
Specification Inference Using
Context-Free Language Reachability

Osbert Bastani
Stanford University

obastani@cs.stanford.edu

Saswat Anand
Stanford University

saswat@cs.stanford.edu

Alex Aiken
Stanford University

aiken@cs.stanford.edu

Abstract
We present a framework for computing context-free language
reachability properties when parts of the program are missing.
Our framework infers candidate specifications for missing pro-
gram pieces that are needed for verifying a property of interest, and
presents these specifications to a human auditor for validation. We
have implemented this framework for a taint analysis of Android
apps that relies on specifications for Android library methods. In an
extensive experimental study on 179 apps, our tool performs veri-
fication with only a small number of queries to a human auditor.

Categories and Subject Descriptors F.3.2 [Semantics of Pro-
gramming Languages]: Program analysis; F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Mechanical verifica-
tion

Keywords program analysis; verification; specification inference

1. Introduction
Interprocedural analyses are the building blocks for many applica-
tions of program analysis, including program slicing [23], bug find-
ing [1, 6, 18], and taint analysis [32]. One limitation of most inter-
procedural analyses is that they assume the entire program’s source
code can be analyzed. In practice, many programs call methods in
libraries that may be written in lower-level languages, use dynamic
features such as Java reflection, or do not have source code avail-
able for analysis. In fact, in our experience, for large systems it
is unusual if any of these situations does not occur many times.
Handling missing or hard-to-analyze code in a fully automatic way
generally results in using either very pessimistic and imprecise as-
sumptions or very optimistic and unsound assumptions.

One pragmatic approach to address these problems is to man-
ually write specifications encoding the relevant behavior of the li-
brary (or hard-to-analyze) methods so that the library source code
does not need to be analyzed. For this approach to work, it is critical
that (i) the manual effort of writing the specifications is small, and
(ii) the analysis produces sound results even if some specifications
are missing. Prior work has addressed these issues to some extent:
[3, 4, 7, 15, 16, 21, 22, 25, 33] have applied data mining techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright c© 2015 ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676977

to infer specifications, which helps address (i), and [34] has devel-
oped techniques for inferring minimal sets of specifications needed
for program verification, which addresses both (i) and (ii).

In this paper we consider the problem of inferring missing spec-
ifications in the context of solving a general context-free language
(CFL) reachability problem. Many important interprocedural anal-
yses can be formulated as CFL reachability problems, and our
framework makes these algorithms more practical and easier to ap-
ply to large programs where parts of the code are either missing or
too difficult to analyze statically.

We instantiate our framework for taint analysis of Android apps,
and perform an extensive experimental study on 179 apps. Many of
these apps have hundreds of thousands of bytecode instructions and
thousands of calls to Android library methods. Instead of analyzing
the Android library methods, we infer two kinds of specifications
that help capture their taint behavior:

• missing taint flows between parameters and return values of
library methods, and
• missing alias relations introduced by library methods.

Our work has three main contributions. First, we develop a gen-
eral framework for describing potentially missing specifications
for CFL reachability analyses (Section 4). In particular, the frame-
work can be instantiated to compute the two kinds of specifications
above, among others. Second, we present a specification inference
algorithm based on this framework (Section 5) that produces sound
results, infers accurate specifications, scales to large applications,
and allows a human auditor to refine the results. Third, we eval-
uate an implementation (Section 6) of our specification inference
framework with the aforementioned experimental study in which
our tool infers a large collection of library specifications and veri-
fies whether or not apps have taint flows (Section 7).

2. Motivating Example
We begin with an example that motivates the need for specification
inference to verify reachability properties of partial programs. The
technical development begins in Section 3.

The popularity of the Android framework (which is installed
on over 1 billion phones) has led to a proliferation of Android
malware. These malicious apps exhibit behaviors including theft
of contact information, sending SMS text messages to premium
phone numbers, and unauthorized location tracking. Many of the
malicious behaviors exhibited by current Android malware can be
described as the flow of sensitive data to untrusted recipients, such
as location data flowing to an untrusted web server, or an untrusted
phone number flowing to an SMS send request. In principle, stan-
dard static taint analysis can identify such malware.

For example, suppose we want to look for malware that leaks
location data via SMS messages. Consider the Java-like code in

Figure 1. In principle, a static analysis can track the data returned
by getLatitude, and determine that it is passed to sendSMS. Un-
fortunately, the Android library (written in Java, with calls to native
code) is a classic example of how system libraries cause difficulties
for static analyses. Android library methods frequently use reflec-
tion and native methods, making it very difficult to construct a pre-
cise call graph or to perform a sound and precise context sensitive
points-to analysis. Examples of such problems in practice include:

• System.arraycopy is a native method.
• Bundle.putLong indirectly calls the native Android library

method Parcel.nativeWriteLong (bundles are used to pass
data to and receive data from the Android system).
• GeoPoint.getLatitudeE6 is part of a closed-source Google

library, so the source code is unavailable.

While implementations of the Android library methods may be
missing, the net taint flows through these methods are gener-
ally simple. For example, we can summarize the net taint flows
through List.add, List.get, and Double.toString as follows:
(i) argadd may be aliased with retget (i.e., they may point to the
same object), and (ii) if taint flows to thistoString, then taint also
flows to rettoString. Here, retfn is the return value of fn, thisfn
is the receiver of fn, and argNamefn is the parameter passed to
fn named argName. The library specifications in Figure 2 capture
these properties. Note that the code in Figure 2 is only a specifica-
tion for the List and Double classes (i.e., it soundly captures the
information flows and aliasing introduced by their methods), and
is not a valid implementation of the classes. There are two kinds of
specifications:

1. An alias specification summarizes the potential aliases caused
by a library method. These are written as short methods that do
nothing except introduce the desired aliasing. For example, the
specification for List.add means that calling List.add may
cause argadd and thisadd.val to be aliased. Also, the speci-
fication for List.get says that calling List.get may cause
thisget.val and retget to be aliased. Note that if thisarg and
thisget are aliased, then these specifications cause argadd and
retget to be aliased.

2. A taint specification describes how taint flows through a library
method. These specifications are expressed as @Flow annota-
tions, where the taint on the first argument (either a parameter
arg, a return value ret, the receiver this, or a special label
such as LOC representing a taint source) is transfered to the sec-
ond argument (similar to the first argument, except in this case a
special label would represent a sink, e.g. SMS). For example, the
specification of Double.toString means that if thistoString
is tainted, then rettoString is also tainted.

The specifications in Figure 2 enable the analysis to find the
flow from the source label LOC to the sink label SMS in Fig-
ure 1. First, the return value retgetLatitude is tainted with the
source label LOC. Second, this taint is passed to lat, which is
stored in list.val. Third, the value is retrieved from list
and stored in latAlias, before being converted into a string
and passed as the text argument of the Android library method
sendSMS(String text). Finally, our specification says that the
text argument of the method sendSMS is sent to the sink labeled
SMS, so the code exhibits a flow from LOC to SMS.

Naı̈vely, we may expect that flow specifications are suffi-
cient to capture all information flows. For example, we may con-
sider using taint specifications that handle field accesses, and re-
place the alias specification for List.add with the flow speci-
fication @Flow(arg, this.val). However, this specification is
unsound—it fails to capture the flow from LOC to SMS in Figure 3:

1. Double lat = getLatitude();
2. List list = new List();
3. list.add(lat);
4. Double latAlias = list.get(0);
5. String latStr = latAlias.toString();
6. sendSMS(latStr);

Figure 1. A flow through the List and Double classes.

1. class List:
2. Object val;
3. void add(Object arg) { val = arg; }
4. Object get(Integer index) { return val; }
5. class Double:
6. @Flow(this, return)
7. String toString() {}
8. class LocationManager:
9. @Flow(LOC, return)
10. static String getLatitude() {}
11.class SMS:
12. @Flow(text, SMS)
13. static void sendSMS(String text) {}

Figure 2. Specifications for Android library classes.

1. class Box: String f;
2. List list = new List();
3. Box box = new Box();
4. list.add(box);
5. Box boxAlias = list.get(0);
6. boxAlias.f = getLatitude();
7. sendSMS(box.f);

Figure 3. An information flow not captured by taint specifications.

boxAlias.f is tainted by LOC, so list.val.f is tainted (since
boxAlias and list.val are aliased), but the proposed specifi-
cation for List.add does not transfer this taint to box.f (even
though taint flows to box.f). In general, we need alias specifica-
tions to precisely and soundly capture flows due to aliasing.

Manually writing library specifications is expensive: the An-
droid library contains over 5000 classes, many exhibiting complex
taint flow behavior. Typically, a human auditor must search the ap-
plication for calls to potentially important library methods, and then
manually write specifications for these methods. Even moderately
large apps contain thousands of library method calls, but most of
them are irrelevant to finding taint flows. Our experience is likely
representative: over a one year period spent analyzing potential An-
droid malware, we have written specifications for just 179 library
classes, and we continue to find important new specifications.

Missing specifications can cause false negatives in the static
analysis. For example, suppose we remove the library specification
for List.add from Figure 2. Then the static analysis cannot find
the flow from LOC to SMS (since the taint path between them is
broken), causing a false negative. Unlike false positives, where the
auditor has a list of flows to inspect in detail, false negatives are
difficult to track down—ensuring that a tool has not produced a
false negative such as the missing flow from LOC to SMSmay require
examining every library method call made by the application.

Intuitively, the visible application code contains useful infor-
mation about the correct specifications for the library methods. For
example, if we remove the specification for List.add, then there
is still a flow from the LOC to argadd, and a flow from thisget.val

to SMS. However, argadd and thisadd.val are no longer aliased, so
the flow is broken. Only one additional assumption (i.e., that argadd
is aliased with thisadd.val) is needed to complete the flow.

This example motivates an approach to specification inference
that searches for specifications that complete broken flows. Our ap-
proach proceeds in two steps. First, our tool finds potential flows by
making worst-case assumptions about the missing specifications.
Second, for each potential flow, our tool keeps track of which as-
sumptions are sufficient to prove that the potential flow is a true
flow, which we call sufficient assumptions for the potential flow.
Finally, the tool proposes that these sufficient assumptions are true.
These assumptions correspond to specifications that are the inferred
specifications produced by the tool.

