent and are hashed uniformly to {0, . . . ,M − 1}. If the I and J blocks of a triple
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XIY JZK are mapped to the same value, so is the K block. The expected fraction of triples which remain
is hence

(M1−ε/M) · (1/M), which is 1/M1+ε.

This holds for the triples that satisfy our choice of partition [aIJK ].
The trilinear forms corresponding to block triples mapped to the same value in S can still share variables.

We do some pruning in order to remove shared blocks, similar to [10], with a minor change. For each s ∈ S,
process the triples hashing to s separately.

We first process the triples that obey our choice of [aIJK ], until they do not share any variables. After that
we also process the remaining triples, zeroing them out if necessary. (This is slightly different from [10].)

Greedily build a listL of independent triples as follows. Suppose we process a triple with blocks Ī , J̄ , K̄.
If Ī is among the x blocks in another triple in L, then set to 0 all y variables with block J̄ . Similarly, if Ī is
not shared but J̄ or K̄ is, then set all x variables with block Ī to 0. If no blocks are shared, add the triple to
L.

Suppose that when we process a triple Ī , J̄ , K̄, we find that it shares a block, say Ī , with a triple Ī , J̄ ′, K̄ ′

in L. Suppose that we then eliminate all variables sharing block J̄ , and thus eliminateU new triples for some
U . Then we eliminate at least

(
U
2

)
+ 1 pairs of triples which share a block: the

(
U
2

)
pairs of the eliminated

triples that share block J̄ , and the pair Ī , J̄ , K̄ and Ī , J̄ ′, K̄ ′ which share Ī .
Since

(
U
2

)
+ 1 ≥ U , we eliminate at least as many pairs as triples. The expected number of unordered

pairs of triples sharing an X (or Y or Z) block and for which at least one triple obeys our choice of [aIJK ]
is

[
(1/2)

((
N

[N ·AI ]

)
ℵ′
)

(ℵ′ − 1) +

((
N

[N ·AI ]

)
ℵ′
)

(ℵ − ℵ′)
]
/M2+ε =

((
N

[N ·AI ]

)
ℵ′
)

(ℵ−ℵ′/2−1/2)/M2+ε.

Thus at most this many triples obeying our choice of [aIJK ] have been eliminated. Hence the expected
number of such triples remaining after the pruning is(

N

[N ·AI ]

)
ℵ′/M1+ε[1− ℵ/M + ℵ′/(2M)] ≥

(
N

[N ·AI ]

)
ℵ′/(CM1+ε),

for some constant C (depending on how large we pick M to be in terms of ℵ). We can pick values for
the variables wi in the hash functions which we defined so that at least this many triples remain. (Picking
these values determines our algorithm.)

We have that

max
[aIJK ]

∏
I

(
N ·AI

[N · aIJK ]J

)
≤ ℵ ≤ poly(N) max

[aIJK ]

∏
I

(
N ·AI

[N · aIJK ]J

)
.

Hence, we will approximate ℵ by ℵmax = max[aIJK ]

∏
I

( N ·AI
[N ·aIJK ]J

)
.

We have obtained

Ω

((
N

[N ·AI ]

)
ℵ′

ℵmax
· 1

poly(N)M ε

)
trilinear forms that do not share any variables and each of which has value

∏
I,J V

aIJKN
IJK .

If we were to set ℵ′ = ℵmax we would get Ω

(
( N

[N·AI ])
poly(N)Mε

)
trilinear forms instead. We use this setting

in our analyses, though a better analysis may be possible if you allow ℵ′ to vary.
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We will see later that the best choice of [aIJK ] sets aIJK = asort(IJK) for each I, J,K, where
sort(IJK) is the permutation of IJK sorting them in lexicographic order (so that I ≤ J ≤ K). Since
tensor rank is invariant under permutations of the roles of the x, y and z variables, we also have that
VIJK = Vsort(IJK) for all I, J,K. Let perm(I, J,K) be the number of unique permutations of I, J,K.

Recall that r was the bound on the (border) rank of C given by the construction. Then, by Theorem 2,
we get the inequality

rKN ≥
(

N

[N ·AI ]

)
ℵ′

ℵmax
· 1

poly(N)M ε

∏
I≤J≤K

(VIJK(τ))perm(IJK)·N ·aIJK .

Let āIJK be the choices which achieve ℵmax so that ℵmax =
∏
I

( N ·AI
[N ·āIJK ]J

)
. Then, by taking Stirling’s

approximation we get that

(ℵ′/ℵmax)1/N =
∏
IJK

āāIJKIJK

aaIJKIJK

.

Taking theN -th root, takingN to go to∞ and ε to go to 0, and using Stirling’s approximation we obtain
the following inequality:

rK ≥ 1∏
I A

AI
I

∏
I≤J≤K

(
āāIJKIJK

aaIJKIJK

)perm(IJK)

· V perm(IJK)·aIJK
IJK .

If we set aIJK = āIJK , we get the simpler inequality

rK ≥
∏

I≤J≤K
(VIJK)perm(IJK)·aIJK/

∏
I

AAII ,

which is what we use in our application of the theorem as it reduces the number of variables and does not
seem to change the final bound on ω by much.

The values VIJK are nondecreasing functions of τ , where τ = ω/3. The inequality above gives an
upper bound on τ and hence on ω.

Computing āIJK and aIJK . Here we show how to compute the values āIJK forming ℵmax and aIJK
which maximize our bound on ω.

The only restriction on aIJK is that AI =
∑

J aIJK =
∑

J āIJK , and so if we know how to pick āIJK ,
we can let aIJK vary subject to the constraints

∑
J aIJK =

∑
J āIJK . Hence we will focus on computing

āIJK .
Recall that āIJK is the setting of the variables aIJK which maximizes

∏
I

( N ·AI
[N ·aIJK ]J

)
for fixed AI .

Because of our symmetric choice of the AI , the above is maximized for āIJK = āsort(IJK), where
sort(IJK) is the permutation of I, J,K which sorts them in lexicographic order.

Let perm(I, J,K) be the number of unique permutations of I, J,K. The constraint satisfied by the
aIJK becomes

1 =
∑
I

AI =
∑

I≤J≤K
perm(I, J,K) · aIJK .

The constraint above together with āIJK = āsort(IJK) are the only constraints in the original CW paper.
However, it turns out that more constraints are necessary for K > 2.
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The equalities AI =
∑

J āIJK form a system of linear equations involving the variables āIJK and the
fixed values AI . If this system had full rank, then the āIJK values (for āIJK = āsort(IJK)) would be
determined from the AI and hence ℵ would be exactly

∏
I

( N ·AI
[N ·āIJK ]J

)
, and a further maximization step

would not be necessary. This is exactly the case for K = 2 in [10]. This is also why in [10], setting
aIJK = āIJK was necessary.

However, the system of equations may not have full rank. Because of this, let us pick a minimum set S
of variables āĪJ̄K̄ (with I ≤ J ≤ K) so that viewing these variables as constants would make the system
(in terms of āsort(IJK)) have full rank.

Then, all variables āIJK /∈ S would be determined as linear functions depending on the AI and the
variables in S.

Consider the function G of AI and the variables in S, defined as

G =
∏
I

(
N ·AI

[N · āIJK ]āIJK /∈S , [N · āIJK ]āIJK∈S

)
.

G is only a function of {āIJK ∈ S} for fixed {Ai}i. We want to know for what values of the variables
of S, G is maximized.

G is maximized when
∏
IJ(āIJKN)! is minimized, which in turn is minimized exactly when F =∑

IJ ln((NāIJK)!) is minimized, where K = PK − I − J .
Using Stirling’s approximation ln(n!) = n lnn− n+O(lnn), we get that F is roughly equal to

N [
∑
IJ

āIJK ln(āIJK)− āIJK + āIJK lnN +O(log(NāIJK)/N)] =

N lnN +N [
∑
IJ

āIJK ln(aIJK)− āIJK +O(log(NāIJK)/N)],

since
∑

IJ āIJK =
∑

I AI = 1. As N goes to ∞, for any fixed setting of the āIJK variables, the
O(logN/N) term vanishes, and F is roughlyN lnN+N(

∑
IJ āIJK ln(āIJK)−āIJK). Hence to minimize

F we need to minimize f = (
∑

IJ āIJK ln(āIJK)− āIJK).
We want to know for what values of āIJK , f is minimized. Since f is convex for positive aIJK , it

is actually minimized when ∂f
∂āIJK

= 0 for every āIJK ∈ S. Recall that the variables not in S are linear
combinations of those in S.2

Taking the derivatives, we obtain for each āIJK in S:

0 =
∂f

∂āIJK
=
∑
I′J ′K′

ln(āI′J ′K′)
∂āI′J ′K′

∂āIJK
.

We can write this out as

1 =
∏

I′J ′K′

(āI′J ′K′)
∂āI′J′K′
∂āIJK .

Since each variable āI′J ′K′ in the above equality for āIJK is a linear combination of variables in S,
the exponent pI′J ′K′IJK =

∂āI′J′K′
∂āIJK

is actually a constant, and so we get a system of polynomial equality
constraints which define the variables in S in terms of the variables outside of S: for any āIJK ∈ S, we get

2We could have instead written f =
∑
IJ āIJK ln(āIJK) and minimized f , and the equalities we would have obtained

would have been exactly the same since the system of equations includes the equation
∑
IJ āIJK = 1, and although ∂f/∂a

is
∑
IJ

∂āIJK ln aIJK
∂a

=
∑
IJ

∂āIJK
∂a

(ln āaIJK − 1), the −1 in the brackets would be canceled out: if ā0,0,PK = (1 −∑
IJ: (I,J) 6=(0,0) āIJK), then ∂ā0,0,PK ln ā0,0,PK

∂a
= ln(ā0,0,PK)

∂ā0,0,PK
∂a

+
∑
I′J′: (I′,J′)6=(0,0)

∂āI′J′K′
∂a

.
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āIJK ·
∏

āI′J′K′ /∈S,pI′J′K′IJK>0

(āI′J ′K′)
pI′J′K′IJK =∏

āI′J′K′ /∈S,pI′J′K′IJK<0

(āI′J ′K′)
−pI′J′K′IJK .

(1)

Now, recall that we also have āIJK = āsort(IJK) so that we can rewrite Equation 1 only in terms of the
variables with I ≤ J ≤ K without changing the arguments above:

ā
perm(IJK)
IJK ·

∏
āI′J′K′ /∈S,pI′J′K′IJK>0

(āI′J ′K′)
perm(I′J ′K′)pI′J′K′IJK =∏

āI′J′K′ /∈S,pI′J′K′IJK<0

(āI′J ′K′)
−pI′J′K′IJKperm(I′J ′K′).

(2)

Given values for the variables not in S, we can use (2) to get valid values for the variables in S, provided
that for every āIJK ∈ S and any āI′J ′K′ /∈ S with pI′J ′K′IJK > 0 we have āI′J ′K′ > 0. Also, given such
values for the variables in S and the corresponding values for the variables not in S, we obtain values for
the AI . For that choice of the AI , G is maximized for exactly the variable settings we have picked. Now
all we have to do is find the correct values for the variables outside of S and for āIJK , given the constraints
AI =

∑
J āIJK .

We cannot pick arbitrary values for the variables outside of S. They need to satisfy the following
constraints:

• the obtained AI satisfy
∑

I AI = 1,

• āI′J ′K′ /∈ S =⇒ āI′J ′K′ ≥ 0, and if pI′J ′K′IJK > 0 for some āIJK ∈ S, then āI′J ′K′ > 0,

• the variables in S obtained from Equation 2 are nonnegative.

In summary, we obtain the procedure to analyze the K tensor power shown in Figure 1.

4 Analyzing the smaller tensors.

Consider the trilinear form consisting only of the variables from the K tensor power of C, with blocks
I, J,K, where I + J +K = P · K. In this section we will prove the following theorem:

Theorem 5. Given a (p, P )-uniform construction C, the procedure in Figure 2 computes the values VIJK
for any tensor power of C.

Recall that the indices of the variables of the K tensor power of C are K-length sequences of indices
of the variables of C, and that the blocks of the K power are K-length sequences of the blocks of C. Also
recall that if p was the function from [n] to [N ] which maps the indices of C to blocks, then we define pK

to be a function which maps the K power indices ψ to blocks as pK(ψ) =
∑

` p(ψ[`]). We also define
pK : [n]K → [N ]K as pK(ψ)[`] = p(ψ[`]) for each ` ∈ [K].

For any I, J,K which form a valid block triple of the K tensor power, we consider the trilinear form
TI,J,K consisting of all triples xiyjzk of theK tensor power of the construction for which pK(i) = I, pK(j) =
J, pK(k) = K. We call an X block i of the K power good if pK(i) = I , and similarly, a Y block j and a Z
block k are good if pK(j) = J and pK(k) = K.
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We will analyze the value VIJK of TI,J,K . To do this, we first take the KN -th tensor power of TI,J,K ,
the KN -th tensor power of TK,I,J and the KN -th tensor power of TJ,K,I , and then tensor multiply these
altogether. By the definition of value, VI,J,K is at least the 3KN -th root of the value of the new trilinear
form.

Here is how we process the KN -th tensor power of TI,J,K . The powers of TK,I,J and TJ,K,I are pro-
cessed similarly.

We pick values Xi ∈ [0, 1] for each good block i of the K tensor power of C so that
∑

iXi = 1. Set to
0 all x variables except those that have exactly Xi · KN positions of their (KN -length) index mapped to i
by pK, for each good block i of the K tensor power of C.

The number of nonzero x blocks is
( KN

[KN ·Xi]i

)
.

Similarly pick values Yj for the y variables, with
∑

j Yj = 1, and retain only those with YjKN index
positions mapped to j. Similarly pick values Zk for the z variables, with

∑
k Zk = 1, and retain only those

with ZkKN index positions mapped to k.
The number of nonzero y blocks is

( KN
[KN ·Yj ]j

)
. The number of nonzero z blocks is

( KN
[KN ·Zk]k

)
.

For each i,j,k that are valid block sequences of the K tensor power of C such that pK(i) = I, pK(j) =
J, pK(k) = K = PK − I − J , let αijk be variables such that Xi =

∑
j αijk, Yj =

∑
i αijk and Zk =∑

i αijk.
After taking the tensor product of what is remaining of the KN th tensor powers of TI,J,K , TK,I,J and

TJ,K,I , the number of x, y or z blocks is

Γ =

(
KN

[KN ·Xi]

)(
KN

[KN · Yj ]

)(
KN

[KN · Zk]

)
.

The number of block triples which contain a particular x, y or z block is

ℵ =
∑

[αijk]ijk

∏
i

(
KNXi

[KNαijk]j

)∏
j

(
KNYj

[KNαijk]i

)∏
k

(
KNZk

[KNαijk]i

)
,

where the sum is over the possible choices of αijk that respect Xi =
∑

j αijk, Yj =
∑

i αijk and
Zk =

∑
i αijk. We will approximate ℵ as before by

ℵmax = max
[αijk]ijk

∏
i

(
KNXi

[KNαijk]j

)∏
j

(
KNYj

[KNαijk]i

)∏
k

(
KNZk

[KNαijk]i

)
.

Let βijk be the choice of αijk achieving the maximum above. With a slight abuse of notation let αijk be
some choice ofαijk that we will optimize over. Let for this choice ofαijk, ℵ′ =

∏
i

( KNXi
[KNαijk]j

)∏
j

( KNYj
[KNαijk]i

)∏
k

( KNZk
[KNαijk]i

)
.

Later we will need Υ = ℵ′/ℵmax, so let’s see what it looks like as N goes to ∞. Using Stirling’s
approximation, and the fact that for any fixed j or k,

∑
i αijk =

∑
i βijk, and for fixed i,

∑
j αijk =∑

j βijk, we get

Υ1/(3KN) =

(
ℵ′

ℵmax

)1/(3KN)

→
∏
ij β

βijk
ijk∏

ij α
αijk
ijk

.

The number of triples is Γ · ℵ′.
Set M = Θ(ℵ) to be a large enough prime greater than ℵ. Create a Salem-Spencer set S of size roughly

M1−ε. Pick random values w0, w1, w2, . . . , wKN in {0, . . . ,M − 1}.
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The blocks for x, y, or z variables of the new big trilinear form are sequences of length 3KN ; the first
KN positions of a sequence contain x-blocks of the K tensor power, the second KN contain y-blocks and
the last KN contain z-blocks of the K tensor power.

For an x-block sequence i, y-block sequence j and z-block sequence k, we define

bx(i) =
3KN∑
`=1

w` · i[`] mod M,

by(j) = w0 +
3KN∑
`=1

w` · j[`] mod M,

bz(k) = 1/2(w0 +
3KN∑
`=1

(PK − (w` · k[`]))) mod M.

We then set to 0 all variables that do not have blocks hashing to elements of S. Again, any surviving
triple has all variables’ blocks mapped to the same element of S. The expected fraction of triples remaining
is M1−ε/M2 = 1/M1+ε.

As before, we do the pruning of the triples mapped to each element s of S separately. Similarly to
section 3, we greedily zero out variables first processing the triples that map to s and obey the choice of
αijk, and then zeroing out any other remaining triples mapping to s. Just as the previous argument, after the
pruning, over all s, we obtain in expectation at least Ω(ΥΓ/(M ε poly(N))) independent triples all obeying
the choice of αijk.

Analogously to before, we will let ε go to 0 and so the expected number of remaining triples is roughly
ΥΓ/ poly(N). Hence we can pick a setting of the wi variables so that roughly ΥΓ/ poly(N) triples remain.
We have obtained about ΥΓ/ poly(N) independent trilinear forms, each of which has value at least∏

i,j,k,p

V
3KNαijk
i[p],j[p],k[p].

This follows since values are supermultiplicative.
The final inequality becomes

V 3KN
I,J,K ≥ Υ/ poly(N) ·

(
KN

[KN ·Xi]

)(
KN

[KN · Yj ]

)(
KN

[KN · Zk]

) ∏
i,j,k,p

V
3KNαijk
i[p],j[p],k[p].

VI,J,K ≥ Υ1/(3KN)/ poly(N1/N ) ·

( KN
[KN ·Xi]

)(
KN

[KN · Yj ]

)(
KN

[KN · Zk]

) ∏
i,j,k,p

V
3KNαijk
i[p],j[p],k[p]

1/(3KN)

.

We want to maximize the right hand side, as N goes to ∞, subject to the equalities Xi =
∑

j αijk,
Yj =

∑
i αijk, Zk =

∑
i αijk, and

∑
iXi = 1.

As 1/N1/N goes to 1, it suffices to focus on

VI,J,K ≥ Υ1/(3KN)

( KN
[KN ·Xi]

)(
KN

[KN · Yj ]

)(
KN

[KN · Zk]

) ∏
i,j,k,p

V
3KNαijk
i[p],j[p],k[p]

1/(3KN)

.
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Now, since for any permutation π on [K],
∏
i,j,k,p Vi[p],j[p],k[p] =

∏
i,j,k,p Vi[π(p)],j[π(p)],k[π(p)], we can

set Xi = Xπ(i) for any permutation π on the block sequence. Similarly for Yj and Zk. To do this, we set
αijk = απ(i),π(j),π(k) for any permutation π.

Here we are slightly abusing the notation: whenever π is called on a sequence of K numbers, it returns
the permuted sequence, and whenever π is called on a number p from [K], π(p) is a number from [K].

For a K-length sequence i, let perm(i) denote the number of distinct permutations over i. For instance,
perm(123) = 6, whereas perm(110) = 3 since there are only three distinct permutations 110, 101, 011.
Similarly, for an ordered list of threeK length sequences i, j, k, we let perm(ijk) denote the number of dis-
tinct triples (π(i), π(j), π(k)) over all permutations π on K elements. For instance, perm(001, 220, 001) =
3, whereas perm(001, 210, 011) = 6.

A set ofK-length block sequences is naturally partitioned into groups of sequences that are isomorphic in
this permutation sense. Each group has a representative, namely the lexicographically smallest permutation,
and all representatives are non-isomorphic. Let SI denote the set of group representatives for the set of
K-length sequences the values of which sum to I . (SJ and SK are defined similarly.)

Similarly, a set of compatible triples of sequences can also be partitioned into groups of triples that are
isomorphic under some permutation and for two triples (i, j, k) and (i′, j′, k′) in different groups we have
that for every permutation π, (π(i), π(j), π(k)) 6= (i′, j′, k′). The groups have representatives, namely the
lexicographically smallest triple in the group, and all representatives are nonisomorphic. Let S3 denote the
set of group representatives of the triples the values of which sum to (I, J,K).

Given these definitions, if S = {i1, . . . , is}, we can define the notation
(

N
[ni,perm(i)]i∈S

)
as the number

of ways to split up N items into perm(i1) groups on ni1 elements, perm(i2) groups on ni2 elements, . . .,
and perm(is) groups on nis elements. Whenever S is implicit, we just write

(
N

[ni,perm(i)]

)
.

Then we can rewrite the value inequality as
VI,J,K ≥ Υ1/(3KN)·( KN
[KN ·Xi, perm(i)]

)(
KN

[KN · Yj , perm(j)]

)
·
(

KN
[KN · Zk, perm(k)]

) ∏
(i,j,k)∈S3,p∈[K]

V
3KNαijkperm(ijk)

i[p],j[p],k[p]

1/(3KN)

.

We now rewrite using Stirling’s approximation:(
KN

[KN ·Xi, perm(i)]

)
= (KN)(KN)/

∏
i

(KN ·Xi)
KN ·Xiperm(i) =

KKNNKN/(KKN
∏
i

(NXi)
KN ·Xiperm(i)) =

NKN/
∏
i

(NXi)
KN ·Xiperm(i) =

∏
i

perm(i)KN ·Xiperm(i)NKN/
∏
i

(perm(i)NXi)
KN ·Xiperm(i) =

∏
i

perm(i)KN ·Xiperm(i)

(
N

[perm(i)NXi]i

)K
.
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Similarly, we have(
KN

[KN · Yj , perm(j)]

)
=
∏
j

perm(j)KN ·Yjperm(j)

(
N

[perm(j)NYj ]j

)K
, and

(
KN

[KN · Zk, perm(k)]

)
=
∏
k

perm(k)KN ·Zkperm(k)

(
N

[perm(k)NZk]k

)K
.

