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Abstract

This work investigates a geometric approach to proving cell probe lower bounds for data
structure problems. We consider the approximate nearest neighbor search problem on the
Boolean hypercube ({0, 1}d, ‖ · ‖1) with d = Θ(log n). We show that any (randomized) data
structure for the problem that answers c-approximate nearest neighbor search queries using
t probes must use space n1+Ω(1/ct). In particular, our bound implies that any data struc-
ture that uses space Õ(n) with polylogarithmic word size, and with constant probability gives
a constant approximation to nearest neighbor search queries must probe the data structure
Ω(log n/ log log n) times. This improves on the lower bound of Ω(log log d/ log log log d) probes
shown by Chakrabarti and Regev [8] for any polynomial space data structure, and the Ω(log log d)
lower bound in Pătraşcu and Thorup [25] for linear space data structures.

Our lower bound holds for the near neighbor problem, where the algorithm knows in advance
a good approximation to the distance to the nearest neighbor. For this problem, ours is the
first non-trivial lower bound that allows for both randomization and constant approximation.
Additionally, it is an average case lower bound for the natural distribution for the problem. Our
approach also gives the same bound for (2− 1

c )-approximation to the farthest neighbor problem.
For the case of non-adaptive algorithms we can improve the bound slightly and show a

Ω(log n) lower bound on the time complexity of data structures with O(n) space and logarithmic
word size.

We also show similar lower bounds for the partial match problem: any randomized t-probe
data structure that solves the partial match problem on {0, 1}d for d = Θ(log n) must use space
n1+Ω(1/t). This once again implies an Ω(log n/ log log n) lower bound for time complexity of
near linear space data structures, improving slightly on the Ω(log n/(log log n)2) lower bound
from [24, 16] for this range of d. Our results generalize to approximate partial match.
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1 Introduction

Given a dataset of n points, the goal in the Nearest Neighbor Problem is to build a data struc-
ture such that given a query point, its nearest neighbor in the dataset can be retrieved quickly.
Typically, the dataset and the query points are represented by vectors in a normed space, such as
Rd equipped with the `1 or the `2 norm. Nearest Neighbor Search is a fundamental problem in
data structures with numerous applications to web algorithms, computational biology, information
retrieval, machine learning, etc. As such it has been researched extensively.

Exact algorithms for this problem suffer from the “curse of dimensionality”, i.e. the query
time and/or the space requirements of the data structures have an exponential dependence on d,
making these algorithms infeasible when the dimension d is not small. This motivates allowing for
approximation. The goal in the c-approximate nearest neighbor search problem is to return a point
in the dataset whose distance to the query point is no larger than c times the distance to the nearest
neighbor. Since in many applications, the representation of the original objects as vectors is already
lossy, this is acceptable. Additionally, the nearest neighbor is most useful when it is much closer
to the query than the other dataset points; in this case an approximate nearest neighbor query
would return the nearest neighbor itself. Indyk and Motwani [15], and Kushilevitz, Ostrovsky and
Rabani [19] independently gave polynomial algorithms for approximate nearest neighbor search in
high dimensions. Their approach is referred to as Locality Sensitive Hashing (LSH) and entails
hashing the data points into an array such that nearby points are likely to hash into the same
location and distant points are likely to hash into different locations. Their approach was further
refined and applied in a large number of papers (c.f. [2],[12],[28],[10]). We remark that all these
approaches are randomized. Moreover, they reduce the problem to the easier approximate near-
neighbor problem, where given the query and a distance estimate λ, the goal is to find a point in
the dataset whose distance is at most cλ, if the nearest neighbor is at distance less than λ.

The partial match problem is a close relative of the nearest neighbor problem. The dataset
consists of n points from (say) {0, 1}d as in the nearest neighbor problem. The query q now is a
vector from {0, 1, ?}d, and the goal is to find a point in the dataset, if any, that matches q, where
a 0 (1) matches a 0 (1) and a ? can match either a 0 or a 1. This problem is also believed to be
harder than the nearest neighbor problem.