Continuing our example, our tool would find a potential flow
from LOC to SMS by making worst-case assumptions about the
specification for List.add, which includes introducing aliasing
between argadd and thisadd.val. This specification for List.add
is a sufficient assumption for the potential flow from LOC to SMS, so
it is inferred by our tool. Upon seeing this inferred specification, the
human auditor can confirm that it is correct and thereby determine
that the potential flow is a true flow.

In practice, there may be multiple sufficient assumptions for
each potential flow. Our tool keeps track of a minimal set of suf-
ficient assumptions—i.e., it looks for flows that are broken in the
fewest places possible. The guiding principle is that potential flows
that require fewer assumptions are more likely to be real flows than
potential flows that require more assumptions. By extension, poten-
tial flows that produce the fewest inferred specifications are most
likely to be correct and should be checked first by an auditor.

We use (interprocedural) taint analysis to motivate and validate
our general framework. Taint analysis is a prototypical example of
a program analysis that can be expressed as a CFL reachability
problem and has many practical applications. Furthermore, it is
built on top of points-to analysis, which is a key part of many
interprocedural program analyses. One of our goals is to infer
aliasing relationships potentially introduced by library methods that
are missing specifications.

3. CFL Reachability for Explicit Taint Flows
In this section we present a static analysis for finding explicit taint
flows and illustrate it using the example in Section 2. Our anal-
ysis performs CFL reachability on the portion of the code that is
available, and uses specifications for the portion of the code that is
unavailable. The specifications are usually manually generated, for
example by a human auditor. Our understanding is that many prac-
tical systems have this design, and we do not claim that it is novel.
However, as far as we know this approach is not well-documented
in the literature, so we describe it in some detail. In Section 4, we
generalize this analysis to one where some specifications (in ad-
dition to the code) are also unavailable (for example, because the
auditor has only produced partial specifications), and the task is to
infer the possible missing specifications.

Let C = (U,Σ, P, T) be a context-free grammar (CFG), where
U is the set of non-terminals, Σ is the set of terminals,P is the set of
productions, and T is the start symbol. We assume C is normalized
so that every production has at most two symbols on the right-hand
side [19]. We write A ∗

=⇒ α, where A is a non-terminal and α is a
string of terminals and non-terminals, if α can be derived from A.

Let G be a directed graph such that the edges v σ−→ v′ in G are
labeled with terminal symbols σ ∈ Σ. A path v

α
99K v′ ∈ G is a

sequence of edges v
σ1−→ w1

σ2−→ ...
σk−−→ v′ such that α = σ1...σk.

The transitive closure of G under C is the graph GC such that

v
A−→ v′ ∈ GC if and only if there exists v

α
99K v′ ∈ G such

that A ∗
=⇒ α. If v T−→ v′, we say v′ is C-reachable from v.

DEFINITION 3.1. Given a CFG C, a graph G = (V,E), and
subsets of vertices Vsource, Vsink ⊆ V , the CFL reachability problem
is to determine whether there exist v ∈ Vsource and v′ ∈ Vsink such
that v′ is C-reachable from v.

Typically, formulating a program analysis as a CFL reachabil-
ity problem involves converting the input program into a graph
G = (V,E) and a CFG C, and then solving the CFL reachabil-
ity problem for C and G for some given sets of sources and sinks
Vsource, Vsink ⊆ V . This problem can be solved by finding the clo-
sure of G under C using a dynamic programming algorithm [19].

3.1 Explicit Taint Flows
We now describe a standard flow- and path-insensitive explicit
taint analysis. Explicit taint analysis only tracks taint through data
flows—i.e., it follows tainted data as it is copied in the course of
program execution. We defer discussion of implicit flows, where
the information transferred depends on control flow decisions, to
Section 3.2. As a part of the explicit taint analysis, we perform
points-to analysis to find taint flows due to aliasing. For Java,
points-to analysis can be expressed as a CFL reachability problem
[26]. We extend the points-to analysis to a taint analysis by includ-
ing source and sink edges that pass taint into and out of the system.

A set of taint specifications S consists of three relations: the
source specifications Src(v, `), the sink specifications Sink(v, `),
and the flow specifications Flow(v, v′). Here, v, v′ ∈ G are formal
method parameters or return values, and ` ∈ L = Lsource ∪ Lsink is
a label representing a taint source (` ∈ Lsource) or a sink (` ∈ Lsink).
The relations have the following semantics:

• Src(v, `) says v is tainted with source ` ∈ Lsource,
• Sink(v, `) says v is passed to sink ` ∈ Lsink, and
• Flow(v, v′) says that any taint on v flows to v′.

Given a program P , the taint graph for P isG = (V,E), where
V = O∪U∪L. Here,O is the set of abstract objects in the program
(each of which uniquely corresponds to an object allocation site),
U denotes the program’s set of reference variables, and L is the set
of labels introduced above. Figure 4 gives rules for generating an
initial set of edges for the graph. Rules 1-4 handle primitive forms
of statements. Rule 1 says that the contents of the abstract object
o flow to the reference v on the left-hand side of the assignment
(more formally, v may point to o). Rule 2 similarly encodes the
flow when a reference variable v is assigned to another reference
variable u. Rules 3 and 4 record the flows induced by field writes
(or puts) and field reads (or gets) respectively; note that there is a
distinct put/get operation for each field f .

Rules 5-7 formalize the description of the taint specifications
S given above. Rule 5 (symbol SrcRef) says that a source taints a
reference variable, Rule 6 (symbol RefSink) says that the contents
of a reference variable flow to a particular sink, and Rule 7 (sym-
bol RefRef) says that the contents of one reference variable flow
to another reference variable. Rules 8 and 9 are technical devices.
Intuitively, Rule 8 ensures at least one abstract object flows to the
target reference variable of any flow specification, which eliminates
the need to include alias specifications for every method allocating
a non-primitive return value (Rule 8 is discussed further in Sec-
tion 3.2). Finally, Rule 9 allows us to express paths with “back-
wards” edges by introducing a label σ to represent the reversal of
an edge labeled σ.

We handle interprocedural taint flow as follows: arguments
passed by the caller are assigned to formal parameters, which are

assigned to the corresponding references in the callee. Values re-
turned by the callee are assigned to a formal return value, which is
assigned to the corresponding reference in the caller. Vertices repre-
senting formal parameters and formal return values are added to G
by the analysis, for example lat

Assign−−−→ thisformaladd

Assign−−−→ thisadd

and rettoString
Assign−−−→ retformaltoString

Assign−−−→ latString. This indi-
rection ensures that method boundaries are clear.

Figure 6 shows the taint graph generated from the code in Fig-
ure 1 and the specifications in Figure 2 using the rules in Figure 4.
For clarity, we have not included formal parameters and formal re-
turn values in the graph, but have assigned caller arguments directly
to the corresponding callee references and callee return values di-
rectly to corresponding caller reference. The graph describes the
explicit flows in the program. For example, the edges

argadd
Put[val]−−−−→ thisadd

Assign←−−− list
Assign−−−→ thisget

Get[val]−−−−→ retget

capture the fact that any value stored in the list through the
List.add method can potentially be the result of the List.get
method. More precisely, the middle two edges show that the refer-
ence list, the receiver of List.add, and the receiver of List.get
all potentially point to the same abstract object.

The next step is to identify the paths through the graph that
correspond to explicit taint flows, which we specify using the CFG
Ctaint defined as follows (with F denoting the set of fields in P):

Σtaint = {New,Assign, SrcRef,RefSink,RefRef}
∪ {Put[f],Get[f] | f ∈ F}

Utaint = {FlowsTo, SrcObj, SrcSink} ∪ {FlowsTo[f] | f ∈ F}

We also include symbols σ and A in Σtaint and Utaint, respectively.
The start symbol of Ctaint is Ttaint = SrcSink. The source vertices
we consider are the taint source labels (i.e. Vsource = Lsource), and
the sink vertices we consider are the sink labels (i.e. Vsink = Lsink).

The productions are shown in Figure 5. Rules 10-13 build the
points-to relation o

FlowsTo−−−−→ v, which means that the reference
variable v ∈ U may point to the abstract object o ∈ O. For
example, because Figure 6 contains the path

olat
FlowsTo−−−−→ argadd

Put[val]−−−−→ thisadd
FlowsTo−−−−→ olist,

Rule 12 adds edge olat
FlowsTo[val]−−−−−−−→ olist. Here, olat and olist are

the abstract objects allocated to lat and list, respectively. Then
we have path

olat
FlowsTo[val]−−−−−−−→ olist

FlowsTo−−−−→ thisget
Get[val]−−−−→ retget.

Therefore Rule 13 adds olat
FlowsTo−−−−→ retget, which causes Rule

11 to add olat
FlowsTo−−−−→ latAlias. This means that retgetLatitude

and latAlias may point to the same abstract object olat, i.e.
retgetLatitude and latAlias are aliased.

The backwards edge thisadd
FlowsTo−−−−→ olist in the example

path above is added by Rule 17, which introduces a reversed edge

v′
A−→ v for every non-terminal edge v

A−→ v′. In this way,
Rule 17 plays the same role for non-terminal edges that Rule 9
plays for terminal edges. Note that the (forward, non-reversed) edge
olist

FlowsTo−−−−→ thisadd arises from the path of terminal edges

olist
New−−→ list

Assign−−−→ thisadd

and the application of Rule 10 followed by Rule 11.

3.2 Implicit (Library) Taint Flows
Because retgetLatitude and latAlias can point to the same object,
if one of them is tainted, then the other should be tainted as well.

1. v=new X()⇒ o
New−−→ v

2. u=v ⇒ v
Assign−−−→ u

3. u.f=v ⇒ v
Put[f]−−−→ u

4. u=v.f ⇒ v
Get[f]−−−−→ u

5. Src(v, `) ∈ S ⇒ `
SrcRef−−−→ v

6. Sink(v, `) ∈ S ⇒ v
RefSink−−−−→ `

7. Flow(v, v′) ∈ S ⇒ v
RefRef−−−−→ v′

8. ∃v (Flow(v, v′) ∈ S)⇒ ov′
New−−→ v′

9. v σ−→ v′ ⇒ v′
σ−→ v (where σ = σ)

Figure 4. Program fact extraction rules for taint analysis. In Rule 8, ov′ is
a fresh vertex.