For each ijk ∈ S3, set Vijk =
∏
p∈[K] Vi[p],j[p],k[p]. Then the inequality becomes

V 3N
I,J,K ≥ Υ1/K

∏
i

perm(i)N ·Xiperm(i)

(
N

[perm(i)NXi]i

)
·
∏
j

perm(j)N ·Yjperm(j)

(
N

[perm(j)NYj ]j

)
·

∏
k

perm(k)N ·Zkperm(k)

(
N

[perm(k)NZk]k

)
·

∏
(i,j,k)∈S3

V
3Nαijkperm(ijk)
ijk .

Now recall that we had a system of equalities Xi =
∑

j αijk, Yj =
∑

i αijk, and Zk =
∑

i αijk. We
will show that if we restrict ourselves to the equations for i ∈ SI , j ∈ SJ , k ∈ SK and if we replace each
αijk with the α variable with an index which is the group representative of the group that ijk is in, then if
we omit any two equations, the remaining system has linearly independent equations. If the system has full
rank, then each αijk can be represented uniquely as a linear combination of the Xi, Yj , Zk. Otherwise, we
can pick a minimal number of αijk to view as constants (in a set ∆) so that the system becomes full rank.
Then we can represent all of the remaining αijk uniquely as linear combinations of the elements in ∆ and
the Xi, Yj , Zk.

The coefficient of each element y ∈ {Xi}i ∪ {Yj}j ∪ {Zk}k ∪∆ in the linear combination that αijk is
represented as is exactly ∂αijk/∂y. Hence, we can rewrite the inequality as

V 3N
I,J,K ≥ Υ1/K

(
N

[perm(`)NX`]`

)∏
`

perm(`)N ·X`perm(`)
∏
i,j,k

V
3NX`perm(ijk)∂αijk/∂X`
ijk

 ·
(

N

[perm(`)NY`]`

)∏
`

perm(`)N ·Y`perm(`)
∏
i,j,k

V
3NY`perm(ijk)∂αijk/∂Y`
ijk

 ·
(

N

[perm(`)NZ`]`

)∏
`

perm(`)N ·Z`perm(`)
∏
i,j,k

V
3NZ`perm(ijk)∂αijk/∂Z`
ijk

∏
y∈∆

∏
(i,j,k)∈S3

V
3Nyperm(ijk)∂αijk/∂y
ijk .

Now, we can maximize the right hand side using Lemma 1 by setting

nx` = perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂X`
ijk ,

ny` = perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂Y`
ijk ,
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nz` = perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂Z`
ijk ,

¯nx` = nx`/
∑
j

nxj , n̄y` = ny`/
∑
j

nyj , n̄z` = nz`/
∑
j

nzj and

perm(i)Xi = n̄xi, perm(j)Yj = n̄yj and perm(k)Zk = ¯nzk.
The inequality becomes

VI,J,K ≥
∏
ij β

βijk
ijk∏

ij α
αijk
ijk

·

∑
`

perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂X`
ijk

1/3∑
`

perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂Y`
ijk

1/3

·

∑
`

perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂Z`
ijk

1/3 ∏
y∈∆

∏
(i,j,k)∈S3

V
yperm(ijk)∂αijk/∂y
ijk .

The variables in ∆ are not free. They are constrained by the linear constraints that y ≥ 0 for each y ∈ ∆,
and αijk ≥ 0 for all αijk /∈ ∆ viewed as linear combinations of the elements of ∆ (recall that all Xi, Yj , Zk
are already fixed).

The variables βijk are also not fixed. Recall that they are the choices that achieve ℵmax for the fixed
choices for Xi, Yj , Zk above. As N grows,

∏
i

( KNXi
[KNαijk]j

)∏
j

( KNYj
[KNαijk]i

)∏
k

( KNZk
[KNαijk]i

)
is maximized

when
∏
ij β

βijk
ijk is minimized. Thus we can compute the values βijk as follows.

For every αijk that we picked to be in ∆, add the corresponding βijk to a set ∆̄. Recall that the βijk
are solutions to the same linear system as the αijk, i.e. Xi =

∑
j βijk, Yj =

∑
i βijk, and Zk =

∑
i βijk.

Thus, we immediately get for any βijk /∈ ∆̄ an expression as a linear function of the variables in ∆̄, the
exact same linear function that corresponds to αijk in terms of the variables in ∆. Now, to compute βijk
achieving ℵmax we just form the convex system over the variables in ∆̄.

Minimize
∏
ij β

βijk
ijk , subject to βijk ≥ 0 for all i, j, k.

(Above, for βijk /∈ ∆̄, the LHS of the inequality is the linear function expressing βijk in terms of the
variables in ∆̄.)

Let B1 =
∏
ij β

βijk
ijk be the optimal value of the convex program above.

Now, we solve the following program over the variables in ∆:
Maximize

1∏
ij α

αijk
ijk

·

∑
`

perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂X`
ijk

1/3∑
`

perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂Y`
ijk

1/3

·

∑
`

perm(`)
∏

(i,j,k)∈S3

V
3perm(ijk)/perm(`)∂αijk/∂Z`
ijk

1/3 ∏
y∈∆

∏
(i,j,k)∈S3

V
yperm(ijk)∂αijk/∂y
ijk , subject to

αijk ≥ 0 for all i, j, k.
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Let B2 be the solution of the above program. We can now return VIJK ≥ B1 ·B2.
To finish the proof we need to show that the linear system has linearly independent equations. Here we

do it for the sequences over {0, 1, 2} where in each index they sum to 2.

Lemma 2. Suppose that I > 0. Consider the linear systemXi =
∑

j : (i,j,k)∈S3 aiijkαijk, Yj =
∑

i : (i,j,k)∈S3 b
j
ijkαijk

and Zk =
∑

j : (i,j,k)∈S3 ckijkαijk obtained by taking the system Xi =
∑

j αijk, Yj =
∑

i αijk and
Zk =

∑
j αijk for i ∈ SI , j ∈ SJ , k ∈ SK and setting αijk = απ(i)π(j)π(k) for the permutation π that

picks the representative of (i, j, k) in S3.
Then there is a way to omit two equations, one from the equations for Xi and one from the equations for

Yj , so that the remaining equations over the αijk for (i, j, k) ∈ S3 are linearly independent.

In fact, any way to omit an equation for the Xi variables and an equation for the Yj variables suffices: if
for some choiceXi, Yj the remaining equations are linearly dependent, then sinceXi =

∑
k Zk−

∑
i′ 6=iXi′

and Yj =
∑

k Zk −
∑

j′ 6=j Yj′ , then removing any other Xi′ , Yj′ would also result in linearly dependent
equations.

Proof. Define k̄ to be a sequence with exactly bK/2c twos and one 1 if K is odd, otherwise no ones. Define
j̄ to be a sequence compatible to k̄ that has one 1 and (J−1)/2 twos if J is odd, and two ones and (J−2)/2
twos if J is even. Define ī to be the sequence compatible with j̄ and k̄. Pick the sorting of the sequences so
that (̄i, j̄, k̄) ∈ S3. Omit the equations for Xī and Yj̄ .

Now suppose for contradiction that there are coefficients xi, yj , zk so that for every (i, j, k) ∈ S3,
xia

i
ijk + yjb

j
ijk + zkc

k
ijk = 0. We want to show that xi = yj = zk = 0 for all i, j, k.

We will describe a procedure that takes three compatible sequences i, j, k, assuming that xi = yj =
zk = 0 and transforming them into new compatible sequences i′, j′, k′ where k′ has one less 2 than k and
the number of 2s in i and j did not increase when going to i′ and j′. The procedure proceeds by taking one
of the following steps:

1. Suppose there are positions r, s so that i[r] = j[r] = 1, i[s] = j[s] = 0, k[r] = 0, k[s] = 2. Then
let i′ = i, j′[r] = 0, j′[s] = 1, j′[t] = j[t] for t /∈ {r, s}, and k′[r] = k′[s] = 1, k′[t] = k[t] for
t /∈ {r, s}.
Note that i′, j′, k′ are compatible, and that j′ and j have the same number of 1s and 2s, so that after
sorting, the equation xi′ai

′
i′j′k′+yj′b

j′

i′j′k′+zk′c
k′
i′j′k′ = 0 implies that zk′ck

′
i′j′k′ = 0 and hence zk′ = 0.

2. Suppose there are positions r, s, t so that i[r] = 0,i[s] = 1,i[t] = 0, j[r] = 2,j[s] = 0,j[t] = 0, k[r] =
0,k[s] = 1,k[t] = 2. Then let i′ = i, j′[r] = 1,j′[s] = 0,j′[t] = 1 and k′[r] = 1,k′[s] = 1,k′[t] = 1;
on all other positions j′ = j and k′ = k.

Note that i′, j′, k′ are compatible. Consider the compatible i′′, j′′, k′′ with i′′ = i, j′′[r] = 1, j′′[s] =
1, j′′[t] = 0, k′′[r] = 1, k′′[s] = 0, k′′[t] = 2 and k′′ = k, j′′ = j otherwise. Since i′′ = i and since
k′′ has the same number of 1s and 2s as k, the equation for αi′′,j′′,k′′ gives yj′′ = 0. Since i′ = i′′ and
since j′ has the same number of 1s and 2s as j′′, the equation for αi′,j′,k′ gives zk′′ = 0.

3. Suppose that there are positions r, s, t so that i[r] = 2,i[s] = 0,i[t] = 0, j[r] = 0,j[s] = 1,j[t] = 0,
k[r] = 0,k[s] = 1,k[t] = 2. Then let j′ = j, i′[r] = 1,i′[s] = 0,i′[t] = 1 and k′[r] = 1,k′[s] =
1,k′[t] = 1; on all other positions i′ = i and k′ = k.

Note that i′, j′, k′ are compatible. Consider the compatible i′′, j′′, k′′ with j′′ = j, i′′[r] = 1, i′′[s] =
1, i′′[t] = 0, k′′[r] = 1, k′′[s] = 0, k′′[t] = 2 and k′′ = k, i′′ = i otherwise. Since j′′ = j and since k′′
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has the same number of 1s and 2s as k, the equation for αi′′,j′′,k′′ gives xi′′ = 0. Since j′ = j′′ and
since i′ has the same number of 1s and 2s as i′′, the equation for αi′,j′,k′ gives zk′′ = 0.

Now we show that one of the above steps is always applicable if we keep running the procedure starting
from ī, j̄, k̄, and as long as k has more than the minimum number of 2s it can possibly have. First, by
construction, j̄ contains at least one 1. The procedure never decreases the number of 1s in i and j so that
there is always at least one 1 in j. If there is a 1 in the same position in i and j, then step 1 can be applied.
Otherwise, wherever j is a 1, i is a 0. If i contains a 2, then step 3 can be applied. If i does not contain a 2,
then i contains a 1 since I > 0, and if j contains a 2, then step 2 can be applied. Otherwise, i and j contain
only 0s and 1s in distinct positions. However, then k contains the maximum number of 1s that it can have,
and hence the minimum number of 2s.

4.1 Reducing the number of variables via recursion.

The number of variables in the above approach is roughly the number of triples in S3. Consider the number
of K-length sequences in SI . Each sequence is determined by the number of ways to represent I as the
sum of K integers from {0, . . . , n} and this is no more than In. For every such choice only some choices
of sequences in SJ are compatible. However, even if we ignore compatibility, the number of triples in S3

is never more than (IJ)n = O((Kn)2n). For the special case of n = 2, P = 2 as in the Coppersmith-
Winograd construction, the only sequences of SJ compatible with a sequence s in SI are those that have
0 wherever s is 2. Hence the only variability is wherever s is 0 or 1, and so the number of triples in S3 is
O(I2J) ≤ O(K3).

Here we consider a recursive approach inspired by an observation by Stothers. We show that this ap-
proach is viable for even tensor powers and that it reduces the number of variables in the value computation
substantially, from O(K2n) to O(K2). This is significant even for the case of the Coppersmith-Winograd
construction when the number of variables was Θ(K3).

Here we outline the approach. Suppose that we have analyzed the values for some powersK′ andK−K′
of the trilinear form from the construction withK′ < K. We will show how to inductively analyze the values
for the K power, using the values for these smaller powers.

Consider the K tensor power of the trilinear form C. It can actually be viewed as the tensor product of
the K′ and K −K′ tensor powers of C.

Recall that the indices of the variables of the K tensor power of C are K-length sequences of indices of
the variables of C. Also recall that if p was the function which maps the indices of C to blocks, then we
define pK to be a function which maps the K power indices ψ to blocks as pK(ψ) =

∑
` p(ψ[`]).

An index of a variable in the K tensor power of C can also be viewed as a pair (l,m) such that l is an
index of a variable in the K′ tensor power of C and m is an index of a variable in the K − K′ tensor power
of C. Hence we get that pK((l,m)) = pK

′
(l) + pK−K

′
(m).

For any I, J,K which form a valid block triple of the K tensor power, we consider the trilinear form
TI,J,K consisting of all triples xiyjzk of theK tensor power of the construction for which pK(i) = I, pK(j) =
J, pK(k) = K.

TI,J,K consists of the trilinear forms Ti,j,k⊗TI−i,J−j,K−k for all i, j, k that form a valid block triple for
the K′ power, and such that I − i, J − j,K − k form a valid block triple for the K − K′ power. Call such
blocks i, j, k good. Then:

TIJK =
∑

good ijk

Ti,j,k ⊗ TI−i,J−j,K−k.
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1. Define variables αijk for (i, j, k) ∈ S3 and Xi, Yj , Zk for all i, j, k ∈ S.

2. Form the linear system consisting of
Xi =

∑
j:(i,j,k)∈S3 perm(ijk)/perm(i)αijk,

Yj =
∑
i:(i,j,k)∈S3 perm(ijk)/perm(j)αijk and

Zk =
∑
i:(i,j,k)∈S3 perm(ijk)/perm(k)αijk, where i, j range over elements of SI and SJ re-

spectively with the lexicographically smallest element of SI and SJ omitted, and k ranges over all
elements of SK .

3. Determine the rank of the system.

4. If the system does not have full rank, then pick enough variables αijk to treat as constants; place
them in a set ∆.

5. Solve the system for the variables outside of ∆ in terms of the ones in ∆ and Xi, Yj , Zk. Now we
have αijk = αijk([Xi], [Yj ], [Xk], y ∈ ∆).

6. Let Vi,j,k =
∏
p∈[K] Vi[p],j[p],k[p]. Compute for every `,

nx` = perm(`)
∏

(i,j,k)∈S3

V
3
perm(ijk)
perm(`)

∂αijk
∂X`

ijk ,

ny` = perm(`)
∏

(i,j,k)∈S3

V
3
perm(ijk)
perm(`)

∂αijk
∂Y`

ijk ,

nz` = perm(`)
∏

(i,j,k)∈S3

V
3
perm(ijk)
perm(`)

∂αijk
∂Z`

ijk .

7. Compute for every variable y ∈ ∆,

ny =
∏

(i,j,k)∈S3

V
perm(ijk)

∂αijk
∂y

ijk .

8. Compute for each αijk its setting αijk(∆) as a function of the y ∈ ∆ when perm(`)X` =
nx`/

∑
i nxi, perm(`)Y` = ny`/

∑
j nyj and perm(`)Z` = nz`/

∑
k nzk.

9. Then set
V ′IJK = (

∑
`

nx`)
1/3(

∑
`

ny`)
1/3(

∑
`

nz`)
1/3

∏
y∈∆

nyy/
∏
ij

α
αijk
ijk ,

as a function of y ∈ ∆.

10. Form the following linear constraints L on y ∈ ∆

y ≥ 0 for all y ∈ ∆,
αijk(∆) ≥ 0 for every αijk /∈ ∆.

11. Solve the convex program, and let its solution be B1:
Minimize

∏
ij α

αijk
ijk subject to L.

12. Solve the program, and let its solution be B2:
Maximize V ′IJK subject to L.

13. Return that VIJK ≥ B1 ·B2.

Figure 2: The procedure for computing lower bounds on VIJK for arbitrary tensor powers.
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(The sum above is a regular sum, not a disjoint sum, so the trilinear forms in it may share indices.) The
above decomposition of TIJK was first observed by Stothers [18, 11].

Let Qijk = Tijk ⊗ TI−i,J−j,K−k. By supermultiplicativity, the value Wijk of Qijk satisfies Wijk ≥
VijkVI−i,J−j,K−k. If the trilinear forms Qijk didn’t share variables, then we would immediately obtain a
lower bound on the value VIJK as

∑
ijk VijkVI−i,J−j,K−k. However, the trilinear forms Qijk may share

variables, and we’ll apply the techniques from the previous section to remove the dependencies.
To analyze the value VIJK of TI,J,K , we first take the N -th tensor power of TI,J,K , the N -th tensor

power of TK,I,J and the N -th tensor power of TJ,K,I , and then tensor multiply these altogether. By the
definition of value, VI,J,K is at least the 3N -th root of the value of the new trilinear form.

Here is how we process theN -th tensor power of TI,J,K . The powers of TK,I,J and TJ,K,I are processed
similarly.

We pick values Xi ∈ [0, 1] for each block i of the K′ tensor power of C so that
∑

iXi = 1. Set to 0 all
x variables except those that have exactly Xi ·N positions of their index which are mapped to (i, I − i) by
(pK

′
, pK−K

′
), for all i.

The number of nonzero x blocks is
(

N
[N ·Xi]i

)
.

Similarly pick values Yj for the y variables, with
∑

j Yj = 1, and retain only those with Yj index
positions mapped to (j, J − j). Similarly pick values Zk for the z variables, with

∑
k Zk = 1, and retain

only those with Zk index positions mapped to (k,K − k).
The number of nonzero y blocks is

(
N

[N ·Yj ]j

)
. The number of nonzero z blocks is

(
N

[N ·Zk]k

)
.

For i, j, k = PK′ − i− j which are valid blocks of the K′ tensor power of C with good i, j, k, let αijk
be variables such that Xi =

∑
j αijk, Yj =

∑
i αijk and Zk =

∑
i αijk.

After taking the tensor product of what is remaining of the N th tensor powers of TI,J,K , TK,I,J and
TJ,K,I , the number of x, y or z blocks is

Γ =

(
N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)
.

The number of block triples which contain a particular x, y or z block is

ℵ =
∑
{αijk}

∏
i

(
NXi

[Nαijk]j

)∏
j

(
NYj

[Nαijk]i

)∏
k

(
NZk

[Nαijk]i

)
,

where the sum is over all the possible choices of αijk satisfying Xi =
∑

j αijk, Yj =
∑

i αijk and Zk =∑
i αijk.
Hence the number of triples is Γ · ℵ. As in Section 3, we will focus on a choice for αijk, over which

we will optimize, and let ℵ′ be the value of the summand in ℵ corresponding to the choice αijk. We also let
βijk be the choice that maximizes ℵ for fixed Xi, Yj , Zk as N goes to infinity. We will approximate ℵ by

ℵmax =
∏
i

(
NXi

[Nαijk]j

)∏
j

(
NYj

[Nαijk]i

)∏
k

(
NZk

[Nαijk]i

)
,

since ℵmax is within a poly(N) factor of ℵ.
Again, we let Υ = ℵ′/ℵmax.
Set M = Θ(ℵ) to be a large enough prime greater than ℵ. Create a Salem-Spencer set S of size roughly

M1−ε. Pick random values w0, w1, w2, . . . , w3N in {0, . . . ,M − 1}.
The blocks for x, y, or z variables of the new big trilinear form are sequences of length 3N ; the first N

positions of a sequence contain pairs (i, I − i), the second N contain pairs (j, J − j) and the last N contain
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pairs (k,K − k). We can thus represent the block sequences I of the K tensor power as (I1, I2) where I1 is
a sequence of length 3N of blocks of the K′ power of C and I2 is a sequence of length 3N of blocks of the
K −K′ power of C (the first N are x blocks, the second N are y blocks and the third N are z blocks).

For a particular block sequence I = (I1, I2), we define the hash functions that depend only on I1:

bx(I) =
3N∑
`=1

w` · I1[`] mod M,

by(I) = w0 +

3N∑
`=1

w` · I1[`] mod M,

bz(I) = 1/2(w0 +
3N∑
`=1

(PK′ − (w` · I1[`]))) mod M.

We then set to 0 all variables that do not have blocks hashing to elements of S. Again, any surviving
triple has all variables’ blocks mapped to the same element of S. The expected fraction of triples remaining
is M1−ε/M2 = 1/M1+ε. This also holds for the triples that have αijk positions in which they look like
xiyjzk.

As before, we do the pruning of the triples mapped to each element of S separately, first zeroing out
triples satisfying the choice for αijk and then any remaining ones. The number of remaining block triples
over all elements of S is Ω(ΥΓℵmax/M

1+ε) = Ω(ΥΓ/( poly(N)M ε)). Analogously to before, we will
let ε go to 0, and so the expected number of remaining triples is roughly ΥΓ/ poly(N). Hence we can
pick a setting of the wi variables so that roughly ΥΓ/ poly(N) triples remain. We have obtained about
ΥΓ/ poly(N) independent trilinear forms, each of which has value at least∏

i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk .

This follows since values are supermultiplicative.
The final inequality becomes

V 3N
I,J,K ≥ (Υ/ poly(N)) ·

(
N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)∏
i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk .

VI,J,K ≥ (Υ1/(3N)/ poly(N1/N ))·

( N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)∏
i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk

1/(3N)

.

We want to maximize the right hand side, as N goes to ∞, subject to the equalities Xi =
∑

j αijk,
Yj =

∑
i αijk, Zk =

∑
i αijk,

∑
iXi = 1, Xi =

∑
j βijk, Yj =

∑
i βijk, Zk =

∑
i βijk, and subject to

βijk maximizing ℵ.
As N goes to infinity, N1/N goes to 1, and hence it suffices to analyze

VI,J,K ≥ Υ1/(3N)

( N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)∏
i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk

1/(3N)

.
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Consider the equalities Xi =
∑

j αijk, Yj =
∑

i αijk, and Zk =
∑

i αijk. If we fix Xi, Yj , Zk over all
i, j, k, this forms a linear system. As in our original analysis, we can remove an equation for some Xi and
an equation for some Yj , and we will hope that the remaining equations are linearly independent. This will
not necessarily be the case but we will prove that, with some modification, it is the case when K is even. In
the following let’s assume that the equations are linearly independent.

The linear system does not necessarily have full rank, and so we pick a minimum set ∆ of variables αijk
so that if they are treated as constants, the linear system has full rank, and the variables outside of ∆ can be
written as linear combinations of variables in ∆ and of Xi, Yj , Zk.