In this work we prove lower bounds for these problem. We do so in the Cell Probe model of
Yao [29], which is a strong model designed to capture all conceivable algorithms for the problem.
In this model each dataset is associated with a static table (or distribution of tables). Given a
query point, a (possibly randomized, possibly adaptive) algorithm queries the data structure and
outputs the result. Typically one studies the tradeoff between the size of the data structure, and
the number of probes to the data structure needed to perform a query. The bounds proven in this
setting are information-theoretic as all computation is free.

1.1 Related Work

Chakrabarti et al. [7] and Borodin, Ostrovsky and Rabani [6] were the first to prove lower bounds
for the nearest neighbor problem, though the former only allowed for deterministic algorithm, and
the latter only allowed for exact nearest neighbor search. Subsequent improvements by Liu [20] and
Barkol and Rabani [4] also suffer from one of these shortcomings. In contrast, the aforementioned
algorithms for the problem are both randomized and approximate. These lower bounds actually
applied to the near-neighbour search problem, the approximate version of which in fact has a
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constant-probe randomized data structure that uses polynomial space; thus these limitations are
inherent in those approaches. The work of Chakrabarti and Regev [8] was the first one to address
this shortcoming and they showed that any randomized cell probe algorithm with poly(n, d) words
of size poly(d) that answers approximate nearest neighbor queries on the boolean hypercube must
make Ω(log log d/ log log log d) queries. They also shows that this bound is tight by providing a
matching upper-bound.

These lower bounds are very strong in that they hold for any polynomial storage data structure.
However, this generality also precludes better bounds that could be proved under a more stringent
and reasonable space constraint. All these bounds are proven by a reduction to lower bounds
for asymmetric communication complexity, an approach pioneered by Miltersen et al. [21] and
Ajtai [1]. However, this reduction is lossy for large t (see Section C). Additionally, polynomial
differences (e.g. space n vs. n20) in the size of the data structure translate to constant multiplicative
differences (e.g. log n vs. 20 log n) in the number of bits sent by Alice, making it difficult to prove
better bounds for small polynomial, or near-linear data structures (see Gal and Miltersen [14] for
a discussion). Specifically for randomized approximate nearest neighbor search, Chakrabarti and
Regev [8] show that a common communication complexity technique called ‘richness’ cannot yield
any non-trivial bound. In fact, e.g., for d = 10 log n, there is an easy 10 round protocol where Alice
sends only log n bits per round (Alice can simply send the query point q), so that the communication
complexity approach must fail.

Pătraşcu and Thorup [24] got around this difficulty using a direct sum theorem for richness
and showed that any data structure for approximate nearest neighbor, using space S must use
Ω(d/ log Sd

n ) probes, which rearranges to a bound very similar to ours for d = Θ(log n). However,
as other previous work, their lower bound applies only to deterministic or to exact algorithms,
and being based on richness, their approach cannot work for large constant approximation factors.
When allowing for both randomization and approximation, Andoni, Indyk and Pătraşcu [3] show
that for small β > 0, any ( 1

β2 )-probe algorithm for (1 + β)-approximate near neighbor problem

must use space nΩ( 1
β2 ). This bound is tight for small enough β > 0 [3]. More recently, Pătraşcu

and Thorup [25] claim that any randomized data structure for approximate nearest neighbor using
space Õ(n) requires Ω(log log d) queries1.

Lower bounds for the partial match problem has also been heavily studied[21, 6, 4, 16, 24].
Jayram et al. [16] show that any polynomial space data structure must make Ω(d/ log2 n) probes,
while Pătraşcu and Thorup [24] show a lower bound of Ω( d

log d/ log Sd
n ) probes for space S data

structures. The latter bound becomes Ω(log n/(log log n)2) for space Õ(n) and a logarithmic di-
mension. Upper bounds have been studied by Rivest [26, 27] and more recently by Charikar et al.
[9]. Barkol and Rabani [4] study approximate partial match and show a lower bound similar to their
lower bound for exact nearest neighbor. Lower bounds for farthest neighbor have been studied by
Andoni, Indyk and Pătraşcu [3] where they show a nΩ(1/ε2) lower bound for 1+ ε farthest neighbor
approximation.