10. FlowsTo→ New

11. FlowsTo→ FlowsTo Assign

12. FlowsTo[f]→ FlowsTo Put[f] FlowsTo

13. FlowsTo→ FlowsTo[f] FlowsTo Get[f]

14. SrcObj→ SrcRef FlowsTo

15. SrcObj→ SrcObj FlowsTo RefRef FlowsTo

16. SrcSink→ SrcObj FlowsTo RefSink

17. A→ A1...Ak ⇒ A→ Ak...A1 (where A = A)

Figure 5. Productions for Ctaint.

Instead of keeping track of taint on the reference variables, it is
simpler to keep track of taint on the objects. In Figure 6, Rule 14
adds the edge LOC

SrcObj−−−→ olat, which says that olat is tainted. For
this taint to flow to the sink, the analysis must be able to pass the
taint to orettoString (the object allocated to rettoString).

But here we encounter a problem: there is no explicit flow
through Double.toString, because no data is copied from the
input to the output of the method. Instead, there is an implicit flow
through a sequence of look-ups converting digits in the double
value to characters in the string. That is, information still flows
from the input to the output of the method, but through control flow
decisions rather than through explicit data flow.

Implicit flows are much more difficult to analyze precisely than
explicit flows, because it is much harder to avoid tainting far too
much of the program when analyzing implicit flows. Another way
to handle implicit flows is to use explicit taint analysis but include
appropriate specifications for methods that have implicit flows. We
consider the set of specifications that pass taint from one argument
to another argument or to the return value. In our specification S,
this behavior is described by the relation Flow(v, v′), where v ∈ V
is a library method parameter and v′ ∈ V is a library method
parameter or return value. Such specifications require Rule 8 from
Figure 4, which adds phantom objects to the graph.

Recall that we attach taint to objects, not references. Thus, no
taint can flow to parts of the code that have no objects associated
with them. If a library method does not have an alias specification,
then the method will have no object associated with its return value.
Rather than manually add alias specifications for every method with
a non-primitive return object, Rule 8 in Figure 4 automatically adds
a (fresh) abstract object that the return value points to. For example,
Rule 8 adds orettoString

New−−→ rettoString, causing Rule 10 to add

Figure 6. The taint graph G corresponding to the code in Figure 1 and
the library specifications in Figure 2. Solid edges are facts extracted from
the code in Figure 1 (backwards edges added by Rule 9 are not shown).
Dotted edges are facts extracted from the library specifications in Figure 2.
Edges corresponding to alias specifications are boxed in a solid red line,
and edges corresponding to flow specifications are boxed in a dashed blue
line. Dashed edges are edges added by productions in Figure 5 (not all such
edges are shown).

orettoString
FlowsTo−−−−→ rettoString. Now we can capture the flow in

Figure 1. In Figure 6, we have the path

LOC
SrcObj−−−→ olat

FlowsTo−−−−→ thistoString

RefRef−−−→ rettoString
FlowsTo−−−−→ orettoString .

Rule 15 adds the edge LOC
SrcObj−−−→ orettoString . Now we have

LOC
SrcObj−−−→ orettoString

FlowsTo−−−−→ textsendSMS
RefSink−−−−→ SMS,

so Rule 16 adds the edge LOC SrcSink−−−−→ SMS.

4. Problem Statement
In this section, we formulate the problem of performing a sound
and precise CFL reachability analysis when some specifications are
missing, along with the problem of inferring the missing specifica-
tions. Our formulation extends the framework defined in Section 3.

4.1 Missing Specifications CFL Reachability
Suppose we want to perform a CFL reachability analysis on a
program P . AssumeG∗ = (V ∗, E∗) is the graph constructed from
P with complete specifications. If specifications are missing, then
the constructed graph Ĝ = (V̂ , Ê) may be missing vertices and
edges, i.e. V̂ ⊆ V ∗ and Ê ⊆ E∗. The goal is to perform a sound
and precise worst-case analysis given some information about the
missing vertices and edges. We encode the possible missing data as
a family of graphs G, where we only know that G∗ ∈ G.

DEFINITION 4.1. Suppose we are given Ĝ = (V̂ , Ê), a set of
sources Vsource ⊆ V̂ , a set of sinks Vsink ⊆ V̂ , along with some
family G of graphs such that for eachG ∈ G, Ĝ is a subgraph ofG,
i.e. Ĝ ⊆ G. We callG a completion of Ĝ. LetA : Vsource×Vsink →
Bool be the result of a static analysis, where A(v, v′) = true
indicates that taint flows from v to v′.

1. class List:
2. void add(Object arg) {
3. arg.f = arg;
4. this.val = arg; }

Figure 7. An alternative (and incorrect) specification for List.add.

• A is sound if for every v ∈ Vsource and v′ ∈ Vsink, A(v, v′) =
false if and only if there does not exist any G ∈ G such that
v
T−→ v′ ∈ GC .

• A is precise if for every v ∈ Vsource and v′ ∈ Vsink, A(v, v′) =

true if and only if there exists G ∈ G such that v T−→ v′ ∈ GC .

The idea behind this definition is that an analysis is sound if it
does not miss any taint flow present in at least one of the possible
completions of Ĝ, and the algorithm is precise if it does not report
any flows that do not occur in any completion of Ĝ. An analysis
A solves the missing specifications CFL reachability problem for a
family G if it is both sound and precise.

While Definition 4.1 captures the notion of performing a worst-
case analysis that is sound and precise, we are also interested in
keeping track of the assumptions that the worst-case analysis makes
about missing specifications. In practice, many assumptions may
produce the same results. Therefore we are interested in producing
a minimal set of assumptions. Suppose we have a partial order
(G,≤), where G1 ≤ G2 should mean that the graph G1 makes
at most as many assumptions as G2. The definition of ≤ depends
on the family G. In addition to producing sound and precise results
A, we would like to produce a minimal G ∈ G (with respect to ≤)
such that performing the CFL reachability analysis on G yields A.

DEFINITION 4.2. Suppose we are given the inputs as in Defini-

tion 4.1, along with a partial order (G,≤). We use the notation e
?
∈

G; this expression evaluates to true if e ∈ G and false otherwise.
The CFL reachability specification inference problem is to produce
sound and precise results A, along with sufficient assumptions, en-

coded as a graph G ∈ G satisfying A(v, v′) = (v
T−→ v′

?
∈ GC)

for every v ∈ Vsource and v′ ∈ Vsink. Furthermore, we require thatG
is minimal, i.e. there does not exist sufficient assumptions G′ ∈ G
such that G′ < G.

In the remainder of this section, we describe how we apply this
framework to inferring alias and flow specifications.

4.2 G Using Regular Languages
To design an algorithm for solving a missing specifications CFL
reachability problem, we must first specify the family G of graphs
to which G∗ may belong. Our goal is to define a family G that
is simultaneously general, retains precision in practice, and admits
efficient algorithms. We confine our presentation to inferring spec-
ifications for missing methods. This restriction is without loss of
generality and is done to simplify notation and discussion through-
out the rest of the paper.

One restriction we do make is that inferred specifications do
not access static fields. Our algorithms in fact work without this
restriction, but the results are almost always not useful. It is easy to
see why: if there are at least two missing methods that can access
static fields, it is possible for one to store a tainted value in a static
field and the other to read it, whether or not these methods have
anything else to do with each other. Furthermore, specifications
involving static fields are rare: none of the specifications we have
manually written have involved static fields.

Consider the taint graph G in Figure 6. Suppose the specifica-
tion for the method List.add in Figure 2 is missing, so the edge

argadd
Put[val]−−−−→ thisadd in Figure 6 is missing, giving us the graph

Ĝ. Without access to static fields, the only way to complete a flow
through Ĝ is if there is a path connecting argadd to thisadd. In gen-
eral, for a method m, the only possible taint flows through m are
from a parameter of m to m’s return value, or from one parameter
to another parameter. We use Vm ⊆ V̂ to denote the vertices of Ĝ
corresponding to the formal parameters and return value of m.

To be sound, we must assume that the specification of List.add
could execute any sequence of operations. In other words, G con-
sists of Ĝ with some additional subgraph Gargadd,thisadd connecting
argadd to thisadd. Note that for any subgraph Gargadd,thisadd cor-
responding to a possible specification of List.add’s behavior,
the only information relevant to the CFL reachability problem is
the possible sequences of terminals α ∈ Σ∗ that can occur along
paths argadd

α
99K thisadd. Generalizing from this example, for a

missing method m it suffices to consider the family of graphs G
consisting of all graphs containing Ĝ as a subgraph with additional
paths w

α
99K w′, where w,w′ ∈ Vm.

For example, one completion of Ĝ is the taint graph G in

Figure 6, which is just Ĝ with the edge argadd
Put[val]−−−−→ thisadd

added back in. But there are other ways to complete Ĝ, even for
this simple example. Consider the graph G′ obtained when the
specification for List.add is given in Figure 7. Then G′ is Ĝ with
the additional path

argadd
Put[f]−−−→ argadd

Put[val]−−−−→ thisadd

In general, there may be infinitely many possible paths argadd
α
99K

thisadd.this because the sequence of operations α can be arbitrar-
ily long. Thus, we need some compact way to represent an infinite
language of strings; the regular languages are a natural choice. This
discussion motivates our definition of the family GRW :

DEFINITION 4.3. LetW ⊆ V̂ × V̂ and letR be a regular language
over Σ. The family of graphs GRW contains the graph G if

• Ĝ ⊆ G
• If (w,w′) ∈ W , then the nondeterministic finite automaton

(NFA) N with the transition matrix given by the subgraph
Gw,w′ satisfies L(N) ⊆ L(R).