Now we have that for every αijk,

αijk =
∑

y∈∆∪{Xi′ ,Yj′ ,Zk′}i′,j′,k′

y
∂αijk
∂y

,

where for all αijk /∈ ∆ we use the linear function obtained from the linear system.
Let δijk =

∑
y∈∆ y

∂αijk
∂y . Let Wi,j,k = Vi,j,k · VI−i,J−j,K−k. Then,

W
αijk
i,j,k = W

∑
iXi

∂αijk
∂Xi

ijk W

∑
i Yj

∂αijk
∂Yj

ijk W

∑
k Zk

∂αijk
∂Zk

ijk W
δijk
i,j,k .

Define nx` =
∏
i,j,kW

3
∂αijk
∂X`

ijk for any `. Set n̄x` = nx`∑
`′ nx`′

.

Define similarly ny` =
∏
i,j,kW

3
∂αijk
∂Y`

ijk and nz` =
∏
i,j,kW

3
∂αijk
∂Z`

ijk , setting n̄y` = ny`∑
`′ ny`′

and n̄z` =
nz`∑
`′ nz`′

.
Consider the right hand side of our inequality for VIJK :

Υ1/(3N)

(
N

[N ·Xi]

)(
N

[N · Yj ]

)(
N

[N · Zk]

)∏
i,j,k

W
3Nαijk
i,j,k =

Υ1/(3N)

(
N

[N ·Xi]

)∏
`

nxNX``

(
N

[N · Yj ]

)∏
`

nyNY`` ·
(

N

[N · Zk]

)∏
`

nzNZ``

∏
i,j,k

W
(
∑
y∈∆ y

∂αijk
∂y

)

i,j,k .

By Lemma 1, the above is maximized for X` = ¯nx`, Y` = n̄y`, and Z` = n̄z` for all `, and for these
settings

(
N

[N ·Xi]
)∏

` nx
NX`
` , for instance, is essentially (

∑
` nx`)

N/ poly(N), and hence after taking the
3N th root and letting N go to∞, we obtain

VI,J,K ≥ Υ1/(3N)(
∑
`

nx`)
1/3(

∑
`

ny`)
1/3(

∑
`

nz`)
1/3
∏
i,j,k

W
(
∑
y∈∆ y

∂αijk
∂y

)

i,j,k .

If ∆ = ∅ and if we pick αijk = βijk, then the above gives a complete formula for VI,J,K . Otherwise,
to maximize the lower bound on VI,J,K we need to pick values for the variables in ∆ so that the values for
the variables outside of ∆ (which are obtained from our settings of the Xi, Yj , Zk and the values for the ∆
variables) are nonnegative, and the variables βijk maximize ℵ for the fixed values of Xi, Yj , Zk.

To obtain the values βijk we proceed as before. First we put a variable βijk in ∆̄ iff the corresponding
αijk is in ∆. We also then represent the remaining βijk as a linear combination of the variables in ∆̄ (using
the same linear function as for the corresponding αijk in terms of the variables in ∆). Then we solve the
following systems.

Let V̄IJK = (
∑

` nx`)
1/3(

∑
` ny`)

1/3(
∑

` nz`)
1/3
∏
i,j,kW

(
∑
y∈∆ y

∂αijk
∂y

)

i,j,k .
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1. a convex program over the variables in ∆̄ that minimizes
∏
ij β

βijk
ijk under the linear constraints that

all βijk ≥ 0; let the solution of this system be B1;

2. a concave program that over the variables in ∆ that maximizes V̄IJK/
∏
ij α

αijk
ijk subject to the linear

constraints that all αijk ≥ 0; let the solution be B2;

Finally, return that VIJK ≥ B1B2.
The approach allows us to obtain a procedure similar to the one we had before but with fewer variables.

Next, we proceed to focus on the case when K is even. There we show how to further reduce the number
of variables, now by a constant factor, and in the process to make sure that the linear system defined by the
dependence of the Xi, Yj , Zk variables on αijk is linearly independent.

4.2 Even tensor powers

Given the approach outlined in the previous subsection, we will outline the changes that occur for even
powers so that we both reduce the number of variables and make sure that the linear system has linearly
independent equations. We prove the following theorem.

Theorem 6. Given a (p, P )-uniform construction C, the procedure in Figure 3 computes lower bounds on
the values VIJK for any even tensor power K of C, given lower bounds on the values for the K/2 power.
Hence in O(logK) iterations of the procedure, one can compute lower bounds for the values of any tensor
power which is a power of 2.

To analyze the value VIJK of TI,J,K , we first take the 2N -th tensor power (instead of the N th) of
TI,J,K , the 2N -th tensor power of TK,I,J and the 2N -th tensor power of TJ,K,I , and then tensor multiply
these altogether. By the definition of value, VI,J,K is at least the 6N -th root of the value of the new trilinear
form.

Here is how we process the 2N -th tensor power of TI,J,K , the powers of TK,I,J and TJ,K,I are processed
similarly.

We pick values Xi ∈ [0, 1] for each block i of the K′ = K/2 tensor power of C so that
∑

iXi = 2 and
Xi = XI−i for every i ≤ I/2. Set to 0 all x variables except those that have exactly Xi · N positions of
their index which are mapped to (i, I − i) by (pK

′
, pK

′
), for all i.

The number of nonzero x blocks is
(

2N
[N ·Xi]i<I/2,[N ·Xi]i<I/2,2N ·XI/2

)
.

Similarly pick values Yj for the y variables, with Yj = YJ−j , and retain only those with Yj index
positions mapped to (j, J − j). Similarly pick values Zk for the z variables, with Zk = ZK−k, and retain
only those with Zk index positions mapped to (k,K − k).

The number of nonzero y blocks is
(

2N
[N ·Yj ]j<J/2,[N ·Yj ]j<J/2,2N ·YJ/2

)
. The number of nonzero z blocks is(

2N
[N ·Zk]k<K/2,[N ·Zk]k<K/2,2N ·ZK/2

)
.

For i, j, k = PK′ − i− j which are valid blocks of the K′ tensor power of C let αijk be variables such
that Xi =

∑
j αijk, Yj =

∑
i αijk and Zk =

∑
i αijk.

After taking the tensor power of what is remaining of the 2N th tensor powers of TI,J,K , TK,I,J and
TJ,K,I , the number of x, y or z blocks is

Γ =

(
2N

[N ·Xi]

)(
2N

[N · YJ ]

)(
2N

[N · ZK ]

)
.

The number of triples which contain a particular x, y or z block is now
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1. Define variables αijk andXi, Yj , Zk for all valid triples i, j, k, i.e. the good triples with i ≤ I/2 and if i = I/2,
then j ≤ J/2.

2. Form the linear system consisting of
Xi =

∑
j∈J(i) αij? when i < bI/2c,

Yj =
∑
i∈I(j) αij? +

∑
i∈I(J−j) αi,J−j,? when j < bJ/2c, and

Zk =
∑
i∈I(k) αi?k +

∑
i∈I(K−k) αi,?,K−k for k < K/2 and ZK/2 = 2

∑
i∈I(K/2) αi?K/2.

3. If the system does not have full rank, then pick enough variables αijk to put in ∆ and hence treat as constants.

4. Solve the system for the variables outside of ∆ in terms of the ones in ∆ and Xi, Yj , Zk. Now we have
αijk = αijk([Xi], [Yj ], [Xk], y ∈ ∆) for all αijk /∈ ∆.

5. Compute for every `,

nx` =
∏

i≤I/2,j,k

W
3
∂αijk
∂X`

ijk for ` < bI/2c and nxbI/2c = 1 if I is odd, nxI/2 = 1/2 if I is even,

ny` =
∏

i≤I/2,j,k

W
3
∂αijk
∂Y`

ijk for ` < bJ/2c, and, nybJ/2c = 1 if J is odd, nyJ/2 = 1/2 if J is even,

nz` =
∏

i≤I/2,j,k

W
3
∂αijk
∂Z`

ijk for ` < K/2 and nzK/2 =
∏

i≤I/2,j,k

W
6
∂αijk
∂ZK/2

ijk /2.

6. Compute for every variable y ∈ ∆,

ny =
∏

i≤I/2,j,k

(Vi,j,kVI−i,J−j,K−k)
∂αijk
∂y .

7. Compute for each αijk its setting αijk(∆) as a function of the y ∈ ∆ when X` = nx`/
∑
i nxi, Y` =

ny`/
∑
j nyj and Z` = nz`/

∑
k nzk.

8.

Then set V ′IJK(∆) = 2

 ∑
`≤I/2

nx`

1/3 ∑
`≤J/2

ny`

1/3 ∑
`≤K/2

nz`

1/3 ∏
y∈∆ nyy∏

ij αijk(∆)αijk(∆)
,

as a function of y ∈ ∆.

9. Form the linear constraints L on y ∈ ∆ given by

y ≥ 0 for all y ∈ ∆,
αijk(∆) ≥ 0 for every αijk /∈ ∆.

10. Solve the system
Minimize

∏
ij αijk(∆)αijk(∆) subject to L.

Let the solution be B1.

11. Solve the system
Maximize V ′IJK(∆) subject to L.
Let the solution be B2.

12. Return that VIJK ≥ B1B2.

Figure 3: The procedure to compute VIJK for even tensor powers.
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ℵ =
∑
{αijk}

∏
i<I/2

(
NXi

[Nαijk]j

)2 ∏
j<J/2

(
NYj

[Nαijk]i

)2 ∏
k<K/2

(
NZk

[Nαijk]i

)2( NXI/2

[Nα(I/2)jk]j

)(
NYJ/2

[Nαi(J/2)k]i

)(
NZK/2

[Nαij(K/2)]i

)
.

Hence the number of triples is Γ · ℵ.
Set M = Θ(ℵ) to be a large enough prime greater than ℵ. Create a Salem-Spencer set S of size roughly

M1−ε and perform the hashing just as before. Then set to 0 all variables that do not have blocks hashing to
elements of S. Again, any surviving block triple has all variables’ blocks mapped to the same element of S.
The expected fraction of block triples remaining is M1−ε/M2 which will be 1/M when we let ε go to 0.

As before, let Υ = ℵ′/ℵmax. We let βijk be the values maximizing the inner summand in ℵ and hence
attaining ℵmax. We let αijk be values we optimize over.

After the usual pruning we have obtained Ω(ΥΓ/ poly(N)) independent trilinear forms, each of which
has value at least ∏

i,j,k

(Vi,j,k · VI−i,J−j,K−k)3Nαijk ,

where αijk are the values maximizing ℵ.
Because of symmetry, αijk = αI−i,J−j,K−k, so letting Wijk = Vi,j,k · VI−i,J−j,K−k, we can write the

above as ∏
i<I/2,j,k

(Wi,j,k)
6Nαijk

∏
j<J/2,k

(WI/2,j,k)
6NαI/2,jk(WI/2,J/2,k)

3NαI/2,J/2,k .

We can make a change of variables now, so that αI/2,J/2,k is halved, and whereever we had αI/2,J/2,k
before, now we have 2αI/2,J/2,k.

The value inequality becomes

V 6N
I,J,K ≥ (Υ/ poly(N)) ·

(
2N

[N ·Xi]

)(
2N

[N · Yj ]

)(
2N

[N · Zk]

) ∏
i≤I/2,j,k

(Wi,j,k)
6Nαijk .

Using Stirling’s approximation, we obtain that the right hand side is roughly

Υ · (2N)2N

(NXI/2)NXI/2
∏
i<I/2(NXi)2NXi

(2N)2N

(NYJ/2)NYJ/2
∏
j<J/2(NYj)2NYj

×

(2N)2N

(NZK/2)NZK/2
∏
k<K/2(NZk)2NZk

∏
i≤I/2,j,k

W
6Nαijk
i,j,k .

Taking square roots and restructuring:

√
Υ · 23N−N(XI/2+YJ/2+ZK/2)/2

(
N

[N ·Xi]i<I/2, NXI/2/2

)(
N

[N · Yj ]j<J/2, NYJ/2/2

)
×

(
N

[N · Zk]k<K/2, NZK/2/2

) ∏
i≤I/2,j,k

W
3Nαijk
i,j,k .

Because of the symmetry, we can focus only on the variables αijk for which
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• i ≤ I/2

• if i = I/2, then j ≤ J/2.

A triple (i, j, k) is valid if i and j satisfy the above two conditions and (i, j, k) is good. When two of the
indices in a triple are fixed (say i, j), we will replace the third index by ?. If i ≤ I/2 is fixed, J(i) will refer
to the indices j for which (i, j, ?) is valid. Similarly one can define K(i), I(j),K(j), I(k) and J(k).

We obtain the following linear equations.
Xi =

∑
j∈J(i) αij? when i < I/2 andXI/2 = 2

∑
j∈J(I/2) α(I/2)j?, Yj =

∑
i∈I(j) αij?+

∑
i∈I(J−j) αi,J−j,?

when j < J/2 and YJ/2 = 2
∑

i∈I(J/2) αi(J/2)?, and Zk =
∑

i∈I(k) αi?k +
∑

i∈I(K−k) αi,?,K−k for
k < K/2 and ZK/2 = 2

∑
i∈I(K/2) αi?K/2.

If we fix Xi, Yj , Zk over all i ≤ I/2, j ≤ J/2, k ≤ K/2, this forms a linear system. This linear
system has the property that

∑
iXi =

∑
j Yj =

∑
k Zk, so we focus on the smaller system that excludes

the equations for XbI/2c and YbJ/2c. In the following lemma we show that the equations in this system are
linearly independent.

Lemma 3. The linear expressionsXi =
∑

j∈J(i) αij? for i < bI/2c, Yj =
∑

i∈I(j) αij?+
∑

i∈I(J−j) αi,J−j,?
for j < bJ/2c, Zk =

∑
i∈I(k) αi?k +

∑
i∈I(K−k) αi,?,K−k for k < K/2 and ZK/2 = 2

∑
i∈I(K/2) αi?K/2

are linearly independent.

Proof. The proof will proceed by contradiction. Let P ′ = PK/2. Assume that there are coefficients
xi,yj ,zk for 0 ≤ i ≤ bI/2c − 1, 0 ≤ j ≤ bJ/2c − 1, max{0, P ′ − I − J} ≤ k ≤ bk/2c, such that∑

i xiXi +
∑

j yjYj +
∑

k zkZk = 0.
This means that for all valid triples i, j, k, the coefficient in front of aijk must be 0. Consider the

coefficient in front of abI/2cbJ/2c(P ′−bI/2c−bJ/2c). This coefficient is zbK/2c, unless both I and J are odd.
If both I and J are odd, consider the coefficient in front of abI/2cdJ/2e(P ′−bI/2c−bJ/2c). That coefficient is
zbK/2c. Hence, zbK/2c = 0.

Now, we will show by induction that for all t,

xbI/2c−t = ybJ/2c−t = zbK/2c−t = 0.

The base case is for t = 0. This holds since the system does not contain equations forXbI/2c and YbJ/2c,
and since we showed that zbK/2c = 0.

Suppose that xbI/2c−t = ybJ/2c−t = zbK/2c−t = 0. We will show that xbI/2c−t−1 = ybJ/2c−t−1 =
zbK/2c−t−1 = 0. Whenever an index for xi,yj ,zk is not defined, we can assume that the corresponding
variable is 0.

Suppose that I and J are not both odd.
Consider the coefficient in front of aijk for i = bI/2c, j = bJ/2c − t − 1, k = K − (P ′ − bI/2c −

bJ/2c+ t+ 1) = bK/2c − t− 1. It is ybJ/2c−t−1 + zbK/2c−t−1.
Consider the coefficient in front of aijk for i = bI/2c − t − 1, j = bJ/2c, k = K − (P ′ − bI/2c −

bJ/2c+ t+ 1) = bK/2c − t− 1. It is xbI/2c−t−1 + zbK/2c−t−1.
Consider the coefficient in front of aijk for i = bI/2c − t − 1, k = bK/2c, j = J − (P ′ − bI/2c −

bK/2c+ t+ 1) = bJ/2c − t− 1. It is xbI/2c−t−1 + ybJ/2c−t−1.
Hence,

ybJ/2c−t−1 + zbK/2c−t−1 = xbI/2c−t−1 + zbK/2c−t−1 = xbI/2c−t−1 + ybJ/2c−t−1 = 0.

Therefore, xbI/2c−t−1 = ybJ/2c−t−1 = zbK/2c−t−1 = 0.
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Suppose now that both I and J are odd. Then K is even.
Consider the coefficient in front of aijk for i = bI/2c = (I−1)/2, j = dJ/2e−t−1 = (J+1)/2−t−1,

k = K − (P ′ − (I − 1)/2− (J + 1)/2 + t+ 1) = bK/2c − t− 1. It is ybJ/2c−t−1 + zbK/2c−t−1.
Consider the coefficient in front of aijk for i = bI/2c − t − 1, j = dJ/2e, k = K − (P ′ − bI/2c −

dJ/2e+ t+ 1) = bK/2c − t− 1. It is xbI/2c−t−1 + zbK/2c−t−1.
Consider the coefficient in front of aijk for i = bI/2c − t− 1, k = dK/2e, j = J − (P ′ − (I − 1)/2−

K/2 + t+ 1) = bJ/2c − t− 1. It is xbI/2c−t−1 + ybJ/2c−t−1.
Hence, again

ybJ/2c−t−1 + zbK/2c−t−1 = xbI/2c−t−1 + zbK/2c−t−1 = xbI/2c−t−1 + ybJ/2c−t−1 = 0.

Therefore, xbI/2c−t−1 = ybJ/2c−t−1 = zbK/2c−t−1 = 0.

Because the equations are linearly independent, the rank of the system is exactly the number of equa-
tions. If the system has full rank, then we can determine each αijk as a linear combination of the Xi, Yj , Zk.
Otherwise, we pick a minimum set ∆ of variables αijk so that if they are treated as constants, the linear
system has full rank and the variables outside of ∆ can be written as linear combinations of variables in ∆
and of Xi, Yj , Zk. (The choice of the variables to put in ∆ can be arbitrary.)

Now, we have that for every valid αijk,

αijk =
∑

y∈∆∪{Xi,Yj ,Zk}i,j,k

y
∂αijk
∂y

,

where for all αijk /∈ ∆ we use the linear function obtained from the linear system.
Let δijk =

∑
y∈∆ y

∂αijk
∂y . Then,

W
3Nαijk
i,j,k = W

3N
∑
iXi

∂αijk
∂Xi

ijk W
3N

∑
i Yj

∂αijk
∂Yj

ijk W
3N

∑
k Zk

∂αijk
∂Zk

ijk W
3Nδijk
i,j,k .

We now define nx` =
∏
i≤I/2,j,kW

3
∂αijk
∂X`

ijk for ` < bI/2c, nxbI/2c = 1 if I is odd and nxbI/2c = 1/2 if
I is even.

Consider

FX =

(
N

[N ·Xi]i<I/2, NXI/2/2

) ∏
i≤I/2,j,k

(W
(NXI/2/2)6

∂αi,j,k
∂XI/2

i,j,k )/2NXI/2/2

 ∏
i≤I/2,j,k

W
3N

∑
`<I/2X`

∂αijk
∂X`

ijk .

By Lemma 1, FX is maximized for X` = nx`/
∑

`′ nx`′ for ` < I/2 and XI/2/2 = nxI/2/
∑

`′ nx`′ .
Then FX is essentially (

∑
`≤I/2 nx`)

N/ poly(N).

Define similarly ny` =
∏
i≤I/2,j,kW

3
∂αijk
∂Y`

ijk for ` < bJ/2c, nybJ/2c = 1 if J is odd and nybJ/2c = 1/2

if J is even, and nz` =
∏
i≤I/2,j,kW

3
∂αijk
∂Z`

ijk for ` < K/2 and nzK/2 =
∏
i≤I/2,j,kW

6
∂αijk
∂ZK/2

ijk /2.
We obtain that

V 3N
I,J,K ≥

√
Υ23N/ poly(N)

∑
`≤I/2

nx`

N  ∑
`≤J/2

ny`

N  ∑
`≤K/2

nz`

N

/ poly(N)
∏

i≤I/2,j,k

W
3N(

∑
y∈∆ y

∂αijk
∂y

)

i,j,k .
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Taking the 3N -th root and letting N go to∞, we finally obtain

VI,J,K ≥ 2

∑
`≤I/2

nx`

1/3 ∑
`≤J/2

ny`

1/3 ∑
`≤K/2

nz`

1/3 ∏
i≤I/2,j,k

(Vi,j,kVI−i,J−j,K−k)
(
∑
y∈∆ y

∂αijk
∂y

)
Υ1/(6N).

Now, as N goes to∞, Υ1/(6N) goes to
∏

valid i,j,k β
βijk
ijk /α

αijk
ijk .

To obtain the lower bound on VI,J,K we need to pick values for the variables in ∆, while still preserving
the constraints that the values for the variables outside of ∆ (which are obtained from our settings of the
XI , YJ , ZK and the values for the ∆ variables) are nonnegative. We also need that βijk attain ℵmax given
the settings of theXI , YJ , ZK . Since the βijk are solutions of the same linear system as the αijk, we proceed
as before. We place βijk in ∆̄ whenever αijk ∈ ∆, and express the βijk /∈ ∆̄ in terms of the variables in
∆̄ using the same linear functions as the αijk. We then minimize

∏
valid i,j,k β

βijk
ijk subject to the constraints

that all βijk ≥ 0. This is a convex program over the variables in ∆̄. Let the solution of this program be B1.
Then, we maximize

2

∑
`≤I/2

nx`

1/3 ∑
`≤J/2

ny`

1/3 ∑
`≤K/2

nz`

1/3 ∏
i≤I/2,j,k

(Vi,j,kVI−i,J−j,K−k)
(
∑
y∈∆ y

∂αijk
∂y

)
/
∏

valid i,j,k

α
αijk
ijk

subject to αijk ≥ 0. This is only over the variables in ∆. Let B2 be the solution here.
Finally, we can output that VI,J,K ≥ B1 ·B2.
The procedure is shown in Figure 3.

5 Analyzing the CW construction

We can make the following observations about some of the values for any tensor power K. First, VIJK =
VIKJ = VJKI = VKJI = VJIK = VKIJ . For the special case I = 0 we get:

Claim 1. Consider V0JK which is a value for the K = (J +K)/2 tensor power for J ≤ K. Then

V0JK ≥

 ∑
b≤J,J=b mod 2

(
(J +K)/2

b, (J − b)/2, (K − b)/2

)
qb

τ

.