Restricted Models:
Stronger lower bounds have been shown for more restricted models of computation. Beame

and Vee [5] use time-space tradeoffs for branching programs to prove lower bounds of the form
Ω(d

√
log d/ log log d) (or even Ω(d log d)) on the number of probes for deterministic polynomial

sized data structures assuming that the query algorithm accesses the query bits in specific ways
1The claim in [25] is without proof

2



and uses limited additional storage.
The starting point of this work is a paper by Motwani, Naor and Panigrahy [22] which provided

lower bounds for Locality Sensitive Hashing (LSH) schemes. An (λ, c, p, q) LSH scheme is a distri-
bution of hash functions from a metric space to an array, so that the probability that two points
of distance at most λ hash into the same location is at least p and the probability two points of
distance at least cλ hash to the same location is at most q. In [22] it is shown that if the metric
space is the hypercube with the hamming distance then log(1/p)

log(1/q) ≥
1
2c . In particular, this implies

that if the space is linear, the probability a single probe finds the c-approximate near neighbor is at
most n−O(c), this implies that for linear space, the time complexity is at least nΩ(c). The tightness
of this bound follows from [23, 3]. The main component of the proof in [22] is an isoperimetric
bound, showing that the probed memory location is sensitive to small perturbations of the query
point. This intuition lies at the heart of our proof as well.

1.2 Our Contributions

In this work we use geometric arguments to prove a strong lower bound for c-approximate near
neighbor search on the Boolean hypercube ({0, 1}d, ‖ · ‖1), for d = Ω(log n). We show that any
(randomized) t-probe data structure for the problem that succeeds with constant probability must
use space n1+Ω(1/ct). In particular, this implies that any data structure that uses space Õ(n) with
polylogarithmic word size, and gives a constant approximation to nearest neighbor search queries
must probe the data structure Ω(log n/ log logn) times23. Our result applies to a more general
setting, where arbitrary shared randomness between the data structure and query algorithm can
be accessed for free. Additionally, it is an average-case lower bound for the natural distribution; to
our knowledge, this is the first average case lower bound for the near neighbor problem.

Our results imply the same lower bounds of (2− 1
c )-approximate far neighbor problem. We also

show similar lower bounds for the partial match problem: any t probe data structure for the partial
match problem in O(log n) dimensions must use space n1+Ω( 1

t
). This implies an Ω(log n/ log log n)

lower bound for the number of probes for any Õ(n) space data structure. Our bounds extend also
to the approximate partial match problem.

As mentioned above, we diverge from previous work in bypassing asymmetric communication
complexity approaches. We first use analytic techniques to prove an isoperimetric-type inequality
that implies a lower bound for single probe algorithms4: we show that the different query points
in the neighborhood of any one data point p are likely to probe many different cells in the data
structure (so that, intuitively, the information about p must be present in many cells). This leads to
a lower bound of the form (Space/n) ≥ nΩ( 1

c
). We then show a novel reduction that converts such

isoperimetry-based single probe lower bounds to cell probe lower bounds of the form (Space/n)t ≥
nΩ( 1

c
) for t-probe data structures. Our results imply bounds of the form (Space/n)t ≥ nOmega( 1

c2
)

for ({0, 1}d, ‖ · ‖2), and hence for Euclidean space.
Non-adaptive algorithms are algorithms where the memory locations which are probed are a

function of the query point only, and not a function of the table content. We note that Locality
Sensitive Hashing is a non-adaptive approach. In fact, utilizing the power of adaptivity is an
interesting open problem. For non-adaptive algorithms we can improve our bound slightly and

2For randomized, approximate near neighbour, d is O(log n) w.l.o.g., by dimension reduction arguments [17].
3Mihai Pătraşcu communicated to us that he independently achieved similar results
4Our lower bounds are for the search version; our instances are all yes instances of the natural decision problem.
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show that for O(n) space and logarithmic dimension and word length, the time complexity is
Ω(log n). We also show an interesting connection between non-adaptive algorithms and locally
decodable codes (see Section A).