Here, Gw,w′ is the subgraph connecting w to w′ (not including w
or w′). This definition exploits the insight that we can think of the
subgraph Gw,w′ as the transition graph of an NFA N with start
state w and final state w′. Any path w

α
99K w′ ∈ Gw,w′ satisfies

α ∈ L(N). Conversely, for any α ∈ L(N), there exists a path
w

α
99K w′ ∈ Gw,w′ .
In general, choosing R = Σ∗ will produce sound results, since

this choice imposes no constraints on the allowed paths connecting
w and w′. In practice, a more restrictive language may be chosen
either to incorporate known constraints on potential specifications,
or to trade some soundness for improved scalability.

4.3 Inferring Specifications for GRW
We now formulate the corresponding missing specifications prob-
lem. Our goal is to infer specifications of the following form: there
exists a path (or set of paths) connecting w and w′. As discussed
above, both alias and flow specifications can be described in this
manner. We need to define a partial order ≤ on GRW that captures
the notion of making minimal assumptions about missing specifica-
tions. Because we are searching for source-sink paths, it is natural
to define ≤ in terms of source-sink paths through G. To simplify
notation, we assume there is a single source and a single sink, i.e.
Vsource = {vsource} and Vsink = {vsink}. Let P(G) = {vsource

α
99K

vsink ∈ G | T
∗

=⇒ α} denote the set of all possible source-sink paths
in G. We define the weight of a source-sink path p ∈ P(G) to be

weight(p) =
∑

(w,w′)∈W

(# times p passes through Gw,w′).

In other words, the weight of a path p equals the number of as-
sumptions Gw,w′ 6= ∅ used along p. Note that if an assump-
tion is used multiple times (i.e., p passes through Gw,w′ multiple
times), then each use is counted separately. Define the weight of
G ∈ GRW to be the minimum weight of any source-sink path in G:
weight(G) = arg minp∈P(G) weight(p). Now define G1 ≤ G2

if weight(G1) ≤ weight(G2). In other words, we want to find
G ∈ GRW with the source-sink path of lowest weight. In Sec-
tion 5, we show how to reduce this problem to the shortest-path
CFL reachability problem.

We are interested in inferring both flow and alias specifications.
Let Vm = V arg

m ∪ {rm}, where V arg
m is the set of formal parameters

of a method m, and rm is the formal return value of m. First, we
infer missing flow specifications (i.e., specifications Flow(v, v′),
which describe implicit taint flows through library methods):

Wflow = {(w,w′) : w ∈ V arg
m and w′ ∈ Vm}

Rflow = RefRef

For example, we could use the family GRflow
Wflow

to infer the specifica-
tion for Double.toString if it were missing.

Second, we infer missing alias specifications (which describe
alias relations potentially introduced by calls to methods such as
List.add and List.get):

Walias = {(w,w′) : w,w′ ∈ Vm}
Ralias = (Assign + Assign)

(New + Assign + Put[f]f∈F + Get[f]f∈F

+New + Assign + Put[f]f∈F + Get[f]f∈F)∗

(Assign + Assign)

The possible sequences of operations are bracketed by (Assign +
Assign) because allocation and field access operations cannot be
performed on formal parameters and formal return values (since
they are added to Ĝ by the static analysis and do not correspond to
references in the program, as described in Section 3).

5. Algorithms for Specification Inference
In this section we present an algorithm that solves the missing
specifications problem stated in Definition 4.1 for GRW . Next, we
discuss an optimization that enables our algorithm to scale to large
programs. Finally, we describe how to extend the algorithm to solve
the specification inference problem stated in Definition 4.2 by using
a shortest-path extension of the CFL reachability algorithm. This
allows us to construct an algorithm that interacts with a human
auditor to produce results that are sound and precise with respect to
G∗. An overview of our system is given in Figure 8.

5.1 Algorithms for GRW
Consider (w,w′) ∈W . Recall that every potential path w

α
99K w′

satisfies α ∈ L(R). To be sound and precise with respect to GRW , it
suffices to construct a subgraph connectingw andw′ such that there
is a path w

α
99K w′ through this subgraph if and only if α ∈ L(R).

The subgraphs that satisfy this property are the transition graphs
for nondeterministic finite automata (NFAs) that accept L(R). For
every (w,w′) ∈ W , Algorithm 1 constructs the transition graph
N (s

R−→ f) for one such NFA, and then adds this transition graph
to Ĝ to connectw tow′, resulting in graphG′. Finally, we compute

Figure 8. An overview of our specification inference system. The system
infers specifications Ŝ and proposes them to the oracle O (i.e., the human
auditor), who examines the proposals and generates a new set of specifica-
tions Snew. Then S ← S ∪ Snew, and the process repeats. Program fact
extraction is described in Section 3. While not depicted here, C may de-
pend on P . The graph transformation and CFG transformation are com-
puted by Algorithm 2. The shortest-path CFL reachability algorithm is de-
scribed in Section 5.3 and Appendix A. The specification refinement loop
is performed by Algorithm 3.

1. N (v
σ−→ v′) = {v σ−→ v′} for all σ ∈ Σ

2. N (v
R1R2−−−−→ v′) = N (v

R1−−→ t) ∪N (t
R2−−→ v′)

3. N (v
R1+R2−−−−−→ v′) = N (v

R1−−→ v′) ∪N (v
R2−−→ v′)

4. N (v
R∗1−−→ v′) = {v ε−→ t} ∪ N (t

R1−−→ t) ∪ {t ε−→ v′}

Figure 9. Given v R−→ v′,N constructs the transition graph for a NFA that
accepts R with start state v and final state v′. In Rules 2 and 4, t is a fresh
vertex.

the transitive closure (G′)C of G′ with respect to the context-
free language C. The following correctness result follows from the
correspondence between L(R) andN (s

R−→ f) described above.

THEOREM 5.1. Algorithm 1 is sound and precise for GRW .

5.2 Optimizations

Consider the subgraph Gi = N (si
R−→ fi) constructed by Algo-

rithm 1 for a pair (wi, w
′
i) ∈ W (where i is an index over pairs

(wi, w
′
i)). One issue scaling Algorithm 1 is that the CFL reach-

ability algorithm may add a large number of edges that are only
among the vertices within Gi. Any such internal edge ni

A−→ mi,
where ni and mi are vertices in Gi, is added whenever there is a
path ni

α
99K mi ∈ Gi such that A ∗

=⇒ α. The problem is that
the subgraphs Gi are all isomorphic—thus, the same edges are re-
computed many times by the standard CFL reachability algorithm.
This observation suggests that we can benefit from precomputing
the internal edges.

One convenient way to implement this optimization is to pre-
process the grammar C instead of adding graphs to Ĝ. That is, we
embed an (optimized) version of Gi in C. Since the graphs Gi are
all isomorphic to one another, this embedding only needs to be per-
formed once. Intuitively, such an transformation is possible because
Gi encodes a regular language and C is context-free.

The essential idea is that for every (wi, w
′
i) ∈ W , we replace

Gi by a single vertex. Because we are only interested in summa-

Algorithm 1 A sound and precise algorithm for GRW . Here,N (s
R−→ f) is

defined in Figure 9.

function EXPANSION(C, Ĝ,W,R, v, v′)

return v T−→ v′
?
∈ (EXPANSIONHELPER(Ĝ,W,R))C

end function
function EXPANSIONHELPER(Ĝ,W,R)

G′ ← Ĝ
for all (w,w′) ∈W do

// s and f are fresh vertices

G′ ← G′ ∪ {w ε−→ s, f
ε−→ w′} ∪ N (s

R−→ f)
end for
return G′

end function

rizing the transitive closure of Gi with respect to C, we only need
one vertex to represent the net effect of Gi, though this vertex may
have many incident edges. More specifically, we modify Ĝ in the
following ways to define a new graph G:

• We add a new vertex vi to Ĝ; here the single vertex vi will
represent Gi.
• We add two new, distinct terminal symbols b and e to Σ, stand-

ing for “beginning Gi at wi” and “exiting Gi at w′i”, respec-
tively. These terminals are needed to mark in the modified
grammar where we enter and exit Gi.

• We add the edges wi
b−→ vi

e−→ w′i to Ĝ.

We now turn to incorporating the transitions of each Gi into C,
defining a new grammar C. Let ni, mi, and ri denote vertices in
Gi (corresponding to NFA states n, m, and r, respectively). Let
v ∈ V̂ (recall that V̂ is the set of vertices of Ĝ—i.e., all the vertices
not in anyGi). Finally,G′ is the graph constructed by Algorithm 1.
We want C and C to correspond in the following way:

1. If there is an edge v A−→ ni ∈ (G′)C , then there should be an

edge v An−−→ vi ∈ G
C

. Intuitively, the non-terminal An records
thatA was matched ending at the vertex inGi corresponding to
state n.

2. If there is an edge ni
A−→ v ∈ (G′)C , then there should be an

edge vi
An−−→ v ∈ GC . Intuitively, the non-terminal An records

that A was matched starting at the vertex in Gi corresponding
to state n.

3. If there is an edge ni
A−→ mj ∈ (G′)C (that is not an internal

edge), then there should be an edge vi
Anm−−→ vj ∈ G

C
.

Intuitively, the non-terminal Anm records that A was matched
starting at the vertex inGi corresponding to state n, and ending
at the vertex in Gj corresponding to state m.

Finally, we need to define the productions for each of the additional
non-terminals so that conditions 1-3 above are satisfied. We gener-
ate these additional productions of C from the productions in C
and the C-closure of Gi using the rules in Figure 10. In the figure,
we refer to vertices si and fi in Gi introduced by Algorithm 1,
which correspond to the start state s and end state e of the NFA,
respectively.

We briefly explain Rules 1a-f (the rules for non-terminals of the
form An) for producing productions of C in Figure 10; Rules 2a-f
and 3a-h are similar.