Proof. The trilinear form T0JK contains triples of the form x0Kyszt where s and t are K length sequences
so that for fixed s, t is predetermined. Thus, T0JK is in fact a matrix product of the form 〈1, Q, 1〉 where Q
is the number of y indices s. Let us count the y indices containing a positions mapped to a 0 block (hence
0s), b positions mapped to a 1 block (integers in [q]) and K − a − b positions mapped to a 2 block (hence
q+1s). The number of such y indices is

( K
a,b,K−a−b

)
qb. However, since a ·0+1 · b+2 · (K−a− b) = J , we

must have J +K − 2a− b = J and a = (K − b)/2. Thus, the number of y indices containing (K − b)/2
0s, b positions in [q] and K − a− b = (J − b)/2 (q + 1)s is

( (J+K)/2
b,(J−b)/2,(K−b)/2

)
qb. The claim follows since

we can pick any b as long as (J − b)/2 is a nonnegative integer.
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Lemma 4. Consider V1,x,2K−x−1 for any x and K. For both approaches to lowerbounding V1,x,2K−x−1,
the number of αijk variables and the number of equations is exactly x + 1. Hence no variables need to be
added to ∆.

Proof. Wlog, x ≤ 2K − x− 1 so that x < K.
We first consider the general, nonrecursive approach to computing a lower bound on V1,x,2K−x−1.
Consider first the number of X∗, Y∗, Z∗ variables. There is only oneX∗ variable- for the index sequence

that contains a single 1 and all 0s otherwise. Consider now the Y∗ and Z∗ variables.
Since x < K, there is an index sequence for the Y∗ variables for every j ranging from 0 to bx/2c defined

as the sequence with j twos and x − 2j < K − j ones. For the Z∗ variables there is an index sequence for
every k defined as the sequence with k twos and 2K − x− 1− 2k ones. Since the number of ones must be
at least 0 and at most K − k, we have that 0 ≤ 2K − x− 1− 2k ≤ K − k and k ranges from K − x− 1 to
K − d(x+ 1)/2e.

The number of equations is hence bx/2c+ 1 + (K−d(x+ 1)/2e)− (K− x− 1) = bx/2c+ 1−d(x+
1)/2e+ x+ 1 = x+ 1.

Now let’s consider the number of variables αijk. Recall, there is only one sequence i, namely the
one with one 1 and all zeros otherwise. Thus, for every sequence j that contains at least one 1, there
are exactly two variables αijk: one for which the last positions of both i and j are 1, and one for which
the last position of j is 0 and the last position of i is 1. If x is even, there is a sequence j with no ones
and there is a unique variable αijk for it. Hence the number of αijk variables is twice the number of Y∗
variables if x is odd, and that number minus 1 otherwise. That is, if x is odd, the number of variables is
2(1 + bx/2c) = 2(1 + (x− 1)/2) = x+ 1, and if x is even, it is 2(1 + bx/2c)− 1 = x+ 1. In both cases,
the number of αijk is exactly the number of equations in the linear system.

Now consider the recursive approach with evenK. Here the number ofX∗ variables is 1 and the number
of Y∗ variables is bx/2c+ 1. Z∗ ranges between K−x− 1 and K−d(x+ 1)/2e and so the number of these
variables is 1+b(x+1)/2c. The number of equations in the linear system is thus bx/2c+1+b(x+1)/2c =
x+ 1. The number of αijk variables is also x+ 1 since all variables have i = 0 and j can vary from 0 to x.

The calculations for the second tensor power were performed by hand. Those for the 4th and the 8th
tensor power were done by computer (using Maple and C++ with NLOPT). We write out the derivations as
lemmas for completeness.

Second tensor power. We will only give VIJK for I ≤ J ≤ K, and the values for other permutations of
I, J,K follow.

From Claim 1 know that V004 = 1 and V013 = (2q)τ , and V022 = (q2 + 2)τ .
It remains to analyze V112. As expected, we obtain the same value as in [10].

Lemma 5. V112 ≥ 22/3qτ (q3τ + 2)1/3.

Proof. We follow the proof in the previous section. Here I = 1, J = 1,K = 2. The only valid variables
are α002 and α011, and we have that Z0 = α002 and Z1 = 2α011.

We obtain nx0 = ny0 = 1, nz1 = W
2·3/2
011 /2 = V 6

011/2 = q6τ/2 and nz0 = W 3
002 = V 3

011 = q3τ .
The lower bound becomes

V112 ≥ 2(q6τ/2 + q3τ )1/3 = 22/3qτ (q3τ + 2)1/3.
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The program for the second power: The variables are a = a004, b = a013, c = a022, d = a112.
A0 = 2(a+ b) + c, A1 = 2(b+ d), A2 = 2c+ d, A3 = 2b, A4 = a.

We obtain the following program (where we take natural logs on the last constraint).
Minimize τ subject to
q ≥ 3, q ∈ Z,

a, b, c, d ≥ 0,

3a+ 6b+ 3c+ 3d = 1,

2 ln(q + 2) + (2(a+ b) + c) ln(2(a+ b) + c) + 2(b+ d) ln(2(b+ d)) + (2c+ d) ln(2c+ d)+

2b ln 2b+ a ln a = 6bτ ln 2q + 3cτ ln(q2 + 2) + d ln(4q3τ (q3τ + 2)).

Using Maple, we obtain the bound ω ≤ 2.37547691273933114 for the values a = .000232744788234356428, b =
.0125062362305418986, c = .102545675391892355, d = .205542440692123102, τ = .791825637579776975.

The fourth tensor power. From Claim 1 we have, V008 = 1, V017 =
(

4
1,(1−1)/2,(7−1)/2

)
q1)τ = (4q)τ ,

V026 = (
∑

b≤2,b=2 mod 2

(
4

b,(2−b)/2,(6−b)/2
)
qb)τ = (4+6q2)τ , V035 = (

∑
b≤3,b=3 mod 2

(
4

b,(3−b)/2,(5−b)/2
)
qb)τ =

(12q + 4q3)τ , and V044 = (
∑

b≤4,b=4 mod 2

(
4

b,(4−b)/2,(4−b)/2
)
qb)τ = (6 + 12q2 + q4)τ .

Let’s consider the rest:

Lemma 6. V116 ≥ 22/3(8q3τ (q3τ + 2) + (2q)6τ )1/3.

Proof. Here I = J = 1,K = 6. The variables are α004 and α013.
The large variables are Z2 and Z3. The linear system is: Z2 = α004, Z3 = 2α013.
We can conclude that α013 = Z3/2 and α004 = Z2.
We obtain nx0 = ny0 = 1, and nz2 = W 3

004 = (V112)3 = 4q3τ (q3τ + 2), nz3 = W
6/2
013 /2 =

(V013V103)3/2 = (2q)6τ/2. The lower bound becomes

V116 ≥ 2(4q3τ (q3τ + 2) + (2q)6τ/2)1/3 = 22/3(8q3τ (q3τ + 2) + (2q)6τ )1/3.

Lemma 7. V125 ≥ 22/3(2(q2 + 2)3τ + (4q3τ (q3τ + 2)))1/3((4q3τ (q3τ + 2))/(q2 + 2)3τ + (2q)3τ )1/3.

Proof. Here I = 1, J = 2 and K = 5. The variables are α004, α013, α022 and Y0 and Z1, Z2.
The linear system is as follows: Y0 = α004 + α022, Z1 = α004, Z2 = α013 + α022.
We solve: α004 = Z1, α022 = Y0 − Z1, α013 = Z2 − Y0 + Z1.
We obtain nx0 = 1, ny1 = 1/2, ny0 = W 3

022W
−3
013, nz1 = W 3

004W
−3
022W

3
013, nz2 = W 3

013.
ny0 + ny1 = (W022/W013)3 + 1/2 = ((2q(q2 + 2))τ/((2q)τ )22/3qτ (q3τ + 2)1/3)3 + 1/2 = (q2 +

2)3τ/(4q3τ (q3τ + 2)) + 1/2,
nz1 = (W004W013/W022)3 = (V121V013V112/(V022V103))3 = (V 2

112/V022)3 = (4q3τ (q3τ + 2))2/(q2 +
2)3τ . nz2 = (V013V112)3 = 4q3τ (q3τ + 2)(2q)3τ and nz1 + nz2 = (4q3τ (q3τ + 2))[(4q3τ (q3τ + 2))/(q2 +
2)3τ + (2q)3τ ].

We obtain

V125 ≥ 22/3(2(q2 + 2)3τ + (4q3τ (q3τ + 2)))1/3((4q3τ (q3τ + 2))/(q2 + 2)3τ + (2q)3τ )1/3.
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Lemma 8. V134 ≥ 22/3((2q)3τ + 4q3τ (q3τ + 2))1/3(2 + 2(2q)3τ + (q2 + 2)3τ )1/3.

Proof. Here I = 1, J = 3,K = 4 and the relevant variables are α004, α013, α022, α031, and Y0, Z0, Z1, Z2.
The linear system is: Y0 = α004 + α031, Z0 = α004, Z1 = α013 + α031, Z2 = 2α022.
We solve: α004 = Z0, α031 = Y0 − Z0, α013 = Z1 − Y0 + Z0, α022 = Z2/2.
ny0 = W 3

031W
−3
013 = (V103/V121)3, ny1 = 1.

ny0 + ny1 = (V 3
013 + V 3

112)/V 3
112.

nz0 = W 3
004W

−3
031W

3
013 = (V130V013V121/(V031V103))3 = (V121)3,

nz1 = W 3
013 = (V013V121)3, nz2 = W

6/2
022 /2 = (V022V112)3/2.

nz0 + nz1 + nz2 = V 3
121(1 + V 3

013 + V 3
022/2).

We obtain:
V134 ≥ 22/3(V 3

013 + V 3
112)1/3(2 + 2V 3

013 + V 3
022)1/3 ≥

22/3((2q)3τ + 4q3τ (q3τ + 2))1/3(2 + 2(2q)3τ + (q2 + 2)3τ )1/3.

Lemma 9. V224 ≥ (2V 3
022 + V 3

112)2/3(2 + 2V 3
013 + V 3

022)1/3/V022 ≥ (2(q2 + 2)3τ + 4q3τ (q3τ + 2))2/3(2 +
2(2q)3τ + (q2 + 2)3τ )1/3/(q2 + 2)τ .

Proof. I = J = 2,K = 4, so the variables are α004, α013, α022, α103, α112, and X0, Y0, Z0, Z1, Z2.
The linear system is as follows:
X0 = α004+α013+α022, Y0 = α004+α103+α022, Z0 = α004, Z1 = α013+α103, Z2 = 2(α022+α112).
We solve: α004 = Z0,
α022 = 1/2(X0 + Y0 − 2Z0 − Z1),
α112 = Z2/2− α022 = 1/2(Z2 −X0 − Y0 + 2Z0 + Z1),
α013 = X0 − Z0 − 1/2(X0 + Y0 − 2Z0 − Z1) = 1/2(X0 − Y0 + Z1), and
α103 = 1/2(Y0 −X0 + Z1).
nx0 = W

3/2
022W

−3/2
112 W

3/2
013W

−3/2
103 = V 3

022/V
3

112,
ny0 = W

3/2
022W

−3/2
112 W

−3/2
013 W

3/2
103 = V 3

022/V
3

112,
nz0 = V 3

004V
3

022V
6

112/V
6

022 = V 6
112/V

3
022,

nz1 = W
−3/2
022 W

3/2
112W

3/2
013W

3/2
103 = V 3

013V
6

112/V
3

022,
nz2 = V 6

112/2.

V224 ≥ 2(V 3
022/V

3
112 + 1/2)2/3(V 6

112/V
3

022 + V 3
013V

6
112/V

3
022 + V 6

112/2)1/3 =

(2V 3
022/V

3
112 + 1)2/3(2V 6

112/V
3

022 + 2V 3
013V

6
112/V

3
022 + V 6

112)1/3 =

(2V 3
022 + V 3

112)2/3(2 + 2V 3
013 + V 3

022)1/3/V022.

Lemma 10. V233 ≥ (2(q2 + 2)3τ + 4q3τ (q3τ + 2))1/3((2q)3τ + 4q3τ (q3τ + 2))2/3/(qτ (q3τ + 2)1/3).

Proof. I = 2, J = K = 3, so the variables are α013, α022, α031, α103, α112, and X0, Y0, Z0, Z1.
The linear system is: X0 = α013 + α022 + α031,
Y0 = α031 + α103,
Z0 = α013 + α103, Z1 = α022 + α031 + α112.
We solve it as follows. Let w = α103 and ∆ = {w}. Then:
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α031 = Y0 − w, α013 = Z0 − w,
α022 = X0 − Y0 − Z0 + 2w, α112 = Z1 −X0 + Z0 − w.
First, consider nw:
nw = (V013V220)−1 · (V022V211)2 · (V031V202)−1 · (V103V130)1 · (V112V121)−1 = 1.
nx0 = (W022/W112)3 = (V022/V112)3, nx1 = 1/2,
ny0 = (W031/W022)3 = (V031/V112)3, ny1 = 1,
nz0 = (W013W112/W022)3 = (V013V112)3, nz1 = W 3

112 = V 6
112.

nx0 + nx1 = (V022/V112)3 + 1/2 = (2V 3
022 + V 3

112)/(2V 3
112),

ny0 + ny1 = (V013/V112)3 + 1 = (V 3
013 + V 3

112)/V 3
112.

nz0 + nz1 = (V013V112)3 + V 6
112 = (V 3

013 + V 3
112) · V 3

112 Hence,

V233 ≥ 22/3(2V 3
022 + V 3

112)1/3(V 3
013 + V 3

112)2/3/V112 ≥

22/3(2(q2 + 2)3τ + 4q3τ (q3τ + 2))1/3((2q)3τ + 4q3τ (q3τ + 2))2/3/(22/3qτ (q3τ + 2)1/3) =

(2(q2 + 2)3τ + 4q3τ (q3τ + 2))1/3((2q)3τ + 4q3τ (q3τ + 2))2/3/(qτ (q3τ + 2)1/3).

In order for the above formula to be valid, we need to be able to pick a value for w = α103 between 0
and 1 so that Y0 − w, Z0 − w, X0 − Y0 − Z0 + 2w, Z1 −X0 + Z0 − w are all between 0 and 1, whenever
X0, Y0, Z0, Z1 are set toX0 = nx0/(nx0+nx1), Z0 = Y0 = ny0/(ny0+ny1), and Z1 = nz1/(nz0+nz1).

The inequalities we need to satisfy are as follows:

• w ≥ 0, w ≤ 1,

• w ≤ Y0. Notice that w ≥ Y0 − 1 is always satisfied since Y0 ≤ 1.

• w ≥ 1/2(Y0 + Z0 −X0) and w ≤ 1/2(1 + Y0 + Z0 −X0),

• w ≤ Z0 +Z1−X0 = 1−X0. Notice that Z1−X0 +Z0−w ≤ 1 always holds as Z1−X0 +Z0−w =
1−X0 − w ≤ 1−X0 ≤ 1 as X0 ≥ 0.

When q = 5, for all τ ∈ [2/3, 1], Y0 > 0, 1/2(1 +Y0 +Z0−X0) > 0, 1−X0 > 0, and 1/2(Y0 +Z0−
X0) < 0, so that w = 0 satisfies the system of inequalities. Thus the formula for our lower bound for V233

holds.

Now that we have the values, let’s form the program. The variables are as follows:
a for 008 (and its 3 permutations),
b for 017 (and its 6 permutations),
c for 026 (and its 6 permutations),
d for 035 (and its 6 permutations),
e for 044 (and its 3 permutations),
f for 116 (and its 3 permutations),
g for 125 (and its 6 permutations),
h for 134 (and its 6 permutations),
i for 224 (and its 3 permutations),
j for 233 (and its 3 permutations).
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We have
A0 = 2a+ 2b+ 2c+ 2d+ e,
A1 = 2b+ 2f + 2g + 2h,
A2 = 2c+ 2g + 2i+ j,
A3 = 2d+ 2h+ 2j,
A4 = 2e+ 2h+ i,
A5 = 2d+ 2g,
A6 = 2c+ f,
A7 = 2b,
A8 = a.

The rank is 8 since
∑

I AI = 1. The number of variables is 10 so we pick two variables, c, d, to express
the rest in terms of. We obtain:

a = A8,
b = A7/2,
f = A6 − 2c,
g = A5/2− d,
e = A0 − 2(a+ b+ c+ d) = (A0 − 2A8 −A7)− 2c− 2d,
h = A1/2− b− f − g = (A1/2−A7/2−A6 −A5/2) + 2c+ d,
j = A3/2− d− h = (A3/2−A1/2 +A7/2 +A6 +A5/2)− 2c− 2d,
i = A4 − 2e− 2h = (A4 − 2A0 + 4A8 + 3A7 −A1 + 2A6 +A5) + 2d.

We get the settings for c and d:

c = (f6e6j6/h12)1/6 = fej/h2,

d = (g6e6j6/(h6i6))1/6 = egj/(hi).

Above we also get that h, i > 0.
We want to pick settings for integer q ≥ 3 and rationals a, b, e, f, g, h, i, j ∈ [0, 1] so that

• 3a+ 6(b+ c+ d) + 3(e+ f) + 6(g + h) + 3(i+ j) = 1,

• (q + 2)4
∏8
I=0A

AI
I = V 6b

017V
6c

026V
6d

035V
3e

044V
3f

116V
6g

125V
6h

134V
3i

224V
3j

233.

We obtain the following solution to the above program:
q = 5, a = .1390273247112628782825070 · 10−6, b = .1703727372506798832238690 · 10−4, c =

.4957293537057908947335441·10−3, d = .004640168728942648075902061, e = .01249001020140475801901154, f =

.6775528221947777757442973·10−3, g = .009861728815103789329166789, h = .04629633915692083843268882, j =

.1255544141080093435410128, i = .07198921051760347329305915 which gives the bound τ = .79098
and

ω ≤ 2.37294.

This bound is better than the one obtained by Stothers [18] (see also Davie and Stothers [11]).
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The eighth tensor power. Let’s first define the program to be solved. The variables are
a for 0016 and its 3 permutations,
b for 0115 and its 6 permutations,
c for 0214 and its 6 permutations,
d for 0313 and its 6 permutations,
e for 0412 and its 6 permutations,
f for 0511 and its 6 permutations,
g for 0610 and its 6 permutations,
h for 079 and its 6 permutations,
i for 088 and its 3 permutations,
j for 1114 and its 3 permutations,
k for 1213 and its 6 permutations,
l for 1312 and its 6 permutations,
m for 1411 and its 6 permutations,
n for 1510 and its 6 permutations,
p for 169 and its 6 permutations,
q̄ for 178 and its 6 permutations,
r for 2212 and its 3 permutations,
s for 2311 and its 6 permutations,
t for 2410 and its 6 permutations,
u for 259 and its 6 permutations,
v for 268 and its 6 permutations,
w for 277 and its 3 permutations,
x for 3310 and its 3 permutations,
y for 349 and its 6 permutations,
z for 358 and its 6 permutations,
α for 367 and its 6 permutations,
β for 448 and its 3 permutations,
γ for 457 and its 6 permutations,
δ for 466 and its 3 permutations,
ε for 556 and its 3 permutations.

Here we will set aIJK = āIJK in Figure 1, so these will be the only variables aside from q and τ .
Let’s figure out the constraints: First,

a, b, c, d, e, f, g, h, i, j, k, l,m, n, p, q̄, r, s, t, u, v, w, x, y, z, α, β, γ, δ, ε ≥ 03, and
3a + 6(b + c + d + e + f + g + h) + 3(i + j) + 6(k + l + m + n + p + q̄) + 3r + 6(s + t + u + v) +
3(w + x) + 6(y + z + α) + 3β + 6γ + 3δ + 3ε = 1.

Now,
A0 = 2(a+ b+ c+ d+ e+ f + g + h) + i,
A1 = 2(b+ j + k + l +m+ n+ p+ q̄),
A2 = 2(c+ k + r + s+ t+ u+ v) + w,
A3 = 2(d+ l + s+ x+ y + z + α),

3Because the solver had issues with complex numbers when the variables were too close to zero, we actually made all the
variables a, . . . , ε ≥ 10−12.
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A4 = 2(e+m+ t+ y + β + γ) + δ,
A5 = 2(f + n+ u+ z + γ + ε),
A6 = 2(g + p+ v + α+ δ) + ε,
A7 = 2(h+ q̄ + w + α+ γ),
A8 = 2(i+ q̄ + v + z) + β,
A9 = 2(h+ p+ u+ y),
A10 = 2(g + n+ t) + x,
A11 = 2(f +m+ s),
A12 = 2(e+ l) + r,
A13 = 2(d+ k),
A14 = 2c+ j,
A15 = 2b,
A16 = a.

We pick ∆ = {c, d, e, f, g, h, l,m, n, p, t, u, v, z} to make the system have full rank.
After solving for the variables outside of ∆ and taking derivatives we obtain the following constraints

cq̄2 = iwj,
dq̄wεβ = iαγ2k,
ew2ε2β2 = iδγ4r,
fwαεβ2 = iδγ3s,
gα2εβ2 = iδ2γ2x,
hαεβ2 = iδγ2y,
lw2εβ = q̄αγ2r,
mwαεβ = q̄δγ2s,
nα2β = q̄δγx,
pαβ = q̄δy,
tα2 = wδx,
uαγ = wεy,
vγ2 = wεβ,
zδγ = αεβ.

These constraints say that aabbcc . . . εε is minimized for fixed {AI}. In order for these constraints to
make sense, we need the following variables to be strictly positive:

q̄, w, α, β, γ, δ, ε > 0.

We enforce this by setting each of them to be ≥ 0.001.
We want to minimize τ subject to the above constraints and

(q + 2)8 ≤ V 6b
0115V

6c
0214V

6d
0313V

6e
0412V

6f
0511V

6g
0610V

6h
079V

3i
088V

3j
1114V

6k
1213V

6l
1312V

6m
1411V

6n
1510V

6p
169V

6q
178·

V 3r
2212V

6s
2311V

6t
2410V

6u
259V

6v
268V

3w
277V

3x
3310V

6y
349V

6z
358V

6α
367V

3β
448V

6γ
457V

3δ
466V

3ε
556/

∏
I A

AI
I .