2 Preliminaries

Approximate Near Neighbor Search Problem: In this work we look at the (c, λ)-approximate
near-neighbor problem over the d-dimensional hypercube. Let c, λ > 0 be fixed. We are given n
points p1, . . . , pn ∈ {0, 1}d to preprocess into a data structure D. Then given a query q ∈ {0, 1},
the algorithm must consult the data structure D and output a z ∈ {pi : i ∈ [n]}. The constraint
is that if for some i, d(q, pi) ≤ λ, then d(q, z) ≤ cλ. In particular, if pi is within distance λ of q,
and no other pj is within cλ of q, then the algorithm must output pi. Note that any c-approximate
nearest neighbor algorithm implies an (c, λ)-approximate near-neighbor algorithm.

Partial Match Problem In the partial match problem, the algorithm must once again preprocess
n points p1, . . . , pn ∈ {0, 1}d and build a data structure D. Then given a query point q ∈ {0, 1, ?}d,
the algorithm must output a z ∈ {pi : i ∈ [n]}. The constraint now is that if there is a pi such that
q agrees with pi in all entries different from ?, the z must satisfy this property as well.

Cell Probe Complexity: The complexity of the algorithm will be measured by the size of the
data structure D, and the number of accesses to D at query time. More precisely, we will assume
that the data structure D has m cells holding w bits each. At query time, the (possibly randomized,
adaptive) algorithm accesses t cells of D. Based on these accesses to D, it must then output an
answer z. Note that there are no computational constraints on the algorithm.

Relaxed Cell Probe model: We prove our lower bound for a slightly relaxed version of the
problem. Both the preprocessing and the query algorithm are given free access to a shared source
of randomness. Given the points p1, . . . , pn, the preprocessing algorithm is allowed to construct t
tables D1, . . . , Dt, each consisting of m cells of width w bits each. When presented with the query,
the algorithm first consults a cell in D1. Based on the result, it then makes its second query to D2,
and so on. Thus it accesses at most one cell in each of the Dj ’s. The parameters of interest are the
number of queries t, the number of cells per table m, and the word size w. Clearly, the usual cell
probe complexity setting is a special case where all Dj ’s are identical.

3 Overview of our methods

Consider a random instance of the ANNS problem consisting of n random points in a d-dimensional
hypercube (with d = Ω(log n)). The query point is chosen randomly by flipping each bit of one of
these points with probability ε (which can be thought of as picking a random point from a ball of
radius εd around one of these points). This gives n balls as candidate query points. Any successful
algorithm, when presented with such a query point must be able to output the center of the ball
which is the nearest neighbor.
Viewing the algorithm execution as a sequence of table accesses: An algorithm makes a sequence
of memory accesses into tables D1, . . . , Dt. The contents of these tables depends only on the set
of n points in the dataset. When posed with a query point, the execution of the algorithm may
be abstracted by a sequence of functions F1, F2, .., Ft that are used to decide the location of the
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memory access. If the algorithm is successful in reconstructing the center of the ball, an added
lookup Ft+1 to h(p), for a hash function h, ensures that the last lookup maps almost all of the n
balls around the points to distinct values (see Lemma 4.2).
Relation to the geometric structure of the hypercube: To develop an understanding of the core
complexity of the problem, consider a case when there is a single function F . Success in this
case means that F maps each of the n balls to distinct values. Note that since the function F is
independent of the points in the dataset, it results in a partition of the hypercube into n regions
based on the output value of F . Such a restricted class of functions is known as a locality sensitive
hash functions (LSH).
Any LSH has high spread: It is known [22] that there is no such LSH that maps points in the
hypercube to n values that concentrates each ball entirely into one value. In fact for any LSH,
we show that a ball with a random center will shatter into nΩ(ε) parts. This is proven using the
geometric properties of the hypercube (in Section 4.3 using the Hypercontractive inequality). Thus
if we have a table of size n then for any function F that takes the query point as input to look up
this table, F must spread a ball into many different table locations.

In this work we generalize this result to more than one possibly adaptive memory access. This
is the technical crux of the paper (Section 4.4). For a given population of the tables, the algorithm
can be viewed as a function of the query point. The LSH bound above implies that any fixed table
population is unlikely to be good; and thus the expected fraction of table populations that are
good is small. On the other hand, we show that one good table population can be perturbed to
construct a very large number of good table populations.