(a) Suppose we have edge v A−→ wi ∈ (G′)C . Because we have

edge wi
ε−→ si ∈ G′, we produce v A−→ si ∈ (G′)C . In G

C
, we

1. Productions for An:

(a)
As → Ab ∈C

(b) si
A−→ ni ∈GCi

An → b ∈C

(c) ni
ε−→ mi ∈GCi

Am → An ∈C

(d) A→ B ∈C
An → Bn ∈C

(e) A→ BD ∈C
An → BDn ∈C

(f)

A → BD ∈ C

ni
D−−→ mi ∈ G

C
i

Am → Bn ∈C

2. Productions for An:

(a)
Af → eA ∈C

(b) ni
A−→ fi ∈GCi

An → e ∈C

(c) mi
ε−→ ni ∈GCi

Am → An ∈C

(d) A→ B ∈C
An → Bn ∈C

(e) A→ BD ∈C
An → BnD ∈C

(f)

A → BD ∈ C

mi
B−−→ ni ∈ G

C
i

Am → Dn

3. Productions for Anm:

(a)
Ans → Anb ∈C

(b)
A
f
n → eAn ∈C

(c) ni
ε−→ mi ∈GCi

Arm → Arn ∈C

(d) mi
ε−→ ni ∈GCi

Amr → Anr ∈C

(e) A→ B ∈C
Amn → Bmn ∈C

(f) A→ BD ∈C
Amn → BmDn ∈C

(g)

A → BD ∈ C

ni
D−−→ mi ∈ G

C
i

Arm → Brn ∈C

(h)

A → BD ∈ C

mi
B−−→ ni ∈ G

C
i

Amr → Dnr ∈C

4. Stitching productions:

(a)
A→ Af e ∈C

(b)
A→ bAs ∈C

(c) A→ BD ∈C
A→ BnDn ∈C

(d) A→ BD ∈C
An → BmDmn ∈C

(e) A→ BD ∈C
An → BnmD

m ∈C

(f) A→ BD ∈C
Anm → Bnr D

r
m ∈C

Figure 10. Productions for C.

Algorithm 2 Optimized algorithm for GRW . Here, T (Gi, C) applies the
rules in Figure 10 to C for the given graph Gi. Also, s and f are fresh
vertices.

function PREPROCESS(C, Ĝ,W,R, v, v′)

Gi ← N (s
R−→ f); C ← T (Gi, C)

return v T−→ v′
?
∈ (PREPROCESSHELPER(Ĝ,W))C

end function
function PREPROCESSHELPER(Ĝ,W)

G← Ĝ
for all (w,w′) ∈W do

// v is a fresh vertex
G← G ∪ {w b−→ v, v

e−→ w′}
end for
return G

end function

1. FlowsTon → FlowsTos (Rule 1f)

2. FlowsTon → FlowsTo[f]n (Rule 1f)

3. FlowsTon → FlowsTo[f] FlowsTon (Rules 1e & 1f)

4. FlowsTo[f]n → FlowsTon (Rule 1f)

5. FlowsTo[f]n → FlowsTo Put[f] FlowsTon (Rule 1e)

Figure 11. Examples of production rules added by Figure 10, along with
the rules that generate them.

Figure 12. Algorithm 2 adds the dashed edges to Figure 6 if the specifica-
tion for List.add is missing. We only show edges relevant to the produc-
tion of the edge labeled (4).

have edges v A−→ wi
b−→ vi, and we need to produce v As−−→ vi.

This is achieved by the production As → Ab ∈ C.

(b) Suppose we have internal edge si
A−→ ni ∈ GCi . Because we

have edge wi
ε−→ si ∈ G′, we produce wi

A−→ ni ∈ (G′)C . In

G
C

, we have edgewi
b−→ vi and we need to producewi

An−−→ vi.
This is achieved by the production An → b ∈ C.

(c) Suppose we have internal edge ni
ε−→ mi ∈ GCi and edge

v
A−→ ni ∈ (G′)C . Then we produce v A−→ mi ∈ (G′)C .

In G
C

, we have edge v An−−→ vi, and we need to produce
v
Am−−→ vi. This is achieved by the production Am → An ∈ C.

(d) Suppose we have edge v B−→ ni ∈ (G′)C and production

A → B ∈ C. Then we produce v A−→ ni ∈ (G′)C . In G
C

,
we have edge v Bn−−→ vi, and we need to produce v An−−→ vi.
This is achieved by the production An → Bn ∈ C.

(e) Suppose we have edges v B−→ v′
D−→ ni ∈ (G′)C and

production A → BD ∈ C. Then we produce v A−→ ni ∈
(G′)C . In G

C
, we have edges v B−→ v′

Dn−−→ vi, and we
need to produce v An−−→ vi. This is achieved by the production
An → BDn ∈ C.

(f) Suppose we have edge v
B−→ ni ∈ (G′)C , internal edge

ni
D−→ mi ∈ GCi , and production A → BD ∈ C. Then we

produce v A−→ mi ∈ (G′)C . In G
C

, we have edge v Bn−−→ vi,
and we need to produce v Am−−→ vi. This is achieved by the
production Am → Bn ∈ C.

Note that cases (e) and (f) correspond to two possibilities for binary
productions, (e) handling the case where one edge is fully outside
of Gi and (f) handling the case where one edge is fully inside
Gi. In the case where only the middle vertex is in Gi and both
endpoints are outside, then we need the “stitching production” (c)
in Figure 10. We describe stitching productions (a), (b), and (c):

(a) Suppose we have edge v A−→ fi ∈ (G′)C . Because we have

edge fi
ε−→ w′i ∈ G′, we produce v A−→ w′i ∈ (G′)C . InG

C
, we

have edges v
Af−−→ vi

e−→ w′i, and we need to produce v A−→ w′i.
This is achieved by the production A→ Afe ∈ C.

(b) Suppose we have edge si
A−→ v ∈ (G′)C . Because we have

edgewi
ε−→ si ∈ G′, we producewi

A−→ v ∈ (G′)C . InG
C

, we

have edges wi
b−→ vi

As−−→ v, and we need to produce wi
A−→ v.

This is achieved by the production A→ bAs ∈ C.

(c) Suppose we have edges v B−→ ni
D−→ v′ ∈ (G′)C and

production A → BD ∈ C. Then we produce v A−→ v′ ∈
(G′)C . In G

C
, we have edges v Bn−−→ vi

Dn−−→ v′, and we
need to produce v A−→ v′. This is achieved by the production
A→ BnD

n.

The stitching productions (d), (e), and (f) are similar to (c).
Finally, we show that the rules given in Figure 10 are complete.

As above, we focus on Rules 1a-f first. Note that we need to add an
edge v An−−→ vi whenever there exists a path v

α
99K wi and there

exists β ∈ Σ∗ such that A ∗
=⇒ αβ and si

β
99K ni ∈ Gi. In other

words, α is the portion of the path in Ĝ and β is the portion of
the path in Gi, and the path ends at vertex ni ∈ Gi. Consider the
production that is the first step in the derivation of A ∗

=⇒ αβ:

• Case A → ε: then α = ε, so v = wi, and we need to add edge
wi

An−−→ vi. The fact that α = ε also implies that A ∗
=⇒ β, so

si
A−→ ni ∈ GCi . Hence this case is handled by Rule 1b.

• Case A → BD: either α is a prefix of BD and β is a suffix of
D (handled by Rule 1e), or α is a prefix of B and β is a suffix
of BD (handled by Rule 1f).
• Case A→ B: then α is a prefix of B and β is a suffix of B, so

this case is handled by Rule 1d.

Rule 1a is added to satisfy the semantics of the symbol b ∈ Σ.
Finally, we have to consider ε transitions that occur in GCi —i.e.,
ni

ε−→ mi ∈ GCi (these transitions are used in conjunction with the
implicit productions A→ εA and A→ Aε). These transitions are
handled by Rule 1c. Rules 2a-f and 3a-h follow similarly.

Next, we show that Rules 4a-f are complete. Note that we need
to add an edge v A−→ v′ whenever there exist paths v

α
99K wi and

w′i
γ
99K v′, and there exists β ∈ L(R) such that A ∗

=⇒ αβγ. Here,
α and γ are the portions of the path in Ĝ, and β is the portion of
the path in Gi. As before, we can consider production that is the
first step in the derivation of A ∗

=⇒ αβγ. This time, we only need
to handle the case where the production is split at vertex vi—i.e.,
A→ BD, whereB ∗

=⇒ αβ1 andD ∗
=⇒ β2γ (and β = β1β2); this is

handled by Rule 4c. Rules 4d-f follow similarly when considering
productions for An, An, and Amn . Finally, the semantics of the
symbols b and e are handled by Rules 4b and 4a, respectively.
While we only described the case where the path passes through
a single pair (wi, w

′
i), the general case follows because the first

step in the derivation can be split only at a single vertex vi.
We denote the subroutine constructing C by T , i.e. C =

T (Gi, C). Note that any Gi can be used, since Gi (and hence
GCi) is the same for every (wi, w

′
i) ∈ W . Algorithm 2 calls T to

obtain a new grammar C. It then computes the transitive closure

G
C

. We have the following correctness result:

THEOREM 5.2. Algorithm 2 is sound and precise for GRW .

We briefly discuss the complexity of Algorithm 2. The rules in
Figure 10 are not recursive, so the number of productions in C is
a constant multiple of the number of productions in C. Similarly,
the graph G constructed by Algorithm 2 is a constant mulitple of
the size of Ĝ. The complexity of Algorithm 2 is dominated by

the complexity of computing the transitive closure G
C

. This is
O(|G|3|C|3) (where |G| is the number of vertices in G, and |C|
is the number of terminals and non-terminals in C) [19].

As an example, consider GRalias
Walias

defined in Section 4. Let

Σpt = {New,Assign} ∪ {Get[f ′], Put[f ′] | f ′ ∈ F}.

As before, we include symbols σ in Σpt. Recall that Ralias =

(Assign + Assign)Σ∗pt(Assign + Assign). Then N (s
Ralias−−−→ f)

produces the transition graph for the NFAN = ({s, n, f}, δ, s, f),
where n ∈ δ(s,Assign), n ∈ δ(s,Assign), n ∈ δ(σ, n) for all
σ ∈ Σpt, f ∈ δ(Assign, n), and f ∈ δ(Assign, n). Productions for
FlowsTon and FlowsTo[f ′]n (f ′ ∈ F) are shown in Figure 11.