We used Maple’s NLPSolve function.
We get that if q = 5, τ = 2.372873/3, the LHS above is 78 = 5, 764, 801, and the following setting of

the variables give that the RHS is ≥ 5, 764, 869 > 78:
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a = 10−12, α = 0.024711033362156497625293641813361857267810948049323, b =
4.0933714418648223417623975259049800943950530358140 · 10−12, β =

0.015880370203959747034259370693003799652355555845066, c =
4.9700778192090709371705828474373904840448203393459 · 10−10, d =
2.4642347901810136898379263038819155118509349149757 · 10−8, δ =

0.054082292653929341218607523117198621556713679757052, e =
5.9877570284688664381218758275595932304175525490625 · 10−7, ε =

0.069758008722266984849017843747408939180295331034341, f =
0.77156448808538933150722586711750971582192947240494 · 10−5, g =
0.52983950128034326037497209046428788405010465887403 · 10−4, γ =

0.040046641571711314433492115175175954920762507686159, h =
0.18387001462348943300252056220731292525021789276520 · 10−3, i =
0.29005524124777324373406185342769490287819068441477 · 10−3, j =
5.3715725038689209206942456757488242329477901355954 · 10−10, k =
3.5695674552470591186014287061508526632570913566224 · 10−8, l =

0.10923009134097478837797066708874185351400056825099 · 10−5,m =
0.17684246950304933497450078052746832435602523682383 · 10−4, n =
0.15663818945376287447415436456239357793706037184565 · 10−3, p =
0.73409662109732961408223347345964492527079778590723 · 10−3, q̄ =
0.16764883352937940526243936192267192973298560336126 · 10−2, r =
0.14639881189784405030877368068543655891464735174483 · 10−5, s =
0.29848770392390959859941267468188698487145412996821 · 10−4, t =
0.33218019947247834546581006549523999898236448292393 · 10−3, u =
0.20080211976124063644558623218619814328206004629865 · 10−2, v =
0.61930501551874305634339087686496176594322763092592 · 10−2, w =
0.89656566129138098551467176743513414171575628678639 · 10−2, x =
0.41832937379685333587766950542202808564878271854680 · 10−3, y =
0.31772334392895171600663212877010686299491490690525 · 10−2, z =

0.012639340385481828627518968856579987271690613148088.

The values for the 8th power.
From Claim 1 we have:
V0016 = 1, V0115 = (8q)τ , V0214 = (

∑
b≤2,b=0 mod 2

(
8

b,(2−b)/2,(14−b)/2
)
qb)τ = (8 + 28q2)τ , V0313 =

(
(

8
1,1,6

)
q +

(
8

3,0,5

)
q3)τ = (56q + 56q3)τ ,

V0412 = (70q4+168q2+28)τ , V0511 = (280q3+168q+56q5)τ , V0610 = (56+420q2+280q4+28q6)τ ,
V079 = (280q + 560q3 + 168q5 + 8q7)τ , V088 = (70 + 560q2 + 420q4 + 56q6 + q8)τ .

Lemma 11. V1114 ≥ 22/3(2V 3
116 + V 6

017)1/3.

Proof. I = J = 1,K = 14, and the variables are α008, α017. The system of equations is
Z6 = α008,
Z7 = 2α017.

Solving we obtain α008 = Z6 and α017 = Z7/2.
nz6 = W 3

008 = V 3
116, and nz7 = W 3

017/2 = V 6
017/2.

The inequality becomes:
V1114 ≥ 22/3(2V 3

116 + V 6
017)1/3.
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Lemma 12. V1213 ≥ 22/3(V 3
116 + 2V 3

026)1/3((V125/V026)3 + V 3
017)1/3.

Proof. I = 1, J = 2,K = 13, and the variables are α008, α017, α026. The system of equations becomes
Y0 = α008 + α026,
Y1 = 2α017,
Z5 = α008,
Z6 = α017 + α026.

We can solve the system:
α008 = Z5, α026 = Y0 − Z5, α017 = Y1/2.

ny0 = W 3
026 = (V026V017)3,

ny1 = W 3
017/2 = (V017V116)3/2,

nz5 = W 3
008/W

3
026 = (V125/(V026V017))3, nz6 = 1.

ny0 + ny1 = V 3
017(2V 3

026 + V 3
116)/2.

nz5 + nz6 = ((V026V017)3 + V 3
125)/(V026V017)3.

V1213 ≥ 22/3((2V 3
026 + V 3

116))1/3(V 3
017 + V 3

125/V
3

026)1/3.

Lemma 13. V1312 ≥ 2(V 3
035/V

3
125 + 1)1/3(V 3

134V
3

125/V
3

035 + V 3
017V

3
125 + V 3

026V
3

116/2)1/3.

Proof. I = 1, J = 3,K = 12, and the variables are α008, α017, α026, α035. The system of equations is:
Y0 = α008 + α035,

Y1 = α017 + α026,
Z4 = α008,
Z5 = α017 + α035,
Z6 = 2α026.

We solve the system:
α008 = Z4, α026 = Z6/2, α017 = Y1 − Z6/2, α035 = Y0 − Z4.
ny0 = W 3

035 = (V035V017)3,
ny1 = W 3

017 = (V017V125)3,
nz4 = (W008/W035)3 = (V134/(V035V017))3,
nz5 = 1,
nz6 = (W026/W017)3/2 = (V026V116/(V017V125))3/2.

ny0 + ny1 = V 3
017(V 3

035 + V 3
125),

nz4 + nz5 + nz6 = [2V 3
017 + 2(V134/V035)3 + (V026V116/V125)3]/2V 3

017.

V1312 ≥ 22/3(V 3
035 + V 3

125)1/3

(
2V 3

017 +
2V 3

134

V 3
035

+
V 3

026V
3

116

V 3
125

)1/3

.

Lemma 14.

V1411 ≥ 2

(
V 3

044

V 3
134

+ 1 +
V 3

026V
3

125

(2V 3
035V

3
116)

)1/3(
V 6

134

V 3
044

+ V 3
017V

3
134 + V 3

035V
3

116

)1/3

.
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Proof. I = 1, J = 4, K = 11, the variables are α008, α017, α026, α035, α044. The linear system becomes
Y0 = α008 + α044,
Y1 = α017 + α035,
Y2 = 2α026,
Z3 = α008,
Z4 = α017 + α044,
Z5 = α026 + α035.

We solve it:
α008 = Z3,
α026 = Y2/2,
α044 = Y0 − Z3,
α017 = Z4 − Y0 + Z3,
α035 = Z5 − Y2/2.

ny0 = (W044/W017)3 = (V044V017/(V017V134))3 = V 3
044/V

3
134.

ny1 = 1,
ny2 = W 3

026/(2W
3
035) = V 3

026V
3

125/(2V
3

035V
3

116),
nz3 = W 3

008W
3
017/W

3
044 = (V 2

134/V044)3,
nz4 = W 3

017 = V 3
017V

3
134,

nz5 = W 3
035 = V 3

035V
3

116.

ny0 + ny1 + ny2 =
V 3

044

V 3
134

+ 1 +
V 3

026V
3
125

(2V 3
035V

3
116)

,

nz3 + nz4 + nz5 =
V 6

134

V 3
044

+ V 3
017V

3
134 + V 3

035V
3

116.
The inequality becomes

V1411 ≥ 2

(
V 3

044

V 3
134

+ 1 +
V 3

026V
3

125

(2V 3
035V

3
116)

)1/3(
V 6

134

V 3
044

+ V 3
017V

3
134 + V 3

035V
3

116

)1/3

.

Lemma 15.

V1510 ≥ 2

(
V 3

035

V 3
134

+ 1 +
V 3

026V
3

134

V 3
044V

3
116

)1/3(
V 3

125V
3

134

V 3
035

+ V 3
017V

3
134 + V 3

044V
3

116 +
V 3

035V
3

125V
3

044V
3

116

(2V 3
026V

3
134)

)1/3

.

Proof. I = 1, J = 5,K = 10. The variables are α008, α017, α026, α035, α044, α053. The linear system
becomes

Y0 = α008 + α053,
Y1 = α017 + α044,
Y2 = α026 + α035,
Z2 = α008,
Z3 = α017 + α053,
Z4 = α026 + α044,
Z5 = 2α035.

We solve it:
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α008 = Z2,
α035 = Z5/2,
α053 = Y0 − Z2,
α026 = Y2 − Z5/2,
α017 = Z3 − Y0 + Z2,
α044 = Z4 − Y2 + Z5/2.
ny0 = (W053/W017)3 = V 3

035/V
3

134,
ny1 = 1,
ny2 = (W026/W044)3 = V 3

026V
3

134/(V
3

044V
3

116),
nz2 = (W008W017/W053)3 = V 3

125V
3

134/V
3

035,
nz3 = W 3

017 = V 3
017V

3
134,

nz4 = W 3
044 = V 3

044V
3

116,
nz5 = W 3

035W
3
044/(2W

3
026) = (V 3

035V
3

125V
3

044V
3

116)/(2V 3
026V

3
134).

ny0 + ny1 + ny2 =
V 3

035

V 3
134

+ 1 +
V 3

026V
3
134

V 3
044V

3
116

,

nz2 + nz3 + nz4 + nz5 =
V 3

125V
3
134

V 3
035

+ V 3
017V

3
134 + V 3

044V
3

116 +
V 3

035V
3
125V

3
044V

3
116

(2V 3
026V

3
134)

.
Hence we obtain

V1510 ≥ 2

(
V 3

035

V 3
134

+ 1 +
V 3

026V
3

134

V 3
044V

3
116

)1/3(
V 3

125V
3

134

V 3
035

+ V 3
017V

3
134 + V 3

044V
3

116 +
V 3

035V
3

125V
3

044V
3

116

(2V 3
026V

3
134)

)1/3

.

Lemma 16.

V169 ≥ 2

(
V 3

026

V 3
125

+ 1 +
V 3

026V
3

134

(V 3
035V

3
116)

+
V 6

134V
3

026

(2V 3
044V

3
125V

3
116)

)1/3(
V 3

116V
3

125

V 3
026

+ V 3
017V

3
125 + V 3

035V
3

116 +
V 3

044V
3

125V
3

035V
3

116

V 3
026V

3
134

)1/3

.

Proof. I = 1, J = 6,K = 9 so the variables are α008, α017, α026, α035, α044, α053, α062. The linear system
becomes
Y0 = α008 + α062,
Y1 = α017 + α053,
Y2 = α026 + α044,
Y3 = 2α035,
Z1 = α008,
Z2 = α017 + α062,
Z3 = α026 + α053,
Z4 = α035 + α044.

We solve it:
α008 = Z1,
α035 = Y3/2,
α062 = Y0 − Z1,
α044 = Z4 − Y3/2,
α026 = Y2 − Z4 + Y3/2,
α053 = Z3 − Y2 + Z4 − Y3/2,
α017 = Z2 − Y0 + Z1,
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ny0 = W 3
062/W

3
017 = V 3

026/V
3

125,
ny1 = 1,
ny2 = W 3

026/W
3
053 = V 3

026V
3

134/(V
3

035V
3

116),
ny3 = W 3

035W
3
026/(2W

3
044W

3
053) = V 6

134V
3

026/(2V
3

044V
3

125V
3

116),
nz1 = W 3

008W
3
017/W

3
062 = V 3

116V
3

125/V
3

026,
nz2 = W 3

017 = V 3
017V

3
125,

nz3 = W 3
053 = V 3

035V
3

116,
nz4 = W 3

044W
3
053/W

3
026 = (V 3

044V
3

125V
3

035V
3

116)/(V 3
026V

3
134).

ny0 + ny1 + ny2 + ny3 =
V 3

026

V 3
125

+ 1 +
V 3

026V
3
134

(V 3
035V

3
116)

+
V 6

134V
3
026

(2V 3
044V

3
125V

3
116)

.

nz1 + nz2 + nz3 + nz4 =
V 3

116V
3
125

V 3
026

+ V 3
017V

3
125 + V 3

035V
3

116 +
V 3

044V
3
125V

3
035V

3
116

V 3
026V

3
134

.

V169 ≥ 2

(
V 3

026

V 3
125

+ 1 +
V 3

026V
3

134

(V 3
035V

3
116)

+
V 6

134V
3

026

(2V 3
044V

3
125V

3
116)

)1/3(
V 3

116V
3

125

V 3
026

+ V 3
017V

3
125 + V 3

035V
3

116 +
V 3

044V
3

125V
3

035V
3

116

V 3
026V

3
134

)1/3

.

Lemma 17.

V178 ≥ 2(V 3
017 + V 3

116 + V 3
125 + V 3

134)1/3

(
1 + V 3

017 + V 3
026 + V 3

035 +
V 3

044

2

)1/3

.

Proof. I = 1, J = 7,K = 8, so the variables are α008, α017, α026, α035, α044, α053, α062, α071. The linear
system is
Y0 = α008 + α071,
Y1 = α017 + α062,
Y2 = α026 + α053,
Y3 = α035 + α044,
Z0 = α008,
Z1 = α017 + α071,
Z2 = α026 + α062,
Z3 = α035 + α053,
Z4 = 2α044.

We solve the system:
α008 = Z0,
α044 = Z4/2,
α071 = Y0 − Z0,
α035 = Y3 − Z4/2,
α017 = Z1 − Y0 + Z0,
α053 = Z3 − Y3 + Z4/2,
α062 = Y1 − Z1 + Y0 − Z0,
α026 = Z2 − Y1 + Z1 − Y0 + Z0.
ny0 = W 3

071W
3
062/(W017W026)3 = V 3

017/V
3

125,
ny1 = W 3

062/W
3
026 = V 3

116/V
3

125,
ny2 = 1,
ny3 = W 3

035/W
3
053 = V 3

134/V
3

125,

45



nz0 = W 3
008W

3
017W

3
026/(W

3
071W

3
062) = V 3

017V
3

017V
3

116V
3

026V
3

125/(V
3

071V
3

017V
3

062V
3

116) = V 3
125,

nz1 = W 3
017W

3
026/W

3
062 = V 3

017V
3

125,
nz2 = W 3

026 = V 3
026V

3
125,

nz3 = W 3
053 = V 3

035V
3

125,
nz4 = W 3

044W
3
053/(2W

3
035) = V 3

044V
3

125/2.
ny0 + ny1 + ny2 + ny3 = (V 3

017 + V 3
116 + V 3

125 + V 3
134)/V 3

125,
nz0 + nz1 + nz2 + nz3 + nz4 = V 3

125(1 + V 3
017 + V 3

026 + V 3
035 + V 3

044/2).

V178 ≥ 2(V 3
017 + V 3

116 + V 3
125 + V 3

134)1/3

(
1 + V 3

017 + V 3
026 + V 3

035 +
V 3

044

2

)1/3

.

Lemma 18.

V2212 ≥ 2

(
V 3

026

V 3
116

+
1

2

)2/3(
V 3

224V
3

116

V 6
026

+
V 3

116V
3

017V
3

125

V 3
026

+
V 3

116

2

)1/3

.

Proof. I = J = 2, K = 12, and the variables are a = α008, b = α017, c = α026, d = α107, e = α116.
The linear system is:

X0 = a+ b+ c,
Y0 = a+ c+ d,
Z4 = a,
Z5 = b+ d,
Z6 = 2(c+ e).

It has 5 variables and rank 5. We solve it:
a = Z4,
c = (X0 + Y0 − 2Z4 − Z5)/2,
e = Z6/2− c = (Z6 −X0 − Y0 + 2Z4 + Z5)/2,
d = Y0 − Z4 − c = (−X0 + Y0 + Z5)/2
b = Z5 − d = (Z5 +X0 − Y0)/2.

nx0 = (W026W017/(W116W107))3/2 = (V 2
026V017V215/(V

2
116V107V125))3/2 = V 3

026/V
3

116.
nx1 = 1/2,
ny0 = (W026W107/(W017W116))3/2 = (V026/V116)3,
ny1 = 1/2,
nz4 = (W008W116/W026)3 = (V224V116/V

2
026)3,

nz5 = (W017W107W116/W026)3/2 = (V017V125V116/V026)3,
nz6 = V 3

116/2.
Hence:

V2212 ≥ 2

(
V 3

026

V 3
116

+
1

2

)2/3(
V 3

224V
3

116

V 6
026

+
V 3

116V
3

017V
3

125

V 3
026

+
V 3

116

2

)1/3

.

Lemma 19. For q = 5, τ = 2.372873/3, V2311(q, τ) ≥ 35517.87580.
In general,

V2311 ≥ 2

(
V 3

224V
3

035

V 3
125V

3
134

+ 1/2

)1/3(
V 3

035

V 3
125

+ 1

)1/3(
V 3

233V
3

134V
6

125

V 6
035V

3
224

+
V 6

125V
3

134V
3

026

V 3
224V

3
035

)1/3(
V116V224V035

(V134V026V125)

)f
.
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The variable f is constrained as in our framework (see the proof).

Proof. I = 2, J = 3,K = 11, so the variables are a = α008, b = α017, c = α026, d = α035, e = α107, f =
α116.

The linear system is:
X0 = a+ b+ c+ d,
Y0 = a+ d+ e,
Z3 = a,
Z4 = b+ e,
Z5 = c+ d+ f .

The system has 6 variables but only rank 5. We pick f to be the variable in ∆. We can now solve the
system for the rest of the variables:
a = Z3,
d = X0 + Y0 − Z4 − Z5 − 2Z3 + f ,
e = Z3 + Z4 + Z5 −X0 − f ,
b = X0 − Z3 − Z5 + f ,
c = 2Z5 + 2Z3 + Z4 −X0 − Y0 − 2f .

nx0 = (W017W035
W026W107

)3 = (V224V035
V125V134

)3,
nx1 = 1/2,
ny0 = (W035/W026)3 = (V035/V125)3,
ny1 = 1,
nz3 =

(W008W107W 2
026)3

(W 2
035W017)

=
(V233V134V 2

125)3

(V 2
035V224)3 ,

nz4 =
W 3

026W
3
107

W 3
035

= (V125V017V134)3

V 3
035

,

nz5 = (
W 2

026W107

W017W035
)3 = (

V 2
125V134V026

V224V035
)3,

nf = W116W017W035

W107W 2
026

= V116V224V035
V134V026V125

.
The inequality is

V2311 ≥ 2

(
V 3

224V
3

035

V 3
125V

3
134

+ 1/2

)1/3(
V 3

035

V 3
125

+ 1

)1/3(
V 3

233V
3

134V
6

125

V 6
035V

3
224

+
V 6

125V
3

134V
3

026

V 3
224V

3
035

)1/3(
V116V224V035

(V134V026V125)

)f
.

The variable f needs to minimize the quantity b ln b + c ln c + d ln d + e ln e + f ln f , subject to the
linear constraints that a, b, c, d, e, f ∈ [0, 1], where a, b, c, d, e are the linear expressions we obtained by
solving the linear system above, and where X0 = nx0/(nx0 + nx1), Y0 = ny0/(ny0 + ny1), nz3 =
nz3/(nz3 + nz4 + nz5), nz4 = nz4/(nz3 + nz4 + nz5), and nz5 = nz5/(nz3 + nz4 + nz5).

We maximize our value lower bound by first finding the value f ′ = .433584923533081 minimizing
F (f) = aabbccddeeff , then finding the value f ′′ = .433607696886902 maximizing V2311(f)/F (f), and
finally concluding that V2311 ≥ F (f ′) ≥ V2311(f ′′)/F (f ′′) ≥ 35517.8758.

Lemma 20. For q = 5, τ = 2.372873/3, V2410 ≥ 1.089681104 · 105.
In general,

V2410 ≥ 2

(
(V026V224V035)3/2

V
3/2

125

+
V

3/2
116 V

3/2
134

2

)1/3(
V 3

044V
3/2

026 V
3/2

125

(V
3/2

224 V
3/2

035 )
+ (V116V134)3/2 +

(V026V224V125)3/2

(2V
3/2

035 )

)1/3

×
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(
V 3

224

V 3
044V

3
026

+
(V 2

017V
2

233V125)3/2

(V026V224V035V116V134)3/2
+ 1 +

(V035V
3

125)3/2

2(V026V224V116V134)3/2

)1/3(
V224V035V134

(V233V044V125)

)f
,

where f is constrained as in our framework (see the proof).

Proof. I = 2, J = 4,K = 10, and so the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α107, g = α116, h = α125.

The linear system is: X0 = a+ b+ c+ d+ e,
X1 = 2(f + g + h),
Y0 = a+ e+ f ,
Y1 = b+ d+ g,
Y2 = 2(c+ h),
Z2 = a,
Z3 = b+ f ,
Z4 = c+ e+ g,
Z5 = 2(d+ h),

We omit the equations for X1 and Y2. The system has rank 7 and has 8 unknowns. Hence we pick a
variable, f , to place into ∆.

We now solve the system:
a = Z2,
b = Z3 − f ,
e = Y0 − Z2 − f ,
d = 1/2(X0 + Y1 − Z4 − Z2 − 2Z3 + 2f),
h = Z5/2− d = 1/2(Z5 −X0 − Y1 + Z4 + Z2 + 2Z3 − 2f),
g = Y1 − b− d = 1/2(−X0 + Y1 + Z4 + Z2),
c = Z4 − e− g = −Y0 + f + 1/2(X0 − Y1 + Z4 + Z2).

Calculate:
nx0 = (V026V224V035)3/2/(V116V134V125)3/2,

nx1 = 1/2,
ny0 = V 3

044/V
3

224,
ny1 = (V035V116V134)3/2/((V026V224V125)(3/2)),
ny2 = 1/2,

nz2 = V
(

2249/2)(V116V134V125)3/2/((V035V026)3/2V 3
044),

nz3 = V 3
017V

3
233V

3
125/V

3
035,

nz4 = (V026V224V116V134V125)3/2/V
3/2

035 ,
nz5 = V 6

125/2,
nf = V 3

224V
3

035V
3

134/(V
3

233V
3

125V
3

044).

We obtain:

V2410 ≥ 2

(
(V026V224V035)3/2

/(V116V134V125)3/2
+

1

2

)1/3(
V 3

044

V 3
224

+
(V035V116V134)3/2

(V026V224V125)(3/2)
+

1

2

)1/3

×

(
V

(
2249/2)(V116V134V125)3/2

/((V035V026)3/2V 3
044)

+
V 3

017V
3

233V
3

125

V 3
035

+
(V026V224V116V134V125)3/2

V
3/2

035

+
V 6

125

2

)1/3(
V224V035V134

V233V125V044

)f
.
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We have some constraints on f that we obtain from our settings in the linear system solution and from
the settings Xi := xi/(nx0 + nx1) for i ∈ {0, 1}, Yj := nyj/(ny2 + ny1 + ny0) for j ∈ {0, 1, 2} and
Zk := nzk/(nz2 + nz3 + nz4 + nz5) for k ∈ {2, 3, 4}.