Consider the code in Figure 1, and suppose the specification for
List.add is missing, so Walias = VList.add. In Figure 12, we show
the following edges that are added by Algorithm 2:

1. This edge represents two edges: FlowsTos is added by FlowsTos →
FlowsTo b (Rule 1a), and FlowsTon is added by FlowsTos →
FlowsTon (Rule 1f, because FlowsTo→ FlowsTo Assign).

2. This edge is added by FlowsTo ◦ Put[f]n → FlowsTon (Rule
1f, because FlowsTo ◦ Put[f]→ FlowsTo Put[f]).

3. This edge represents two edges: FlowsTo
f

is added by FlowsTo
f →

e FlowsTo (Rule 2a), and FlowsTo
n

is added by FlowsTo
n →

FlowsTo
f

(Rule 2f, because FlowsTo→ Assign FlowsTo).

4. This edge is added by FlowsTo[f]→ FlowsTo◦Put[f]n FlowsTo
n

(Rule 4c, because FlowsTo[f]→ FlowsTo ◦ Put[f] FlowsTo).

We have used the production FlowsTo◦Put[val]→ FlowsTo Put[val]
that comes from normalizing the CFG. Once Algorithm 2 adds the

edge olat
FlowsTo[val]−−−−−−−→ olist, it will add the edge LOC SrcSink−−−−→ SMS as

a consequence of the productions in Ctaint.

5.3 Interactive Refinement
We extend Algorithm 2 to find sufficient assumptions for the edge
e′ = vsource

T−→ vsink (recall that sufficient assumptions are encoded

as graphs G ∈ GRW such that A(vsource, vsink) = e′
?
∈ GC).

If Algorithm 2 does not produce any source-sink edge e′, then
we simply return Ĝ. Otherwise, we record the inputs for each

edge produced by Algorithm 2 when computing the closure G
C

.
Recursively searching through the inputs of e′, we reconstruct a
path p = vsource

α
99K vsink such that T ∗

=⇒ α. We record the
index of every pair of edges wi

b−→ vi
e−→ w′i that occurs along

p, which we denote by I. Then we add the corresponding graphs
Gi = N (si

R−→ fi) to Ĝ, i.e.G = Ĝ∪{Gi | i ∈ I}. The resulting
graph G has the desired property e′ ∈ GC .

There may exist multiple paths p = vsource
α
99K vsink such that

T
∗

=⇒ α, each of which may yield different sufficient assumptions
G. We further extend Algorithm 2 to find minimal sufficient as-
sumptions G for e′. Recall that this corresponds to minimizing
weight(G), i.e. finding G ∈ GRW with source-sink path p of min-
imum weight(p). To do so, we define a weight function on Σ by
setting weight(b) = weight(e) = 1

2
, and weight(σ) = 0 for all

other σ ∈ Σ. This extends to Σ∗ by setting weight(σ1...σk) =∑k
i=1 weight(σi). Note that for source-sink path p = vsource

α
99K

vsink ∈ P(G), weight(p) = weight(α). Consider the following:

DEFINITION 5.3. Let G be the graph defined above. The shortest-
path CFL reachability problem is to return the shortest path p∗ =
arg minp∈P(G) weight(α), or return ∅ if P(G) = ∅.

Knuth describes a generalization of Djikstra’s algorithm to find
the shortest string in a context-free grammar [14]. This algorithm
generalizes to solving the shortest-path CFL reachability problem:
we replace the worklist of edges in [19] with a heap of edges,
where the priority of an edge is the weight of its shortest path (see
Algorithm 4 in Appendix A for details). By using Algorithm 4 to

compute the closure G
C

, we find the source-sink path p∗ ∈ P(G)

Algorithm 3 Iterative refinement of results. Here, s and f are fresh vertices.

function ORACLEREFINE(C, Ĝ,W,R, v, v′,O)

Gi ← N (s
R−→ f); C ← T (Gi, C)

repeat
G←PREPROCESSHELPER(Ĝ,W)

p∗ ←SHORTESTPATH(C,G, v T−→ v′)

for all w b−→ v
e−→ w′ ∈ p∗ do

Ĝ← Ĝ ∪ O(w,w′)
W ←W − {(w,w′)}

end for
until v T−→ v′ 6∈ GC or weight(p∗) = 0

return v T−→ v′
?
∈ GC

end function

that passes through the fewest possible edges w b−→ v
e−→ w′. Then

the sufficient assumptions G constructed from p∗ has minimum
weight.

Finally, we describe an algorithm for interactively refining the
static analysis results with the help of an auditor. Recall that the
graph Ĝ is missing some vertices and edges from G∗. Suppose we
can query an oracle to obtain information about G∗:

DEFINITION 5.4. We say O is an oracle for G if for every
(w,w′) ∈W , O(w,w′) = G∗w,w′ .

We use a human auditor as an oracle O. On input (w,w′), the
auditor examines the library documentation and return the true
specification G∗w,w′ . The problem is to produce static analysis
results that are sound and precise with respect toG∗, while making
as few queries O(w,w′) as possible.

Algorithm 3 solves this problem. It obtains the shortest path
p∗ ∈ P(G) for the edge e′ = vsource

T−→ vsink by calling
p∗ ← SHORTESTPATH(C,G, e′). Then the algorithm replaces
every edge w b−→ v

e−→ w′ in p∗ with O(w,w′). Algorithm 3 re-
peats this process until either weight(p∗) = 0, or until P(G′) = ∅.
In the former case, the path p∗ does not contain any symbols b or e,
i.e. p∗ does not pass through any potentially missing specifications.
This proves that p∗ ∈ Ĝ, i.e. e′ ∈ ĜC ⊆ (G∗)C . In the latter case,
because Algorithm 2 is sound, it only returns p∗ = ∅ if there does
not exist any G ∈ GRW such that e′ ∈ G. Since we have assumed
that G∗ ∈ GRW , this proves that e′ 6∈ (G∗)C . Therefore:

THEOREM 5.5. Algorithm 3 computes vsource
T−→ vsink

?
∈ (G∗)C .

6. Implementation
We have implemented the system described in Figure 8 for Java,
and specifically for the Android framework. A number of exten-
sions are required beyond the essentials we have described, but
these extensions do not introduce any new ideas. For example, we
include rules for primitive variables that are essentially rules for ref-
erence variables without fields. Our current implementation does
not consider specifications involving static fields; as discussed in
Section 4, in our experience such specifications lead to many false
positives as there are few constraints on the possible flows between
static variables, and in practice there are few flows among them.

Prior to this work, we had manually written many specifications
over a period of more than one year. These baseline specifications
S cover 176 Android library classes, including a number of taint
sources (location, device ID, SIM data, contacts, and calendar data)
and a number of sinks (network sockets, SMS messages, and user
settings modifications). This baseline also includes specifications
for important container objects including ArrayList, LinkedList,

Spec. Type Flow Alias
Android apps 179 156

Total Correct Specifications Proposed 486 35
Total Specifications Proposed 1122 63

Overall Accuracy 0.433 0.556
Average # Specifications Proposed 23.8 0.813

Accuracy of Random Sample 0.140 N/A

Figure 13. Statistics on inferred Android library specifications.

and HashMap. Since our focus in on the long tail of missing
specifications, we bootstrap our implementation of the specification
inference framework with these baseline specifications.

In our implementation, program fact extraction is performed us-
ing the Chord platform [20] modified to work with the Jimple inter-
mediate representation provided by Soot [30]. In order to improve
precision of our analysis, we extend the points-to rules (Rules 10-
13 in Figure 5) so that they are context sensitive—more precisely,
we use a 1-CFA points-to analysis. Additionally, because Java is
type safe, we use type filters in the points-to analysis (i.e., a ref-
erence of type T can only point to an object of type T ′ if T ′ is a
subtype of T). Our solver detects and discards points-to edges that
are not consistent with the type constraints of the program. Our
shortest-path CFL solver is based on the CFL solver in [19], modi-
fied with the algorithm from [14] to compute shortest paths; details
are given in Appendix A.

Within our specification inference framework we implement
both flow (Rflow,Wflow) and alias (Ralias,Walias) specifications. For
each inferred specification, we manually reference the Android
library documentation to determine if the specification is correct,
and rerun the analysis with the updated specifications. We repeat
this process until no new specifications are inferred.

When inferring alias specifications, the large size of the sound
points-to analysis makes it difficult to scale the inference algorithm.
We implemented a demand-driven optimization. First, we perform
the entire analysis using BDDBDDB [31] as the solver. However,
BDDBDDB cannot compute shortest paths. Instead, we use the re-
sults from BDDBDDB to prune irrelevant edges (i.e., edges that do
not contribute to a source-sink path) fromG. Finally, we recompute
the analysis using our shortest-path CFL solver.

Ideally we would infer alias and flow specifications simultane-
ously. However, worst-case flow specifications introduce a large
number of incorrect taint flows, causing the demand-driven opti-
mization to fail to eliminate enough edges for the specification in-
ference algorithm to scale for some benchmarks. As a result, we
perform the two analyses separately in our experiments. Neverthe-
less, inferring alias specifications alone is already sufficient to be
sound with respect to finding explicit taint flows.

7. Experimental Results
We ran our tool on a corpus of 179 Android apps. Our results are
for the optimized version of our specification inference algorithm,
i.e. Algorithm 2, since preliminary experiments with Algorithm 1
did not scale even to apps of moderate size. The running time for
one iteration of Algorithm 3 is plotted in Figure 16(c). The flow
specification inference algorithm ran on all 179 apps, running in
fewer than 10 seconds per iteration on average for most apps, which
is fast enough to allow a human auditor to interactively run the
analysis. The alias specification inference algorithm successfully
ran on 156 apps. The worst-case assumptions cause a substantial
increase in the points-to relation size (see Figure 16(d)), which
proved to be too large on the remaining 23 apps. Still, inferring
alias specifications runs in under 100 seconds for most apps with
up to 100,000 lines of Jimple code.