Constraint 0 is from a := Z2 ≥ 0. It does not contain f . One can see that sinze nzi ≥ 0 for all
i ∈ 2, 3, 4, 5, this constraint is always satisfied.

Constraint 1 is from b := Z3 − f ≥ 0 and is

f ≤ Z3.

For f = 0.00327216658358239, τ = 2.3729/3 and q = 5, Z3 − f ≥ 0.01 and this constraint is satisfied.
Constraint 2 is from e := Y0 − Z2 − f ≥ 0, and hence

f ≤ Y0 − Z2.

For f = 0.00327216658358239, τ = 2.3729/3 and q = 5, Y0 − Z2 − f ≥ 0.04 and this constraint is
satisfied.

Constraint 3 is from d := 1/2(X0 + Y1 − Z4 − Z2 − 2Z3 + 2f) ≥ 0, and it is

f ≥ (Z2 + 2Z3 + Z4 −X0 − Y1)/2.

For f = 0.00327216658358239, τ = 2.3729/3 and q = 5, 1/2(X0 + Y1 − Z4 − Z2 − 2Z3 + 2f) ≥ 0.26
and this constraint is satisfied.

Constraint 4 is from h := Z5/2− d = 1/2(Z5 −X0 − Y1 + Z4 + Z2 + 2Z3 − 2f) ≥ 0, and is

f ≤ (Z5 −X0 − Y1 + Z4 + Z2 + 2Z3)/2.

For f = 0.00327216658358239, τ = 2.3729/3 and q = 5, 1/2(Z5−X0−Y1+Z4+Z2+2Z3−2f) ≥ 0.29
and this constraint is satisfied.

Constraint 5 is from g := Y1 − b − d = 1/2(−X0 + Y1 + Z4 + Z2) ≥ 0. It doesn’t contain f and is
satisfied for all τ ∈ [2/3, 1] when q = 5.

Constraint 6 is from c := Z4 − e − g = −Y0 + f + 1/2(X0 − Y1 + Z4 + Z2) ≥ 0. For f =
0.00327216658358239, τ = 2.3729/3 and q = 5, −Y0 + f + 1/2(X0 − Y1 + Z4 + Z2) ≥ 0.19 and this
constraint is satisfied.

The final constraint is that the following should be minimized under the above 7 constraints

a ln a+ b ln b+ c ln c+ d ln d+ e ln e+ f ln f + g ln g + h lnh,

where a, b, c, d, e, g, h are the linear functions of f as above (for fixed q,τ ). For q = 5, τ = 2.372873/3, we
first compute the value f ′ that maximized F (f) = aabbccddeeffgghh under our settings for a, b, c, d, e, g, h
and under the linear constraints on f above. We obtain f ′ = 0.00327237690111682. Then, we mini-
mize V2410(f)/F (f) over the linear constraints on f obtaining f ′′ = 0.00332911459461995. Finally, we
conclude that V2410 ≥ F (f ′) · V2410(f ′′)/F (f ′′) ≥ 1.089681104 · 105.

Lemma 21. V259 ≥ 2.479007361 · 105 for q = 5, τ = 2.372873/3.
In general,

V259 ≥ 2

(
V 3

026V
3

233V
3

044V
3

125

V 3
035V

3
224V

3
116V

3
134

+
1

2

)1/3(
V 3

035

V 3
233

+
V 3

044V
3

125

V 3
035V

3
224

+ 1

)1/3

×
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(
V 3

224V
3

116V
3

134

V 3
044V

3
026

+
V 3

017V
9

224V
6

035V
3

116V
3

134

V 3
026V

3
233V

6
044V

6
125

+
V 3

035V
3

224V
3

116V
3

134

V 3
044V

3
125

+
V 6

035V
6

224V
3

116V
3

134

V 3
026V

3
233V

3
044V

3
125

)1/3

×(
V026V

2
233V

2
044V

3
125

V 3
224V

3
035V116V134

)g (
V026V233V044V

2
125

V 2
035V

2
224V116

)j
,

where g and j are subject to the constraints of our framework (see the proof).

Proof. I = 2, J = 5,K = 9, and the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α053, g = α107, h = α116, j = α125. The linear system is
X0 = a+ b+ c+ d+ e+ f ,
Y0 = a+ f + g,
Y1 = b+ e+ h,
Z1 = a,
Z2 = b+ g,
Z3 = c+ f + h,
Z4 = d+ e+ j.

The system has rank 7 but it has 9 variables, so we pick two variables, g and j, and we solve the system
assuming them as constants.
a = Z1,
b = Z2 − g
h = Z1 + Z2 + Z3 + Z4 −X0 − g − j
e = Y1 − b− h = Y1 − Z1 − 2Z2 − Z3 − Z4 +X0 + 2g + j,
c = Z3 − f − h = −Z4 + 2g + j +X0 − Y0 − Z2,
d = Z4 − e− j = −2j − 2g −X0 − Y1 + Z1 + Z3 + 2Z2 + 2Z4,
f = Y0 − Z1 − g.

nx0 =
V 3

026V
3
233V

3
044V

3
125

V 3
035V

3
224V

3
116V

3
134

,
nx1 = 1/2,
ny0 = V 3

035/V
3

233,

ny1 =
V 3

044V
3
125

V 3
035V

3
224

,
ny2 = 1,
nz1 =

V 3
224V

3
116V

3
134

V 3
044V

3
026

,

nz2 =
V 3

017V
9
224V

6
035V

3
116V

3
134

V 3
026V

3
233V

6
044V

6
125

,

nz3 =
V 3

035V
3
224V

3
116V

3
134

V 3
044V

3
125

,

nz4 =
V 6

035V
6
224V

3
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3
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V 3
026V

3
233V

3
044V

3
125

,

ng =
V026V 2

233V
2
044V

3
125

V 3
224V

3
035V116V134

,

nj =
V026V233V044V 2
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V 2
035V

2
224V116

.

V259 ≥ 2
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224V
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(
V026V

2
233V

2
044V

3
125

V 3
224V

3
035V116V134

)g (
V026V233V044V

2
125

V 2
035V

2
224V116

)j
.

Now let’s look at the constraints on g and j:
Constraint 1: since b = Z2 − g ≥ 0 and Z2 was set to nz2/(nz1 + nz2 + nz3 + nz4), we have that
g ≤ nz2/(nz1 + nz2 + nz3 + nz4).
Constraint 2: since e = Y1−Z1−2Z2−Z3−Z4 +X0 +2g+j ≥ 0 and we setX0 = nx0/(nx0 +nx1),

Y1 = ny1/(ny0 + ny1 + ny2), Z2 = nz2/(nz1 + nz2 + nz3 + nz4), and Z1 + Z2 + Z3 + Z4 = 1, we get
2g + j ≥ −ny1/(ny0 + ny1 + ny2) + nz2/(nz1 + nz2 + nz3 + nz4) + 1− nx0/(nx0 + nx1),

Constraint 3: since c = −Z4 + 2g + j +X0 − Y0 − Z2 ≥ 0 and Z4 = nz4/(nz1 + nz2 + nz3 + nz4),
we get:

2g + j ≥ (nz2 + nz4)/(nz1 + nz2 + nz3 + nz4)− nx0/(nx0 + nx1) + ny0/(ny0 + ny1 + ny2),

Constraint 4: since d = −2j − 2g −X0 − Y1 + Z1 + Z3 + 2Z2 + 2Z4 ≥ 0, we get:
g+ j ≤ 0.5(1 + (nz2 +nz4)/(nz1 +nz2 +nz3 +nz4)−ny1/(ny0 +ny1 +ny2)−nx0/(nx0 +nx1)),

Constraint 5: since f = Y0 − Z1 − g ≥ 0, we get:
g ≤ ny0/(ny0 + ny1 + ny2)− nz1/(nz1 + nz2 + nz3 + nz4),

Constraint 6: since h = Z1 + Z2 + Z3 + Z4 −X0 − g − j ≥ 0, we get
g + j ≤ 1− nx0/(nx0 + nx1).
We first find the values of g and j that maximize F (g, j) = aabbccddeeffgghh under the above 6

constraints. These settings are g′ = 0.426490605423260 · 10−3, j′ = .467539258441983 and give F =
0.218734398504605437. Then, we find the settings for g and j that minimize v(g, j) = V259(g, j)/(aabbccddeeffgghh)
subject to the above 6 constraints. These are g′′ = 0.000421947422353580, j′′ = 0.467186674565410
and give v(g′′, j′′) = 1.13334133895458700 · 106. Finally, we obtain that V259 ≥ v(g′′, j′′)F (g′j′) ≥
2.479007361 · 105 for q = 5, τ = 2.372873/3.

Lemma 22. For τ = 2.372873/3 and q = 5, V268 ≥ 4.108912286 · 105.
In general,

V268 ≥ 2
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,

where g and k are constrained by the constraints of our framework (see the proof).
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Proof. I = 2, J = 6,K = 8, and the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α053, g = α062, h = α107, i = α116, j = α125, k = α134. The linear system becomes
X0 = a+ b+ c+ d+ e+ f + g,
Y0 = a+ g + h,
Y1 = b+ f + i,
Y2 = c+ e+ j,
Z0 = a,
Z1 = b+ h,
Z2 = c+ g + i,
Z3 = d+ f + j,
Z4 = 2(e+ k).

The system has rank 9 and 11 variables, and so we pick two of the variables, g and k to put in ∆. We
solve the system:
a = Z0,
e = (e+ k)− k = Z4/2− k,
h = (a+ g + h)− a− g = Y0 − Z0 − g,
b = (b+ h)− h = Z1 − Y0 + Z0 + g,
d = (c+g+i)+(d+f+j)−g−(b+f+i)−(c+e+j)+b+e = (Z0+Z1+Z2+Z3+Z4/2)−Y0−Y1−Y2−k,
c = ((c + e + j) − e + (a + b + c + d + e + f + g) − a − b − d − e − g − (d + f + j) + d)/2 =
(Y2 − Z4 + 2k +X0 − 2Z0 − Z1 + Y0 − 2g − Z3)/2,
f = (a+ b+ c+d+e+f +g)−a− b− c−d−e−g = X0−Z0− (Z1−Y0 +Z0 +g)− (Y2−Z4 +2k+
X0−2Z0−Z1 +Y0−2g−Z3)/2− ((Z0 +Z1 +Z2 +Z3 +Z4/2)−Y0−Y1−Y2−k)− (Z4/2−k)−g =
−2Z0 + k + 3Y0/2− g − 3Z1/2− Z4/2 +X0/2 + Y1 + Y2/2− Z3/2− Z2,
i = (c + g + i) − c − g = Z2 − (Y2 − Z4 + 2k + X0 − 2Z0 − Z1 + Y0 − 2g − Z3)/2 − g =
(−Y2 + Z4 − 2k −X0 + 2Z0 + Z1 − Y0 + Z3 + 2Z2)/2,
j = (d + f + j) − f − d = Z3 − ((Z0 + Z1 + Z2 + Z3 + Z4/2) − Y0 − Y1 − Y2 − k) − (−2Z0 + k +
3Y0/2−g−3Z1/2−Z4/2+X0/2+Y1+Y2/2−Z3/2−Z2) = Z0+Z1/2−Y0/2+Y2/2+g−X0/2+Z3/2,

nx0 = (V026V224)3/2(V035V125)3/2/((V116V125)3/2(V134V125)3/2),
nx1 = 1/2,
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nk = V026V
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134/(V233V044V116).
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We obtain

V268 ≥ 2
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.

The linear constraints on g and k are as follows:
Constraint 1: since e = Z4/2 − k ≥ 0, we get that k ≤ Z4/2, but since we set Z4/2 = nz4/(nz0 +

nz1 + nz2 + nz3 + nz4), we get
k ≤ nz4/(nz0 + nz1 + nz2 + nz3 + nz4).
Constraint 2: since d = (Z0 + Z1 + Z2 + Z3 + Z4/2) − Y0 − Y1 − Y2 − k ≥ 0, we get that k ≤

(Z0 + Z1 + Z2 + Z3 + Z4/2)− Y0 − Y1 − Y2 and by our choices for the Yi, Zi, we get
k ≤ ny3/(ny0 + ny1 + ny2 + ny3).
Constraint 3: since h = Y0 − Z0 − g ≥ 0 and we set Y0 = ny0/(ny0 + ny1 + ny2 + ny3) and

Z0 = nz0/(nz0 + nz1 + nz2 + nz3 + nz4), we get
g ≤ ny0/(ny0 + ny1 + ny2 + ny3)− nz0/(nz0 + nz1 + nz2 + nz3 + nz4).
Constraint 4: since b = Z1 − Y0 + Z0 + g ≥ 0 and we set Z1 = nz1/(nz0 + nz1 + nz2 + nz3 + nz4),

we get
g ≥ ny0/(ny0 + ny1 + ny2 + ny3)− (nz0 + nz1)/(nz0 + nz1 + nz2 + nz3 + nz4).
Constraint 5: since c = (X0 − 2Z0 − Z1 − Z3 − Z4 + Y0 + Y2 + 2k − 2g)/2 ≥ 0, we get
g − k ≤ (ny0 + ny2)/(2(ny0 + ny1 + ny2 + ny3)) + (−2nz0 − nz1 − nz3 − 2nz4)/(2(nz0 + nz1 +

nz2 + nz3 + nz4)) + nx0/(2(nx0 + nx1)).
Constraint 6: since f = X0/2 + 3Y0/2 +Y1 +Y2/2− 2Z0− 3Z1/2−Z3/2−Z2−Z4/2 + k− g ≥ 0,

we get that
g−k ≤ (nx0/2)/(nx0 +nx1) + (3ny0 + 2ny1 +ny2)/(2(ny0 +ny1 +ny2 +ny3))− (4nz0 + 3nz1 +

nz3 + 2nz2 + 2nz4)/(2(nz0 + nz1 + nz2 + nz3 + nz4)).
Constraint 7: since i = (−X0 − Y0 − Y2 + 2Z0 + Z1 + 2Z2 + Z3 + Z4)/2− k ≥ 0, we get
k ≤ −(ny0 + ny2)/(2(ny0 + ny1 + ny2 + ny3)) − nx0/(2(nx0 + nx1)) + (2nz0 + nz1 + 2nz2 +

nz3 + 2nz4)/(2(nz0 + nz1 + nz2 + nz3 + nz4)).
Constraint 8: since j = −Y0/2 + Y2/2−X0/2 + Z0 + Z1/2 + Z3/2 + g ≥ 0, we get
g ≥ −nx0/(2(nx0+nx1))+(−ny0+ny2)/(2(ny0+ny1+ny2+ny3))−(2nz0+nz1+nz3)/(2(nz0+

nz1 + nz2 + nz3 + nz4)).
Setting q = 5 and τ = 2.372873/3 we first find the values g = g′ and k = k′ for which F (g, k) =

aabbccddeeffgghhiijjkk is maximized for our settings for a, b, c, d, e, f, h, i, j above, given the 8 con-
straints on g and k above. We obtain g′ = 0.305326266603096 · 10−3, k′ = 0.327470701886469, and
F (g′, k′) = 0.223663404773788599. We then minimize G(g, k) = V268/(a

abbccddeeffgghhiijjkk) for
the settings and over the 8 constraints on g, k. We obtain thatG is minimized for gg = 0.000305373765871005, k =
0.327509292231427 and for these settings it is 1.83709636797664943 · 106. We then obtain that

V268 ≥ G(g′k′)F (g, k) = 4.108912286 · 105.
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Lemma 23. When q = 5 and τ = 2.372873/3, V277 ≥ 4.850714396 · 105.
In general,

V277 ≥ 2
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.

where a, c, d are constrained by constraints from our framework (see the proof).

Proof. I = 2, J = K = 7, and the variables are a = α017, b = α026, c = α035, d = α044, e = α053, f =
α062, g = α071, h = α107, i = α116, j = α125, k = α134. The linear system is
X0 = a+ b+ c+ d+ e+ f + g,
Y0 = g + h,
Y1 = a+ f + i,
Y2 = b+ e+ j,
Z0 = a+ h,
Z1 = b+ g + i,
Z2 = c+ f + j,
Z3 = d+ e+ k.

The system has rank 8 and 11 variables, so we pick 3 variables, a, c, d , and put them in ∆. We solve the
system:

h = (a+ h)− a = Z0 − a,
g = (g + h)− h = Y0 − Z0 + a,
k = (a+ h) + (b+ g + i) + (c+ f + j) + (d+ e+ k)− (g + h)− (a+ f + i)− (b+ e+ j)− c− d =
Z0 + Z1 + Z2 + Z3 − Y0 − Y1 − Y2 − c− d,
e = (d+e+k)−d−k = Z3−d−(Z0+Z1+Z2+Z3−Y0−Y2−c−d) = −Z0−Z1−Z2+Y0+Y1+Y2+c,
b = (a+ b+ c+ d+ e+ f + g)− (a+ f + i) + (b+ g + i)− 2g − c− d− (d+ e+ k) + d+ k)/2 =
X0/2− Y1 + Z1 − (3/2)Y0 + (3/2)Z0 − a− c− d/2 + Z2/2− Y2/2,
i = (b+ g + i)− b− g = −X0/2 + Y1 + Y0/2− Z0/2 + c+ d/2− Z2/2 + Y2/2,
f = (a+ f + i)− a− i = −a+X0/2− Y0/2 + Z0/2− c− d/2 + Z2/2− Y2/2,
j = (c+ f + j)− c− f = Z2/2 + a−X0/2 + Y0/2− Z0/2 + d/2 + Y2/2.
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na = 1,
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We now consider the constraints on a, c, d.
Constraint 1: since k = Z0 + Z1 + Z2 + Z3 − Y0 − Y1 − Y2 − c− d ≥ 0, by our settings of the Yi, Zi

we get that
c+ d ≤ ny3/(ny0 + ny1 + ny2 + ny3).
Constraint 2: since e = −Z0−Z1−Z2 +Y0 +Y1 +Y2 + c ≥ 0, by our settings of the Yi, Zi we get that
c ≥ ny3/(ny0 + ny1 + ny2 + ny3)− nz3/(nz0 + nz1 + nz2 + nz3).
Constraint 3: since h = Z0 − a ≥ 0 and we set Z0 = nz0/(nz0 + nz1 + nz2 + nz3), we get that
a ≤ nz0/(nz0 + nz1 + nz2 + nz3).
Constraint 4: since g = Y0 − Z0 + a ≥ 0 and we set Y0 = ny0/(ny0 + ny1 + ny2 + ny3), we get that
a ≥ nz0/(nz0 + nz1 + nz2 + nz3)− ny0/(ny0 + ny1 + ny2 + ny3).
Constraint 5: since b = X0/2− (3/2)Y0 − Y1 − Y2/2 + (3/2)Z0 +Z1 +Z2/2− a− c− d/2 ≥ 0, we

get that
a+ c+d/2 ≤ (3nz0 + 2nz1 +nz2)/(2(nz0 +nz1 +nz2 +nz3)) + (−ny1−3ny0/2−ny2/2)/(ny0 +

ny1 + ny2 + ny3) + nx0/(2(nx0 + nx1)).
Constraint 6: since i = −X0/2 + Y0/2 + Y1 + Y2/2− Z0/2− Z2/2 + c+ d/2 ≥ 0, we get that
c + d/2 ≥ −(ny0 + 2ny1 + ny2)/(2(ny0 + ny1 + ny2 + ny3)) + nx0/(2(nx0 + nx1)) + (nz0 +

nz2)/(2(nz0 + nz1 + nz2 + nz3)).
Constraint 7: since j = −X0/2 + Y0/2 + Y2/2− Z0/2 + Z2/2 + a+ d/2 ≥ 0, we get that
a+ d/2 ≥ (nz0 − nz2)/(2(nz0 + nz1 + nz2 + nz3))− (ny0 + ny2)/(2(ny0 + ny1 + ny2 + ny3)) +

nx0/(2(nx0 + nx1)).
Constraint 8: since f = −a− c− d/2 +X0/2− Y0/2− Y2/2 + Z0/2 + Z2/2 ≥ 0, we get that
a + c + d/2 ≤ (−ny0 − ny2)/(2(ny0 + ny1 + ny2 + ny3)) + (nz0 + nz2)/(2(nz0 + nz1 + nz2 +

nz3)) + nx0/(2(nx0 + nx1)).
Now, let F (a, c, d) = aabbccddeeffgghhiijjkk for the settings of b, e, f, g, h, i, j, k in terms of a, c, d

as above. We first find the settings a′, c′, d′ that maximize F under the constraints from 1 to 8 above. Then,
we find the settings a′′, c′′, d′′ that minimize V277(a, c, d)/F (a, c, d) under the same 8 constraints. Finally,
we conclude that V277 ≥ F (a′c′d′)/F (a′′, c′′, d′′)V277(a′′, c′′, d′′).

From Maple we get that a′ = 0.970387372073004·10−5, c′ = 0.0816678275096020, d′ = .346697875753760, a′′ =
0.971619435812525·10−5, c′′ = 0.0822791888760284, d′′ = .345469920458090, and thus V277 ≥ 4.850714396·
105.

Lemma 24. When q = 5 and τ = 2.372873/3, we have V3310 ≥ 1.242573275 · 105.
Furthermore,

V3310 ≥ 2

(
1 +

V 3
116V

3
224

V 3
026V

3
134

)1/3(
V 3

134V
3

026

V 3
116V

3
224

+ 1

)1/3

×

55



(
V 3

233V
3

116V
3

224

V 3
134V

3
026

+ V 3
017V

3
233 + V 3

026V
3

134 +
V 6

125V
3

026V
3

134

2V 3
116V

3
224

)1/3(
V 2

035V
2

116V
2

224

V 2
125V

2
026V

2
134

)d
,

where b and d are constrained as in our framework (see the proof).

Proof. I = J = 3,K = 10, and the variables are a = α008, b = α017, c = α026, d = α035, e = α116, f =
α125, g = α134, h = α107. The linear system is as follows:
X0 = a+ b+ c+ d,
Y0 = a+ d+ g + h,
Z2 = a,
Z3 = b+ h,
Z4 = c+ e+ g,
Z5 = 2(d+ f).