App Name Jimple LOC # Spec. # Critical Spec. Total # Spec. Rounds Accuracy Flows Run Time (s) Spec. Type
411524 497178 43 20 6478 5 0.5116 42 178.6 Flow
APG-M 471943 20 9 5553 5 0.5 16 22.30 Flow
browser 421026 139 24 10361 16 0.2662 48 607.3 Flow
0C2B78 395053 244 11 4726 78 0.1066 222 10.38 Flow
highrail 265875 142 15 4242 18 0.1690 64 12.20 Flow

iwz 263014 38 17 4937 5 0.5789 38 14.24 Flow
ce667f 193518 48 26 4388 5 0.6042 44 10.38 Flow

ConnectBot 136800 4 4 3454 2 1.0 2 2.357 Flow
yaaic 109286 0 0 5440 1 N/A 0 3.769 Flow

tomdroid 44478 14 5 3029 6 0.3571 2 1.607 Flow
highrail 265875 2 2 5167 2 1.0 1 9623 Alias
andmj 239227 0 0 5229 1 N/A 0 1555 Alias
ce667f 193518 0 0 5509 1 N/A 0 3234 Alias

ConnectBot 136800 0 0 3293 1 N/A 0 3193 Alias
05ed92 134235 1 1 12632 2 1.0 3 2254 Alias

SMSBot 134230 15 3 4693 7 0.467 2 284.3 Alias
yaaic 109286 0 0 4161 1 N/A 0 816.1 Alias

ca70f4 81974 3 0 3307 3 0.0 0 45.57 Alias
tomdroid 44478 0 0 3697 1 N/A 0 68.154 Alias
a1d58b 41682 2 1 2285 3 0.5 1 7.847 Alias

Figure 14. Specification inference results on large Android apps. Critical specifications are both correct and lie along a true source-sink path. “Total #
specifications” is the number of worst-case specifications, “Rounds” is the number of iterations in Algorithm 3, “Accuracy” is the proportion of proposed
specifications that are correct, and “Flows” is the number of new flows discovered (accuracy is N/A if no specifications are inferred).

Class Method Signature Specification Spec. Type
com.google.android.maps.GeoPoint int getLatitudeE6() (this, return) Flow

java.lang.Double double parseDouble(java.lang.String) (arg1, return) Flow
org.json.JSONObject org.json.JSONObject getJSONObject(java.lang.String) (this, return) Alias

android.telephony.gsm.SmsMessage java.lang.String getMessageBody() (this, return) Alias
android.content.ContentValues void put(java.lang.String, java.lang.String) (arg2, this) Alias

Figure 15. Sample of inferred specifications. “Specification” is the pair (w,w′) ∈W returned by Algorithm 3.

Results for selected apps, including the largest four that ran
successfully for each analysis, are shown in Figure 14. We show
the number of specifications proposed by our tool (# Spec.), along
with the number of worst-case specifications (Total # Spec.). Our
tool may propose specifications that are correct (i.e., represent valid
paths throughs library methods), but do not contribute to a correct
source-sink path in the program. Therefore, we also show the num-
ber of specifications that are both correct and contribute to a true
source-sink flow (# Critical Spec.), which is a lower bound for the
number of specifications proposed. We call such specifications crit-
ical specifications, because they are the specifications that an audi-
tor must examine in order to find all source-sink flows. The number
of inferred specifications is plotted as black circles in Figure 16(a)
and (b), along with the number of inferred specifications that are
correct (plotted as red triangles), and the number of critical specifi-
cations (plotted as blue diamonds). For readability, (a) is a log-log
plot, and the x-axis of (b) is log-scale. The accuracy of the aggre-
gated specifications are shown in Figure 13. Note that the accuracy
is directly correlated with the manual labor required by the oracle:
higher accuracy means that the oracle will have to examine fewer
incorrect specifications.

7.1 Specification Inference Accuracy
Our first experiment demonstrates the accuracy of the specifications
inferred. For each app, we ran our inference algorithm with the
baseline specifications S. The inferred alias specifications are very
accurate, in part because of type filters. We show some examples
of inferred specifications in Figure 15.

We compare our results to randomly chosen specifications. We
randomly chose 50 possible flow specifications in the following

way: randomly choose a method, randomly choose a pair of formal
parameters v and v′ (or a formal parameter v and the formal return
value v′), and propose the flow specification v

RefRef−−−→ v′. The
accuracy of a specification randomly chosen in this way is only
0.140, whereas the overall accuracy of the specifications inferred
by our tool is 0.433.

The number of specifications proposed, which grows roughly
linearly with app size, is very manageable. It is usually a small
multiple of the number of critical specifications. For alias specifi-
cation inference, each app produced fewer than 20 proposals, each
of which could be checked in under a minute. Significantly more
flow specifications are inferred, but these are even faster to check.
All but five of the apps required fewer than 100 proposals. In total,
the tool helped discover hundreds of new specifications and flows,
a task that we estimate would have taken weeks without the tool.

7.2 Specification Aggregation
Our second experiment demonstrates how our tool can be used to
quickly build a useful collection of library specifications. Consider
analyzing the apps in some arbitrary order and aggregating specifi-
cations along the way; that is, the ith app is analyzed using all of the
correct specifications discovered in analyzing the first i−1 apps. In-
tuitively, the most frequently used methods should have their spec-
ifications discovered relatively early in the process and we should
subsequently benefit from already having those specifications and
not needing to infer them again.

Figure 16(e) shows the proportion of new specifications pro-
posed by Algorithm 3 with aggregation to the number of specifica-
tions proposed when Algorithm 3 starts from the baseline. The red,
triangle series shows, for each app, the percentage of new specifica-

(a) (b)

(c) (d)

(e) (f)

Figure 16. For (a) flow and (b) alias: # specifications proposed (black, circle), # correct (red, triangle), and # critical (blue, diamond). (c) Run time of the flow
(black, circle) and alias (red, triangle) specification inference algorithms. (d) Ratio of worst-case points-to relation size to known points-to relation size. (e)
Ratio of # specifications with aggregation to # specifications from baseline, averaged over 100 random orders (black line), and for two different random orders
(red triangle, blue diamond). (f) Proportion of common specifications proposed, for c = 2 (black, solid), 3 (blue, dashed), and 4 (red, dotted), averaged over
100 random orders.

tions that the auditor must examine. After the 100th app, more than
2/3 of the needed specifications are already known, and for many
apps no new specifications are needed. The blue, diamond series
shows the same effect from processing the apps in a different ran-
dom order. The black line shows the average number of new spec-
ifications over 100 such runs (varying the order of the apps each
time); as can be seen, the auditor’s workload for a new app with ag-
gregation approaches about 20% of that without aggregation. The
red and blue series give a sense of the considerable variance, but
the overall trend is clear: regardless of chosen order, the proportion
of new specifications quickly becomes small and the auditor only
does a fraction of the work compared to starting from the baseline.
The required work would drop further after processing more apps.

Figure 16(f) shows the proportion of common specifications
that are identified after analyzing each number of apps. We say
a specification is common if it is proposed by the tool for at least
c ∈ {2, 3, 4} apps. In this graph, the black, solid curve corresponds
to c = 2; the blue, dashed curve corresponds to c = 3; and the red,

dotted curve corresponds to c = 4. Each line shows the average
proportion over 100 random permutations. The tool quickly picks
up a large fraction of the common specifications, reaching more
than 82% after just a quarter of the apps have been analyzed in the
case c = 3.

7.3 Verification
We ran Algorithm 3 to termination, i.e., until no new specifications
for missing parts of the program could add any more taint flows,
which means that the remaining taint flows all occur in the original
graph Ĝ. In the case of alias inference, this also proves that no
additional explicit taint flows can occur. Figure 16(b) shows the
number of specifications that had to be checked by an auditor to
completely verify the absence of explicit taint flows in an app. This
number is very reasonable (at most 15), showing that the tool makes
verification of large apps practical. In the case of flow specification
inference, taint flows due to missing alias specifications can still

occur, and verification requires that the auditor supply all relevant
alias specifications. In practice, this analysis still discovers many
library methods that need alias specifications, since taint often
flows forwards through these methods. Thus our tool finds many
taint flows even if alias specifications are missing.

There are currently two primary limitations to our tool. One we
have already discussed: inferring both alias and flow specifications
simultaneously is too expensive for our tool on some apps. The
second is that while we can infer missing flow and alias specifica-
tions, we still require a complete list of the possible sources and
sinks in the program to be able to find flows at all. While manually
annotating sources and sinks is a much easier problem (by orders
of magnitude) than finding flows, it would still be useful to con-
sider how to provide automatic assistance in discovering sources
and sinks in large apps.

As can be seen from the total number of potential specifications
shown in Figure 14, without our tool an auditor would have to
examine a huge number of potential specifications. Even if many of
these can be easily eliminated, our experience has been that without
the aid of our tool, performing verification on moderately sized
apps can take hours or even days, and performing verification on
large apps is almost impossible.

8. Related Work
Sound analysis with missing specifications. There has been pre-
vious work that shares our goal of inferring specifications for veri-
fication based on abductive inference [19]. There are several differ-
ences in the two approaches. First, we handle the general class of
CFL reachability problems, whereas [34] addresses standard graph
reachability problems. Second, abductive inference is a very gen-
eral tool and solving abductive inference problems is NP-hard. Our
algorithm, which is tailored to specification inference, runs in poly-
nomial time. As a result, our system appears to scale considerably
better, and we are able to conduct a much larger experiment on
many more apps than [34]. There has also been prior work on sound
call graph generation [2]. Their work constructs a placeholder li-
brary that exhibits every possible behavior that can affect the call
graph. Our technique, in addition to being more general, actually
proposes library specifications and allows an auditor to interac-
tively refine analysis results.

Specification inference. There has been work using data min-
ing to infer specifications [3, 4, 7, 15, 16, 21, 22, 25, 33]. Sev-
eral of these techniques use dynamic traces to propose specifica-
tions [4, 33], while others apply domain knowledge and statically
infer specifications from the source code [7, 15, 16, 22, 25]. Our
tool differs in that it applies to CFL reachability problems. Further-
more, our tool produces sound results, which enables interactive
verification.