The system has rank 6 and 8 variables, so we pick two variables, b and d, and add them to ∆. We solve
the system:
a = Z2,
h = (b+ h)− b = Z3 − b,
f = (d+ f)− d = Z5/2− d,
c = (a+ b+ c+ d)− a− b− d = X0 − Z2 − b− d,
g = (a+ d+ g + h)− a− d− h = Y0 − Z2 − Z3 + b− d,
e = (c+e+g)−c−g = Z4−(X0−Z2−b−d)−(Y0−Z2−Z3 +b−d) = 2Z2 +Z3 +Z4−X0−Y0 +2d.
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We now give the constraints on b, d:
Constraint 1: since h = Z3 − b ≥ 0 and Z3 = nz3/(nz2 + nz3 + nz4 + nz5), we get
b ≤ nz3/(nz2 + nz3 + nz4 + nz5).

Constraint 2: since f = Z5/2− d ≥ 0 and Z5/2 = nz5/(nz2 + nz3 + nz4 + nz5), we get
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d ≤ nz5/(nz2 + nz3 + nz4 + nz5).

Constraint 3: since c = X0 − Z2 − b− d ≥ 0, we get that
b+ d ≤ nx0/(nx0 + nx1)− nz2/(nz2 + nz3 + nz4 + nz5).
Constraint 4: since g = Y0 − Z2 − Z3 + b − d ≥ 0 and since Y0 = ny0/(ny0 + ny1) and Z2 =

nz2/(nz2 + nz3 + nz4 + nz5), we get
d− b ≤ ny0/(ny0 + ny1)− (nz2 + nz3)/(nz2 + nz3 + nz4 + nz5) = C4.

Constraint 5: since e = Z4−(X0−Z2−b−d)−(Y0−Z2−Z3+b−d) = 2d−X0−Y0+2Z2+Z3+Z4 ≥ 0,
we get that

d ≥ (nx0/(nx0 + nx1) + ny0/(ny0 + ny1)− (2nz2 + nz3 + nz4)/(nz2 + nz3 + nz4 + nz5))/2.
We first find the settings b′, d′ for which F (b, d) = aabbccddeeffgghh is maximized for our settings

for a, c, e, f, g, h above in terms of b and d. With MAPLE we get b = 0.00790328517086545, d =
0.0936429784188324.

Then we find the settings b′′, d′′ for which V3310(b, d)/F (b, d) is minimized. We get b′′ = 0.00790325512918024, d′′ =
0.0936943525122263. Finally, we output that V3310 ≥ F (b′, d′) · V3310(b′′, d′′)/F (b′′, d′′) ≥ 1.242573275 ·
105.

Lemma 25. For q = 5, τ = 2.372873/3, V349 ≥ 3.209787942 · 105.
In general,
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Above, b, c, g are constrained as in our framework (see the proof).

Proof. I = 3, J = 4,K = 9, so the variables are a = α008, b = α017, c = α026, d = α035, e = α044, f =
α107, g = α116, h = α125, i = α134, j = α143. The linear system becomes
X0 = a+ b+ c+ d+ e,
Y0 = a+ e+ f + j,
Y1 = b+ d+ g + i,
Z1 = a,
Z2 = b+ f ,
Z3 = c+ g + j,
Z4 = d+ e+ h+ i.

The rank is 7 and the number of variables is 10 so we pick 3 variables, b, c, g, to place into ∆. We solve
the system:
a = Z1,
h = a + (b + f) + (c + g + j) + (d + e + h + i) − (a + e + f + j) − (b + d + g + i) − c =
(Z1 + Z2 + Z3 + Z4)− (Y0 + Y1)− c,
f = (b+ f)− b = Z2 − b,
j = (c+ g + j)− c− g = Z3 − c− g,
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e = (a+ e+ f + j)− a− f − j = Y0 − Z1 − Z2 − Z3 + b+ c+ g,
d = (a+ b+ c+ d+ e)− a− b− c− e = X0 − Y0 + Z2 + Z3 − 2b− 2c− g,
i = (b+ d+ g + i)− b− d− g = −X0 + Y0 + Y1 − Z2 − Z3 + b+ 2c.

nx0 = V 3
035/V

3
125,

nx1 = 1,
ny0 = V 3

044/V
3

224,
ny1 = V 3

134/V
3

224,
ny2 = 1/2,
nz1 = V 3

134V
3

125V
3

224/(V
3

044V
3

035),
nz2 = V 3

017V
6

224/V
3

044,
nz3 = V 3

134V
3

224V
3

026/V
3

044,
nz4 = V 3

125V
3

224,

nb = V233V044V125/(V224V035V134),
nc = V233V044V125/(V224V134V035),
ng = V116V233V044/(V026V

2
134).

V349 ≥ 2

(
V 3

035

V 3
125

+ 1

)1/3(
V 3

044

V 3
224

+
V 3

134

V 3
224

+
1

2

)1/3(
V 3

134V
3

125V
3

224

V 3
044V

3
035

+
V 3

017V
6

224

V 3
044

+
V 3

134V
3

224V
3

026

V 3
044

+ V 3
125V

3
224

)1/3

×

(
V233V044V125

V224V035V134

)b(V233V044V125

V224V134V035

)c(V116V233V044

V026V 2
134

)g
.

We now look at the constraints on b, c, g:
Constraint 1: since h = (Z1 + Z2 + Z3 + Z4) − (Y0 + Y1) − c = Y2/2 − c ≥ 0, and Y2/2 =

ny2/(ny0 + ny1 + ny2), we get
c ≤ ny2/(ny0 + ny1 + ny2).

Constraint 2: since f = Z2 − b ≥ 0 and Z2 = nz2/(nz1 + nz2 + nz3 + nz4), we get
b ≤ nz2/(nz1 + nz2 + nz3 + nz4).

Constraint 3: since j = Z3 − c− g ≥ 0 and Z3 = nz3/(nz1 + nz2 + nz3 + nz4), we get
c+ g ≤ nz3/(nz1 + nz2 + nz3 + nz4).

Constraint 4: since e = Y0 − Z1 − Z2 − Z3 + b + c + g ≥ 0, and Y0 = ny0/(ny0 + ny1 + ny2) and
Z1 = nz1/(nz1 + nz2 + nz3 + nz4), we get

b+ c+ g ≥ (nz1 + nz2 + nz3)/(nz1 + nz2 + nz3 + nz4)− ny0/(ny0 + ny1 + ny2).

Constraint 5: since d = X0 − Y0 + Z2 + Z3 − 2b− 2c− g ≥ 0 and X0 = nx0/(nx0 + nx1), we get
2b+ 2c+ g ≤ nx0/(nx0 + nx1)− ny0/(ny0 + ny1 + ny2) + (nz2 + nz3)/(nz1 + nz2 + nz3 + nz4).

Constraint 6: since i = −X0 + Y0 + Y1 − Z2 − Z3 + b + 2c ≥ 0, we get that b + 2c ≥ nx0/(nx0 +
nx1)− (ny0 + ny1)/(ny + 0 + ny1 + ny2) + (nz2 + nz3)/(nz1 + nz2 + nz3 + nz4).
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Now, we first find the values b′ = 0.00106083709584428, c′ = 0.0371057688416268, g′ = 0.0507162807556667
that maximize F (b, c, g) = aabbccddeeffgghhiijj under our settings for a, d, e, f, h, i, j as functions of
b, c, g over the above 6 linear constraints. Then we find the values b′′ = 0.00105515376175534, c′′ =
0.0370594417928395, g′′ = 0.0505876038619197 that minimize V349(b, c, g)/F (b, c, g) over the above
6 linear constraints. Finally, we conclude that V349 ≥ F (b′, c′, g′) · V349(b′′, c′′, g′′)/F (b′′, c′′, g′′) ≥
3.209787942 · 105.

Lemma 26. When q = 5, τ = 2.372873/3, V358 ≥ 6.082545902 · 105.
In general,

V358 ≥ 2
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.

Here b, c, h, e are constrained as in our framework (see the proof).

Proof. I = 3, J = 5,K = 8, so the variables are a = α008, b = α017, c = α026, d = α035, e = α044,
f = α053, g = α107, h = α116, i = α125, j = α134, k = α143, l = α152. The linear system becomes
X0 = a+ b+ c+ d+ e+ f ,
Y0 = a+ f + g + l,
Y1 = b+ e+ h+ k,
Z0 = a,
Z1 = b+ g,
Z2 = c+ h+ l,
Z3 = d+ f + i+ k,
Z4 = 2(e+ j).

The system has rank 8 and 12 variables, so we pick 4 variables, b, c, h, e to put in ∆. We then solve the
system:
a = Z0,
g = (b+ g)− b = Z1 − b,
j = (e+ j)− e = Z4/2− e,
l = (c+ h+ l)− c− h = Z2 − c− h,
f = (a+ f + g + l)− a− g − l = Y0 − Z0 − Z1 − Z2 + b+ c+ h,
d = (a+ b+ c+ d+ e+ f)− a− b− c− e− f = X0 − Y0 + Z1 + Z2 − 2b− 2c− e− h,
i = (c+d+i+j)−c−d−j = (Z1+Z2+Z3+Z4/2)−(Y0+Y1)−c−d−j = (Z0+Z1+Z2+Z3+Z4/2−
Y0−Y1)−c−(X0−Y0 +Z1 +Z2−2b−2c−e−h)−(Z4/2−e) = −X0−Y1 +Z0 +Z3 +2b+c+2e+h
k = (b+ e+ h+ k)− b− e− h = Y1 − b− e− h.
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Let’s look at the constraints on b, c, h, e:
Constraint 1: since g = Z1 − b ≥ 0 and we set Z1 = nz1/(nz0 + nz1 + nz2 + nz3 + nz4), we get
b ≤ nz1/(nz0 + nz1 + nz2 + nz3 + nz4).

Constraint 2: since j = Z4/2− e ≥ 0 and we set Z4/2 = nz4/(nz0 + nz1 + nz2 + nz3 + nz4), we get
e ≤ nz4/(nz0 + nz1 + nz2 + nz3 + nz4).

Constraint 3: since l = Z2 − c− h ≥ 0 and Z2 = nz2/(nz0 + nz1 + nz2 + nz3 + nz4), we get
c+ h ≤ nz2/(nz0 + nz1 + nz2 + nz3 + nz4).

Constraint 4: since f = Y0 − Z0 − Z1 − Z2 + b + c + h ≥ 0 and Y0 = ny0/(ny0 + ny1 + ny2) and
Z0 = nz0/(nz0 + nz1 + nz2 + nz3 + nz4), we get

b+ c+ h ≥ (nz0 + nz1 + nz2)/(nz0 + nz1 + nz2 + nz3 + nz4)− ny0/(ny0 + ny1 + ny2).

Constraint 5: since d = X0−Y0 +Z1 +Z2− 2b− 2c− e−h ≥ 0 and X0 = nx0/(nx0 +nx1), we get
2b+2c+e+h ≤ nx0/(nx0+nx1)−ny0/(ny0+ny1+ny2)+(nz1+nz2)/(nz0+nz1+nz2+nz3+nz4).

Constraint 6: since i = −X0− Y1 +Z0 +Z3 + 2b+ c+ 2e+ h = Y2−Z4/2−X0 + Y0−Z1−Z2 +
2b+ c+ 2e+ h ≥ 0, we get

2b+ c+ 2e+ h ≥ nx0/(nx0 + nx1)− (ny0 + ny2)/(ny0 + ny1 + ny2) + (nz1 + nz2 + nz4)/(nz0 +
nz1 + nz2 + nz3 + nz4).

Constraint 7: since k = Y1 − b− e− h ≥ 0, we get
b+ e+ h ≤ ny1/(ny0 + ny1 + ny2).
Assume that τ = 2.372873/3. Now, we first find the setting b′ = 0.000101938664845774, c′ =

0.00885151618359280, e′ = 0.0974448528665440, h′ = 0.00670556068057964 that maximizesF (b, c, h, e) =
aabbccddeeffgghhiijjkkll. Then we find the setting [b′′ = 0.000102396163321746, c′′ = 0.00884748699884917, e′′ =
0.0970349718925811, h′′ = 0.00671965662663561 that minimizes V358(b, c, h, e)/F (b, c, h, e) and con-
clude that V358 ≥ F (b′, c′, h′, e′) · V358(b′′, c′′, h′′, e′′)/F (b′′, c′′, h′′, e′′) ≥ 6.082545902 · 105.
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Lemma 27. When q = 5, τ = 2.372873/3, V367 ≥ 8.305250670 · 105.
In general,

V367 ≥ 2
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.

Here a, b, c, d, e are constrained as in our framework (see the proof).

Proof. I = 3, J = 6,K = 7 so the variables are a = α017, b = α026, c = α035, d = α044, e = α053, f =
α062, g = α107, h = α116, i = α125, j = α134, k = α143, l = α152,m = α161. The linear system is as
follows.
X0 = a+ b+ c+ d+ e+ f ,
Y0 = f + g +m,
Y1 = a+ e+ h+ l,
Y2 = b+ d+ i+ k,
Z0 = a+ g,
Z1 = b+ h+m,
Z2 = c+ f + i+ l,
Z3 = d+ e+ j + k.

The rank is 8 and the number of variables is 13, so we pick 5 variables, a, b, c, d, e, and place them in ∆.
Now we solve the system.
g = (a+ g)− a = Z0 − a,
f = (a+ b+ c+ d+ e+ f)− a− b− c− d− e = X0 − a− b− c− d− e,
m = (f + g +m)− f − g = Y0 − Z0 −X0 + 2a+ b+ c+ d+ e,
j = (c+ j)− c = (Z0 + Z1 + Z2 + Z3)− (Y0 + Y1 + Y2)− c,
k = (d+ e+ j + k)− d− e− j = −(Z0 + Z1 + Z2) + (Y0 + Y1 + Y2)− d− e+ c,
i = (b+ d+ i+ k)− b− d− k = (Z0 + Z1 + Z2)− (Y0 + Y1) + e− b− c,
l = (c+ f + i+ l)− c− f − i = −X0 − (Z0 + Z1) + (Y0 + Y1) + a+ 2b+ c+ d,
h = (a+ e+ h+ l)− a− e− l = X0 + (Z0 + Z1)− Y0 − 2a− 2b− c− d− e.
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na = 1,
nb = V026V134V125/(V035V224V116),
nc = 1,
nd = V044V233V125/(V035V134V224),
ne = 1.
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Now we consider the constraints on a, b, c, d, e.
Constraint 1: since g = Z0 − a ≥ 0
a ≤ nz0/(nz0 + nz1 + nz2 + nz3).
Constraint 2: since f = X0 − a− b− c− d− e ≥ 0
a+ b+ c+ d+ e ≤ nx0/(nx0 + nx1).
Constraint 3: since m = Y0 − Z0 −X0 + 2a+ b+ c+ d+ e ≥ 0
2a+b+c+d+e ≥ nx0/(nx0+nx1)+nz0/(nz0+nz1+nz2+nz3)−ny0/(ny0+ny1+ny2+ny3) = C3.
Constraint 4: since j = (Z0 + Z1 + Z2 + Z3)− (Y0 + Y1 + Y2)− c ≥ 0
c ≤ ny3/(ny0 + ny1 + ny2 + ny3).
Constraint 5: since k = Z3 − Y3/2− d− e+ c ≥ 0
d+ e− c ≤ nz3/(nz0 + nz1 + nz2 + nz3)− ny3/(ny0 + ny1 + ny2 + ny3).
Constraint 6: since i = Y2 − Z3 + Y3/2 + e− b− c ≥ 0
b+ c− e ≤ (ny2 + ny3)/(ny0 + ny1 + ny2 + ny3)− nz3/(nz0 + nz1 + nz2 + nz3).
Constraint 7: since l = Z2 + Z3 −X0 − Y2 − Y3/2 + a+ 2b+ c+ d ≥ 0
a+ 2b+ c+ d ≥ (ny2 + ny3)/(ny0 + ny1 + ny2 + ny3) + nx0/(nx0 + nx1)− (nz2 + nz3)/(nz0 +

nz1 + nz2 + nz3)..
Constraint 8: since h = Y1 + Y2 + Y3/2− Z2 − Z3 +X0 − 2a− 2b− c− d− e ≥ 0
2a+ 2b+ c+ d+ e ≤ (ny1 + ny2 + ny3)/(ny0 + ny1 + ny2 + ny3) + nx0/(nx0 + nx1)− (nz2 +

nz3)/(nz0 + nz1 + nz2 + nz3).
Assume that τ = 2.372873/3. Now, we first find the setting a′ = 0.896351957010172 · 10−5, b′ =

0.00188722012414286, c′ = 0.0476091293800089, d′ = .133911483061472, e′ = 0.0188038856390314
minimizing F (a, b, c, d, e) = aabbccddeeffgghhiijjkkllmm under the settings of f, g, h, i, j, k, l,m in
terms of a, b, c, d, e and under the above 8 constraints on a, b, c, d, e. Then we find the setting a′′ =
0.897911747394834·10−5, b′′ = 0.00189912343335534, c′′ = 0.0479980389640663, d′′ = .133369689001539, e′′ =
0.0189441262665244 maximizing V367(a, b, c, d, e)/F (a, b, c, d, e) over the same 8 constraints. Finally, we
conclude that V367 ≥ F (a′, b′, c′, d′, e′) · V367(a′′, b′′, c′′, d′′, e′′)/F (a′′, b′′, c′′, d′′, e′′) ≥ 8.305250670 · 105.

Lemma 28. When q = 5, τ = 2.372873/3, we have V448 ≥ 6.908047489 · 105.
In general,
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Here, b, c, g, e are constrained as in our framework (see the proof).

Proof. I = J = 4, K = 8 and the variables are a = α008, b = α017, c = α026, d = α035, e = α044, f =
α107, g = α116, h = α125, i = α134, j = α143, k = α206, l = α215,m = α224. The linear system becomes
X0 = a+ b+ c+ d+ e,
X1 = f + g + h+ i+ j,
Y0 = a+ e+ f + j + k,
Y1 = b+ d+ g + i+ l,
Z0 = a,
Z1 = b+ f ,
Z2 = c+ g + k,
Z3 = d+ h+ j + l,
Z4 = 2(e+ i+m).

The rank is 9 and the number of variables is 13 so we pick 4 variables, b, c, e, g, and we put them in ∆.
We now solve the system.
a = Z0,
f = (b+ f)− b = Z1 − b,
k = (c+ g + k)− c− g = Z2 − c− g,
d = (a+ b+ c+ d+ e)− a− b− c− e = X0 − Z0 − b− c− e,
j = (a+ e+ f + j + k)− a− e− f − k = Y0 − Z0 − Z1 − Z2 + b+ c+ g − e,
i = ((f+g+h+ i+j)+(b+d+g+ i+ l)−(d+h+j+ l)−f−2g−b)/2 = (X1 +Y1−Z3−Z1)/2−g,
h = (f + g + h+ i+ j)− f − g − i− j = X1/2− Y0 − Y1/2 + Z0 + Z1/2 + Z2 + Z3/2− c− g + e,
m = (e+ i+m)− e− i = (−X1 − Y1 + Z3 + Z1)/2 + Z4/2 + g − e,
l = (b+ d+ g + i+ l)− b− d− g − i = (−X0 −X1/2 + Y1/2 + Z0 + Z1/2 + Z3/2) + c+ e.
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Let’s look at the constraints on b, c, g, e.
Constraint 1: since f = Z1 − b ≥ 0 we get
b ≤ nz1/(nz0 + nz1 + nz2 + nz3 + nz4) = C1.
Constraint 2: since k = Z2 − c− g ≥ 0 we get
c+ g ≤ nz2/(nz0 + nz1 + nz2 + nz3 + nz4) = C2.
Constraint 3: since d = X0 − Z0 − b− c− e ≥ 0 we get
b+ c+ e ≤ nx0/(nx0 + nx1 + nx2)− nz0/(nz0 + nz1 + nz2 + nz3 + nz4) = C3.
Constraint 4: since j = Y0 − Z0 − Z1 − Z2 + b+ c+ g − e ≥ 0 we get
b+ c+ g− e ≥ −ny0/(ny0 +ny1 +ny2) + (nz0 +nz1 +nz2)/(nz0 +nz1 +nz2 +nz3 +nz4) = C4.
Constraint 5: since i = (X1 + Y1 − Z3 − Z1)/2− g ≥ 0 we get
g ≤ nx1/(2(nx0 + nx1 + nx2)) + ny1/(2(ny0 + ny1 + ny2))− (nz1 + nz3)/(2(nz0 + nz1 + nz2 +

nz3 + nz4)) = C5.
Constraint 6: since h = X1/2− Y0 − Y1/2 + Z0 + Z1/2 + Z2 + Z3/2− c− g + e ≥ 0 we get
c+ g− e ≤ nx1/(2(nx0 +nx1 +nx2))− (ny0 +ny1/2)/(ny0 +ny1 +ny2) + (nz0 +nz1/2 +nz2 +

nz3/2)/(nz0 + nz1 + nz2 + nz3 + nz4) = C6.
Constraint 7: since m = (−X1 − Y1 + Z3 + Z1)/2 + Z4/2 + g − e ≥ 0 we get
e− g ≤ −nx1/(2(nx0 +nx1 +nx2))−ny1/(2(ny0 +ny1 +ny2)) + (nz3/2 +nz1/2 +nz4)/(nz0 +

nz1 + nz2 + nz3 + nz4) = C7.
Constraint 8: since l = (−X0 −X1/2 + Y1/2 + Z0 + Z1/2 + Z3/2) + c+ e ≥ 0, we get
c+e ≥ (2nx0+nx1)/(2(nx0+nx1+nx2))−ny1/(2(ny0+ny1+ny2))−(2nz0+nz1+nz3)/(2(nz0+

nz1 + nz2 + nz3 + nz4)) = C8.

To summarize, the linear constraints on b, c, g, e are

b ≤ C1, c+ g ≤ C2, b+ c+ e ≤ C3, C4 ≤ b+ c+ g− e, g ≤ C5, c+ g− e ≤ C6, e− g ≤ C7, C8 ≤ c+ e.

Assume that τ = 2.372873/3. First, we compute the setting b′ = 0.648069822559251 · 10−4, c′ =
0.00291873112245236, e′ = 0.0169690155126008, g′ = 0.0106131481064985 minimizing F (b, c, g, e) =
aabbccddeeffgghhiijjkkllmm under the above linear constraints and using the settings of the rest of the
variables in terms of b, c, g, e. Then we find the setting b′′ = 0.648072770234329·10−4, c′′ = 0.00294155294463157, e′′ =
0.0166122266309863, g′′ = 0.0105674995477950 maximizing V448(b, c, g, e)/F (b, c, g, e) under the lin-
ear constraints. Finally, we conclude that V448 ≥ F (b′, c′, g′, e′) · V448(b′′, c′′, g′′, e′′)/F (b′′, c′′, g′′, e′′) ≥
6.908047489 · 105.

Lemma 29. For q = 5, τ = 2.372873/3, we have V457 ≥ 1.076904071 · 106.
In general,
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Here a, b, c, e, g, h are constrained by our framework (see the proof).

Proof. I = 4, J = 5,K = 7 and so the variables are a = α017, b = α026, c = α035, d = α044, e = α053,
f = α107, g = α116, h = α125, i = α134, j = α143, k = α152, l = α206,m = α215, n = α224. The linear
system becomes
X0 = a+ b+ c+ d+ e,
X1 = f + g + h+ i+ j + k,
Y0 = e+ f + k + l,
Y1 = a+ d+ g + j +m,
Z0 = a+ f ,
Z1 = b+ g + l,
Z2 = c+ h+ k +m,
Z3 = d+ e+ i+ j + n.

The rank is 8 and the number of variables is 14 so we pick 6 variables, a, b, c, e, g, h, and place them in
∆. We then solve the system.
f = (a+ f)− a = Z0 − a,
l = (b+ g + l)− b− g = Z1 − b− g,
k = (e+ f + k + l)− e− f − l = Y0 − Z0 − Z1 + a+ b+ g − e,
d = (a+ b+ c+ d+ e)− a− b− c− e = X0 − a− b− c− e,
m = (c+ h+ k +m)− c− h− k = −Y0 + Z0 + Z1 + Z2 − a− b− c− g − h+ e,
j = (a+ d+ g + j +m)− a− d− g −m = −X0 + Y0 + Y1 − Z0 − Z1 − Z2 + a+ 2b+ 2c+ h,
i = (f+g+h+i+j+k)−f−g−h−j−k = X1+X0−2Y0−Y1+2Z1+Z2+Z0−a−2c−3b−2g+e−2h,
n = (d+ e+ i+ j + n)− d− e− i− j = −X0 −X1 + Y0 − Z1 + Z3 + a+ b+ c+ 2g − e+ h.
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Now we look at the constraints on a, b, c, e, g, h.
Constraint 1: since f = Z0 − a ≥ 0 we get
a ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C1.
Constraint 2: since l = Z1 − b− g ≥ 0 we get
b+ g ≤ nz1/(nz0 + nz1 + nz2 + nz3) = C2.
Constraint 3: since k = Y0 − Z0 − Z1 + a+ b+ g − e ≥ 0 we get
a+ b+ g − e ≥ −ny0/(ny0 + ny1 + ny2) + (nz0 + nz1)/(nz0 + nz1 + nz2 + nz3) = C3.
Constraint 4: since d = X0 − a− b− c− e ≥ 0 we get
a+ b+ c+ e ≤ nx0/(nx0 + nx1 + nx2) = C4.
Constraint 5: since m = −Y0 + Z0 + Z1 + Z2 − a− b− c− g − h+ e ≥ 0 we get
a+ b+ c+g+h−e ≤ −ny0/(ny0 +ny1 +ny2)+(nz0 +nz1 +nz2)/(nz0 +nz1 +nz2 +nz3) = C5.
Constraint 6: since j = −X0 + Y0 + Y1 − Z0 − Z1 − Z2 + a+ 2b+ 2c+ h ≥ 0 we get
a + 2b + 2c + h ≥ nx0/(nx0 + nx1 + nx2) − (ny0 + ny1)/(ny0 + ny1 + ny2) + (nz0 + nz1 +

nz2)/(nz0 + nz1 + nz2 + nz3) = C6.
Constraint 7: since i = X1 +X0− 2Y0−Y1 + 2Z1 +Z2 +Z0− a− 2c− 3b− 2g+ e− 2h ≥ 0 we get
a+ 2c+ 3b+ 2g− e+ 2h ≤ (nx1 + nx0)/(nx0 + nx1 + nx2)− (2ny0 + ny1)/(ny0 + ny1 + ny2) +

(2nz1 + nz2 + nz0)/(nz0 + nz1 + nz2 + nz3) = C7.
Constraint 8: since n = −X0 −X1 + Y0 − Z1 + Z3 + a+ b+ c+ 2g − e+ h ≥ 0 we get
a + b + c + 2g − e + h ≥ (nx0 + nx1)/(nx0 + nx1 + nx2) − ny0/(ny0 + ny1 + ny2) + (nz1 −

nz3)/(nz0 + nz1 + nz2 + nz3) = C8.

We summarize the constraints:

a ≤ C1, b+ g ≤ C2, C3 ≤ a+ b+ g − e, a+ b+ c+ e ≤ C4, a+ b+ c+ g + h− e ≤ C5,

C6 ≤ a+ 2b+ 2c+ h, a+ 2c+ 3b+ 2g − e+ 2h ≤ C7, C8 ≤ a+ 2b+ c+ 2g + h− e.

Assume that τ = 2.372873/3. We first find the setting a′ = 0.741706133871556·10−5, b′ = 0.932955091664049·
10−3, c′ = 0.0155807738472934, e′ = 0.00300527533017264, g′ = 0.00130480061845205, h′ = 0.0583385585882298
minimizing F (a, b, c, e, g, h) = aabbccddeeffgghhiijjkkllmmnn given the settings of d, f, i, j, k, l,m, n in
terms of a, b, c, e, g, h and under the above 8 linear constraints. Then we find the setting a′′ = 0.739069714604175·
10−5, b′′ = 0.000939491122183629, c′′ = 0.0157716913296529, e′′ = 0.00299817541165094, g′′ = 0.00129861228781644, h′′ =
0.0581626623406867 maximizing V457(a, b, c, e, g, h)/F (a, b, c, e, g, h) under the same linear constraints.
Finally, we conclude that V457 ≥ F (a′, b′, c′, e′, g′, h′)·V457(a′′, b′′, c′′, e′′, g′′, h′′)/F (a′′, b′′, c′′, e′′, g′′, h′′) ≥
1.076904071 · 106.

Lemma 30. For q = 5, τ = 2.372873/3, V466 ≥ 1.244977753 · 106.
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In general,

V466 ≥ 2

(
V 3

044

V 3
134

+ 1 +
V 3

224

2V 3
134

)1/3(
V 3

116V
3

035

V 3
125V

3
134

+
V 3

125

V 3
224

+ 1 +
V 3

233

2V 3
224

)1/3

×

(
V 3

125V
6

134V
6

026

V 3
116V

3
035V

3
224

+ V 3
125V

3
134 + V 3

134V
3

224 +
V 3

134V
3

233

2

)1/3

×

(
V224V116V035

V125V134V026

)a(V035V134V224

V044V233V125

)b(V035V134V224

V044V233V125

)d(V026V125V134

V116V035V224

)e(V 2
116V

2
035V

2
224

V 2
125V

2
134V

2
026

)f
.

Here a, b, d, e, f, p are constrained by our framework (see the proof).

Proof. I = 4, J = K = 6 so the variables are a = α026, b = α035, c = α044, d = α053, e = α062, f =
α116, g = α125, h = α134, i = α143, j = α152, k = α161, l = α206,m = α215, n = α224, p = α233. The
system becomes
X0 = a+ b+ c+ d+ e,
X1 = f + g + h+ i+ j + k,
Y0 = e+ k + l,
Y1 = d+ f + j +m,
Y2 = a+ c+ g + i+ n,
Z0 = a+ f + l,
Z1 = b+ g + k +m,
Z2 = c+ e+ h+ j + n,
Z3 = 2(d+ i+ p).

The rank is 9 and the number of variables is 15 so we pick 6 variables, a, b, d, e, f, p, and place them in
∆. Now we solve the system. For ease of solution we let X2/2 = (Z0 + Z1 + Z2 + Z3/2) − (X0 + X1)
and Y3/2 = (Z0 + Z1 + Z2 + Z3/2)− (Y0 + Y1 + Y2).
c = (a+ b+ c+ d+ e)− a− b− d− e = X0 − a− b− d− e,
l = (a+ f + l)− a− f = Z0 − a− f ,
h = (b+ h+ p)− b− p = Y3/2− b− p = (Z0 + Z1 + Z2 + Z3/2)− (Y0 + Y1 + Y2)− b− p,
i = (d+ i+ p)− d− p = Z3/2− d− p,
k = (e+ k + l)− e− l = Y0 − Z0 + a+ f − e,
j = ((d+f + j+m)−d−f +(c+e+h+ j+n)−c−e−h− (l+m+n+p)+ l+p)/2 = (Y1−Y3/2−
X0−X2/2+Z0 +Z2 +2b−2f+2p)/2 = ((Y0 +2Y1 +Y2)−(Z0 +2Z1 +Z2 +Z3)+X1 +2b−2f+2p)/2,
n = (c+ e+ h+ j + n)− c− e− h− j = (Z2 −X0 − Y3/2− Y1 +X2/2− Z0)/2 + a+ b+ d+ f =
(−3X0 − 2X1 + 2Y0 + Y1 + 2Y2 − Z0 + Z2)/2 + a+ b+ d+ f,
m = (l + m + n + p) − l − n − p = X2/4 + X0/2 − Z0/2 − Z2/2 + Y3/4 + Y1/2 − b − d − p =
(Z0/2 + Z1 + Z2/2 + Z3/2)−X1/2− (Y0 + Y2)/2− b− d− p,
g = (b+g+k+m)−b−k−m = Z1+Z2/2+3Z0/2−X2/4−X0/2−Y0−Y3/4−Y1/2−a+d−f+e+p =
(Z0/2− Z2/2− Z3/2) + (X1)/2 + (−Y0 + Y2)/2− a+ d− f + e+ p.
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The constraints on the variables are as follows.
Constraint 1: since c = X0 − a− b− d− e ≥ 0,

a+ b+ d+ e ≤ nx0/(nx0 + nx1 + nx2) = C1,

Constraint 2: since l = Z0 − a− f ≥ 0,

a+ f ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C2,

Constraint 3: since h = Y3/2− b− p ≥ 0,

b+ p ≤ ny3/(ny0 + ny1 + ny2 + ny3) = C3,

Constraints 4: since i = Z3/2− d− p ≥ 0,

d+ p ≤ nz3/(nz0 + nz1 + nz2 + nz3) = C4,

Constraint 5: since k = Y0 − Z0 + a+ f − e ≥ 0,

a+ f − e ≥ nz0/(nz0 + nz1 + nz2 + nz3)− ny0/(ny0 + ny1 + ny2 + ny3) = C5,

Constraint 6: since j = (Y1 − Y3/2−X0 −X2/2 + Z0 + Z2 + 2b− 2f + 2p)/2 ≥ 0,
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f − b−p ≤ (ny1−ny3)/(2(ny0 +ny1 +ny2 +ny3))− (X0 +X2/2)/(2(nx0 +nx1 +nx2))+(nz0 +
nz2)/(2(nz0 + nz1 + nz2 + nz3)) = C6,

Constraint 7: since n = (Z2 −X0 − Y3/2− Y1 +X2/2− Z0)/2 + a+ b+ d+ f ≥ 0,

a+ b+ d+ f ≥ (nx0 − nx2)/(2(nx0 + nx1 + nx2)) + (ny3 + ny1)/(2(ny0 + ny1 + ny2 + ny3)) +
(nz0 − nz2)/(2(nz0 + nz1 + nz2 + nz3)) = C7,

Constraint 8: since m = X2/4 +X0/2− Z0/2− Z2/2 + Y3/4 + Y1/2− b− d− p ≥ 0,

b+ d+ p ≤ (nx0 +nx2)/(2(nx0 +nx1 +nx2))− (nz0 +nz2)/(2(nz0 +nz1 +nz2 +nz3)) + (ny1 +
ny3)/(2(ny0 + ny1 + ny2 + ny3)) = C8,

Constraint 9: since g = −X2/4−X0/2−Y0−Y3/4−Y1/2+Z1+3Z0/2+Z2/2+d−a−f+e+p ≥ 0,

a+ f − d− e− p ≤ −(nx0 + nx2)/(2(nx0 + nx1 + nx2))− (2ny0 + ny1 + ny3)/(2(ny0 + ny1 +
ny2 + ny3)) + (3nz0 + 2nz1 + nz2)/(2(nz0 + nz1 + nz2 + nz3)) = C9.

The constraints are then

a+ b+ d+ e ≤ C1, a+ f ≤ C2, b+ p ≤ C3, d+ p ≤ C4, C5 ≤ a+ f − e,

f − b− p ≤ C6, C7 ≤ a+ 3b+ d+ f, b+ d+ p ≤ C8, a+ f − d− e− p ≤ C9.

Assume that τ = 2.372873/3. We first find the setting a′ = 0.207580266779174·10−3, b′ = 0.00534699819473600, d′ =
0.00534718758229032, e′ = 0.209237614926190·10−3, f ′ = 0.105519087916149·10−3, p′ = .297000529499192
minimizing F (a, b, d, e, f, p) = aabbccddeeffgghhiijjkkllmmnnpp for the setting of the rest of the vari-
ables in terms of a, b, d, e, f, p under the above 9 constraints. Then we find the setting a′′ = 0.207390670828811·
10−3, b′′ = 0.00542620227211836, d′′ = 0.00542637317018223, e′′ = 0.209046704420474 · 10−3, f ′′ =
0.105664774141390·10−3, p′′ = .296860032116101 maximizing V466(a, b, d, e, f, p)/F (a, b, d, e, f, p) un-
der the same linear constraints. Finally, we conclude that V466 ≥ F (a′, b′, d′, e′, f ′, p′)·V466(a′′, b′′, d′′, e′′, f ′′, p′′)/F (a′′, b′′, d′′, e′′, f ′′, p′′) ≥
1.244977753 · 106.

Lemma 31. When q = 5, τ = 2.372873/3, V556 ≥ 1.421276476 · 106.
In general,
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Here, a, b, c, e, f, h, i are constrained by our framework (see the proof).

Proof. Since I = J = 5 and K = 6, the variables are a = α026, b = α035, c = α044, d = α053, e =
α116, f = α125, g = α134, h = α143, i = α152, j = α206, k = α215, l = α224,m = α233, n = α242, p =
α251. The system is
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X0 = a+ b+ c+ d,
X1 = e+ f + g + h+ i,
Y0 = d+ i+ j + p,
Y1 = c+ e+ h+ k + n,
Z0 = a+ e+ j,
Z1 = b+ f + k + p,
Z2 = c+ g + i+ l + n,
Z3 = 2(d+ h+m).

The rank is 8 and there are 15 variables, so we pick 7 variables, a, b, c, e, f, h, i, and place them into ∆.
We then solve the system:
d = (a+ b+ c+ d)− a− b− c = X0 − a− b− c,
j = (a+ e+ j)− a− e = Z0 − a− e,
m = (d+ h+m)− (a+ b+ c+ d) + a+ b+ c− h = Z3/2−X0 + a+ b+ c− h,
p = (d+ i+ j+p)− (a+ b+ c+d)− (a+e+ j)+2a+ b+ c− i+e = Y0−X0−Z0 +2a+ b+ c− i+e,
k = (b + f + k + p) − (d + i + j + p) + (a + b + c + d) + (a + e + j) − 2b − f − 2a − c + i − e =
Z1 − Y0 +X0 + Z0 − 2b− f − 2a− c+ i− e,
n = (c+e+h+k+n)−(b+f+k+p)+(d+i+j+p)−(a+b+c+d)−(a+e+j)−h+2b+f+2a−i =
Y1 − Z1 + Y0 −X0 − Z0 − h+ 2b+ f + 2a− i,
g = (e+ f + g + h+ i)− e− f − h− i = X1 − e− f − h− i,
l = (c+g+ i+ l+n)−(e+f+g+h+ i)−(c+e+h+k+n)+(b+f+k+p)−(d+ i+j+p)+(a+b+
c+d)+(a+e+j)−c+e+2h+i−2b−2a = Z2−X1−Y1 +Z1−Y0 +X0 +Z0−c+e+2h+i−2b−2a.
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Now let’s consider the constraints:
Constraint 1: d = X0 − a− b− c ≥ 0, and so
a+ b+ c ≤ nx0/(nx0 + nx1 + nx2) = C1,

Constraint 2: j = Z0 − a− e ≥ 0, and so
a+ e ≤ nz0/(nz0 + nz1 + nz2 + nz3) = C2,

Constraint 3: m = Z3/2−X0 + a+ b+ c− h ≥ 0, and so
h− a− b− c ≤ nz3/(nz0 + nz1 + nz2 + nz3)− nx0/(nx0 + nx1 + nx2) = C3,

Constraint 4: p = Y0 −X0 − Z0 + 2a+ b+ c− i+ e ≥ 0, and so
i−2a−b−c−e ≤ ny0/(ny0+ny1+ny2)−nx0/(nx0+nx1+nx2)−nz0/(nz0+nz1+nz2+nz3) = C4,

Constraint 5: k = Z1 − Y0 +X0 + Z0 − 2b− f − 2a− c+ i− e ≥ 0, and so
2a+ 2b+ c+ e+ f − i ≤ nx0/(nx0 + nx1 + nx2)− ny0/(ny0 + ny1 + ny2) + (nz0 + nz1)/(nz0 +

nz1 + nz2 + nz3) = C5,

Constraint 6: n = Y1 + Y0 −X0 − Z0 − Z1 − h+ 2b+ f + 2a− i ≥ 0, and so
h+ i−2a−2b−f ≤ (ny0 +ny1)/(ny0 +ny1 +ny2)−nx0/(nx0 +nx1 +nx2)−(nz0 +nz1)/(nz0 +

nz1 + nz2 + nz3) = C6,

Constraint 7: g = X1 − e− f − h− i ≥ 0, and so
e+ f + h+ i ≤ nx1/(nx0 + nx1 + nx2) = C7,

Constraint 8: l = X0 −X1 − Y1 − Y0 + Z0 + Z1 + Z2 − c+ e+ 2h+ i− 2b− 2a, and so
2a + 2b + c− e− 2h− i ≤ (nx0 − nx1)/(nx0 + nx1 + nx2)− (ny0 + ny1)/(ny0 + ny1 + ny2) +

(nz0 + nz1 + nz2)/(nz0 + nz1 + nz2 + nz3) = C8.
Summarizing, the constraints are

a+ b+ c ≤ C1, a+ e ≤ C2, h− a− b− c ≤ C3, i− 2a− b− c− e ≤ C4,

2a+2b+ c+e+f − i ≤ C5, h+ i−2a−2b−f ≤ C6, e+f +h+ i ≤ C7, 2a+2b+ c−e−2h− i ≤ C8.

Assume that τ = 2.372873/3. We first find the setting a′ = 0.562995312066963·10−4, b′ = 0.00122955027040296, c′ =
0.00354992813988773, e′ = 0.207509360036833·10−3, f ′ = 0.0122589343738679, h′ = 0.0618610336237278, i′ =
0.00354992819549840 minimizing F (a, b, c, e, f, h, i) = aabbccddeeffgghhiijjkkllmmnnpp for the set-
ting of the rest of the variables in terms of a, b, c, e, f, h, i and under the above 8 linear constraints. We then
find the setting a′′ = 0.576154034796757·10−4, b′′ = 0.00124475629509324, c′′ = 0.00351600913306182, e′′ =
0.204880209163357·10−3, f ′′ = 0.0122439331719230, h′′ = 0.0618847419702464, i′′ = 0.00351595877192500
maximizing V556(a, b, c, e, f, h, i)/F (a, b, c, e, f, h, i) under the above linear constraints. We then con-
clude that V556 ≥ F (a′, b′, c′, e′, f ′, h′, i′) · V556(a′′, b′′, c′′, e′′, f ′′, h′′, i′′)/F (a′′, b′′, c′′, e′′, f ′′, h′′, i′′) ≥
1.421276476 · 106.
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[5] M. Bläser. Complexity of bilinear problems (lecture notes scribed by F. Endun). http://www-cc.
cs.uni-saarland.de/teaching/SS09/ComplexityofBilinearProblems/
script.pdf, 2009.

[6] P. Bürgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory, Grundlehren der math-
ematischen Wissenschaften. Springer-Verlag, Berlin, 1996.

[7] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic algorithms for matrix multiplica-
tion. In Proc. FOCS, volume 46, pages 379–388, 2005.

[8] H. Cohn and C. Umans. A group-theoretic approach to fast matrix multiplication. In Proc. FOCS,
volume 44, pages 438–449, 2003.

[9] D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication. In Proc.
SFCS, pages 82–90, 1981.

[10] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic
Computation, 9(3):251–280, 1990.

[11] A. Davie and A. J. Stothers. Improved bound for complexity of matrix multiplication. Proceedings of
the Royal Society of Edinburgh, Section: A Mathematics, 143:351–369, 4 2013.

[12] P. Erdös and R. Rado. Intersection theorems for systems of sets. J. London Math. Soc., 35:85–90,
1960.

[13] E. Mossel, R. O’Donnell, and R. A. Servedio. Learning juntas. In Proc. STOC, pages 206–212, 2003.

[14] V. Y. Pan. Strassen’s algorithm is not optimal. In Proc. FOCS, volume 19, pages 166–176, 1978.

[15] F. Romani. Some properties of disjoint sums of tensors related to matrix multiplication. SIAM J.
Comput., pages 263–267, 1982.

[16] R. Salem and D. Spencer. On sets of integers which contain no three terms in arithmetical progression.
Proc. Nat. Acad. Sci., 28(12):561–563, 1942.

[17] A. Schönhage. Partial and total matrix multiplication. SIAM J. Comput., 10(3):434–455, 1981.

[18] A. Stothers. Ph.D. Thesis, U. Edinburgh, 2010.

72



[19] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–356, 1969.

[20] V. Strassen. The asymptotic spectrum of tensors and the exponent of matrix multiplication. In FOCS,
pages 49–54, 1986.

[21] L. G. Valiant. General context-free recognition in less than cubic time. Journal of Computer and
System Sciences, 10:308–315, 1975.

73