CFL reachability for program analyses. A large number of
program analyses have been expressed as CFL reachability prob-
lems, for example points-to analysis [26, 28], many set constraint
problems [11, 13, 19], various interprocedural analyses [23, 24],
and type qualifier inference [10]. Our work makes these techniques
more applicable for whole-program analysis by providing a practi-
cal and sound approach to dealing with missing or hard-to-analyze
portions of the program. Our work makes use of ideas for com-
bining context-free reachability with additional regular language
properties such as [12].

Applications of program analysis to security. Work on taint
analysis for Android includes SCanDroid [9], which statically
tracks taint flows between applications, TaintDroid [8], which is
a dynamic system that performs real time monitoring, and Flow-
Droid [5], which uses static analysis to find information leaks.
Static analysis has also been applied to finding vulnerabilities in
web applications [17, 27, 29, 32].

Algorithm 4 Algorithm for computing shortest-path CFL reachability.
function SHORTESTPATH(G,C, e)

GC ←GRAPH(); I ←MAP(); H ←HEAP()
for all v σ−→ v′ ∈ G do

H .UPDATE(v σ−→ v′,weight(σ))
I[v

σ−→ v′]← ∅
end for
while ¬H .EMPTY() do

[v
A−→ v′, Pcur]← H .DELETEMIN()

GC ← GC ∪ {v A−→ v′}
for all D → AB ∈ C do

for all v′ B−→ v′′ ∈ GC do
Pnew ← Pcur +H .PRIORITY(v′ B−→ v′′)

if Pnew < H .PRIORITY(v D−→ v′′) then
H .UPDATE(v D−→ v′′, Pnew)

I[v
D−→ v′′]← [v

A−→ v′, v′
B−→ v′′]

end if
end for

end for
for all D → BA ∈ C do

for all v′′ B−→ v ∈ GC do
Pnew ← H .PRIORITY(v′′ B−→ v)+Pcur

if Pnew < H .PRIORITY(v′′ D−→ v′) then
H .UPDATE(v′′ D−→ v′, Pnew)

I[v′′
D−→ v′]← [v′′

B−→ v, v
A−→ v′]

end if
end for

end for
for all B → A ∈ C do

if Pcur < H .PRIORITY(v B−→ v′) then
H .UPDATE(v B−→ v′, Pcur)

I[v
B−→ v′]← [v

A−→ v′]
end if

end for
end while
if e ∈ I then

return GETPATH(I, e)
end if
return ∅

end function
function GETPATH(I, e)

if I[e] = ∅ then
return [e]

end if
[e1, ..., ek]← I[e]
return GETPATH(e1)+...+GETPATH(ek)

end function

9. Conclusions
We have developed a general framework that applies to any pro-
gram analysis formulated as a CFL reachability problem. Our
framework allows us to perform a sound analysis by inferring
missing specifications, and furthermore allows an auditor to in-
teractively refine the results. We have demonstrated the quality of
the specifications inferred by our tool on a corpus of 179 real-
world Android apps. Our results show that our tool can both help
build large collections of specifications very efficiently, and make
it practical for an auditor to perform verification.

A. Shortest-Path CFL Reachability
The shortest-path algorithm in Algorithm 4 generalizes Knuth’s al-
gorithm for finding shortest strings in CFLs to computing shortest-
path CFL reachability. Essentially, Knuth’s algorithm [14] builds

on an algorithm for determining emptiness of a context-free gram-
mar: it adds a heap that keeps track of the shortest sequence of
terminals that can be derived from each non-terminal symbol.
Similarly, Algorithm 4 generalizes the algorithm for computing
CFL reachability described in [19]. In the pseudocode, arrays are
denoted as [x1, ..., xk], and addition of arrays is defined to be
[x1, ..., xk] + [y1, ..., yh] = [x1, ..., xk, y1, ..., yh].

We introduce a heap H that keeps track of the shortest path for
each edge v A−→ v′. The current priority of the edge v A−→ v′ is
the length of the current shortest path. If a shorter path is found,
then the heap is updated with the new path and the new priority. At
every iteration of the algorithm, the lowest priority edge v A−→ v′

(with priority Pcur) is removed from the heap, added to GC , and
then processed. Note that once this happens, there can be no way
of producing v A−→ v′ with lower priority: every subsequent edge
removed from H must have priority at least Pcur, so any edge
produced while processing such an edge must also have priority
at least Pcur. Since every possible way of producing v A−→ v′ is
considered, the shortest path is correctly identified.

The heap H supports the following operations: UPDATE(e) up-
dates the priority of edge e (and adds e to H if e 6∈ H), EMPTY()
returns true if the heap contains no edges, PRIORITY(e) returns the
current priority of edge e, and DELETEMIN() removes the lowest
priority element in the heap and returns it (along with its current
priority). We assume that PRIORITY returns ∞ for edges not yet
added to H , and 0 for edges already removed from H . The com-
plexity of Algorithm 4 is O(|G|3|C|3(log |G|+ log |C|)) because
of the additional cost of updating the heap (as before, |G| is the
number of vertices in G, and |C| is the number of terminals and
non-terminals in C).

The shortest path itself is stored in a map I , which keeps track
of the edges [e1, ..., ek] (where k ∈ {0, 1, 2}) used to produce
v

A−→ v′. The shortest path itself is reconstructed by recursively
querying the shortest path for each edge in I[v

A−→ v′].
Algorithm 4 does not handle edges labeled with the empty string

ε, or productions A → ε. In order to handle the former, our solver
introduces a fresh terminal symbol ε̂, replaces every edge v ε−→ v′

with v ε̂−→ v′, and adds productions A → ε̂A and A → Aε̂ for
every non-terminal A in the input grammar. The latter is handled
by adding self loops v A−→ v for every v ∈ V and every A ∈ U
such that A→ ε ∈ C (see [19]).

Acknowledgments
This material is based on research sponsored by the Air Force Re-
search Laboratory, under agreement number FA8750-12-2-0020.
The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright
notation thereon.

References
[1] A. Aiken, S. Bugrara, I. Dillig, T. Dillig, B. Hackett, P. Hawkins. An

overview of the Saturn project. In PASTE, 43-48, 2007.
[2] K. Ali, O. Lhoták. Averroes: whole-program analysis without the

whole program. In ECOOP, 2013.

[3] R. Alur, P. Černý, P. Madhusudan, W. Nam. Synthesis of interface
specifications for Java classes. In POPL, 2005.

[4] G. Ammons, R. Bodı́k, J. Larus. Mining specifications. In POPL,
2002.

[5] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. L.
Traon, D. Octeau, P. McDaniel. FlowDroid: precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android
apps. In PLDI, 2014.

[6] T. Ball, S. Rajamani. The SLAM project: debugging system software
via static analysis. In POPL, 2002.

[7] N. Beckman, A. Nori. Probabilistic, modular and scalable inference
of typestate specifications. In PLDI, 2011.

[8] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, A. Sheth.
TaintDroid: an information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, 2010.

[9] A. P. Fuchs, A. Chaudhuri, J. S. Foster. SCanDroid: automated security
certification of Android applications. In IEEE Symposium on Security
and Privacy, 2010.

[10] D. Greenfieldboyce, J. S. Foster. Type qualifier inference in Java. In
OOPSLA, 2007.

[11] J. Kodumal, A. Aiken. Banshee: a scalable constraint-based analysis
toolkit. In SAS, 2005.

[12] J. Kodumal, A. Aiken. Regularly annotated set constraints. In PLDI,
2007.

[13] J. Kodumal, A. Aiken. The set constraint/CFL reachability connection
in practice. In PLDI, 2004.

[14] D. Knuth. A generalization of Dijkstra’s algorithm. In Information
Processing Letters, 6(1):1-5, 1977.

[15] T. Kremenek, P. Twohey, G. Back, A. Ng, D. Engler. From uncertainty
to belief: inferring the specification within. In OSDI, 2006.

[16] B. Livshits, A. V. Nori, S. K. Rajamani, A. Banerjee. Merlin:
specification inference for explicit information flow problems. In
PLDI, 2009.

[17] B. Livshits, M. S. Lam. Finding security vulnerabilities in Java
applications with static analysis. In USENIX Security Symposium,
2005.

[18] B. Livshits, M. S. Lam. Tracking pointers with path and context
sensitivity for bug detection in C programs. In FSE, 2003.

[19] D. Melski, T. Reps. Interconvertibility of a class of set constraints and
context-free language reachability. In Theoretical Computer Science,
248(1):29-98, 2000.

[20] M. Naik, A. Aiken, J. Whaley. Effective static race detection for Java.
In PLDI, 2006.

[21] J. W. Nimmer, M. D. Ernst. Automatic generation of program
specifications. In ISSTA, 2002.

[22] M. K. Ramanathan, A. Grama, S. Jagannathan. Static specification
inference using predicate mining. In PLDI, 2007.

[23] T. Reps. Program analysis via graph reachability. In ILPS, 1997.
[24] T. Reps, S. Horwitz, M. Sagiv. Precise interprocedural data flow

analysis via graph reachability. In POPL, 1995.
[25] S. Shoham, E. Yahav, S. Fink, M. Pistoia. Static specification mining

using automata-based abstractions. In ISSTA, 2007.
[26] M. Sridharan, D. Gopan, L. Shan, R. Bodik. Demand-driven points-to

analysis for Java. In OOPSLA, 2005.
[27] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, R. Berg.

F4F: taint analysis of framework-based web applications. In OOPSLA,
2011.

[28] M. Sridharan, R. Bodik. Refinement-based context-sensitive points-to
analysis for Java. In PLDI, 2006.

[29] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, O. Weisman. TAJ:
effective taint analysis of web applications. In PLDI, 2009.

[30] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan.
Soot: a Java bytecode optimization framework. In CASCON, 1999.

[31] J. Whaley, M. S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In OOPSLA, 2004.

[32] Y. Xie, A. Aiken. Static detection of security vulnerabilities in
scripting languages. In USENIX Security Symposium, 2006.

[33] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, M. Das. Perracotta: mining
temporal API rules from imperfect traces. In ICSE, 2006.

[34] H. Zhu, T. Dillig, I. Dillig. Automated inference of library specifica-
tions for source-sink property verification. In APLAS, 2013.