4 Lower bound for Approximate Near Neighbor Search

4.1 Notation and Definitions

Let ε = 1
8c . Our input space is the boolean hypercube {0, 1}d, for an arbitrary d ≥ 10 log n. For

any given point y ∈ {0, 1}d let µy,ε be the distribution over {0, 1}d obtained by flipping each bit
of y independently with probability ε. One can think of µy,ε as essentially being uniform on a
ball of radius εd around y. Given a set A ⊂ {0, 1}d we will use the notation µy,ε(A) to denote the
probability that a random point from the distribution µy,ε lies in A. Where ε is fixed, we abbreviate
µy,ε by µy.

The input distribution D is as follows: The dataset is drawn by picking n points p1, p2, . . . , pn
uniformly and independently at random from {0, 1}d. The query point q is chosen by picking a
random i ∈ [n] and then sampling q from the distribution µpi .

An (r,m,w)-data structure D consists of r tables, where each table has m rows storing w-bit
words. Thus D[j] is an array consisting of m words; we will abuse notation and refer to it as Dj

when convenient.
We consider algorithms that make r (possibly adaptive) queries, where the jth query is made

to a location lj ∈ [m] in table Dj , where lj = lj(q) = lj(q,D) depends on the query point q and
the information learnt from the first (j − 1) queries D1[l1], . . . , Dj−1[lj−1]; we say that point q gets
mapped to cell lj in table Dj . The tables D1, . . . , Dr are populated in the preprocessing phase based
on the data points p1, . . . , pn. Note that the functions l1, . . . , lr are independent of the data points
themselves.

Given a table population, the locator functions lj can be viewed as a function F : {0, 1}d → [m]
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that maps a query point q to a cell F (q). Given such a function F the volume of a cell l is defined
to be the fraction of points q from {0, 1}d such that F (q) = l. We call a cell heavy if its volume is
larger than 1√

m
and we call it light otherwise.

Definition 4.1. We say a function F is δ-focusing for a point pi if there is a light cell l such that a
m−δ of the probability mass in µpi gets mapped to cell l by the function F . We say F is a (δ, ν)-lens
for a data set {p1, . . . , pn} if it is δ-focusing for a ν fraction of the pi’s.

We remark that if all cells were light, F being δ-focusing is equivalent to the distribution F (Y )
having min-entropy at most δ logm, where Y is a random variable sampled from µpi . Given the
algorithm and D, the heaviness or lightness of a cell l in table Dj is naturally defined with respect
to the corresponding locator function lj . Similarly D is (j, δ)-focusing for a point pi if the function
lj is δ-focusing, and D is a (j, δ, ν)-lens for a data set {p1, . . . , pn} if the function lj is a (δ, ν)-lens.

In this work, we assume that r is O( logn
log logn) and that mw ≤ n1+ ε

200r .

4.2 Good algorithm implies a lens

Lemma 4.2. If there exists an algorithm A, such that with probability 1
2 over the data set there is a

(t,m,w)-data structure such that for half the points, A succeeds with probability at least n−
1
2 , then,

there is an algorithm A′ for which with probability 1
3 over the data set there is a (t+ 1,m,w)-data

structure that is a (t+ 1, 1
2 ,

1
3)-lens.

Proof Sketch: A′ uses A to compute pi, and then looks up location h(pi) in the (t+ 1)th table, for
a random hash function h : {0, 1}d → [m]. The full proof is deferred to the appendix.

4.3 Isoperimetric Inequality

Given a function F : {0, 1}d → [m], let Ai ⊂ {0, 1}d be the set of points mapped to i. In this
section we prove the isoperimetric bound which lies at the heart of our result: it shows that a small
perturbation in the query point q may result in many different memory locations being read. In
other words, µy,ε(Ai) is likely to be large for many different i’s. The bound is a strengthening of a
similar bound proven by Motwani et al. [22]. More precisely:

Lemma 4.3. Let A ⊆ {0, 1}d with |A| ≤ a · 2d. Let ε ∈ (0, 12
13). Then

Pr
y∈{0,1}d

[µy,ε(A) ≥ a
ε
6 ] < a1+ ε

6 .

Proof Sketch: The proof uses the Beckner-Bonami inequality and is deferred to the appendix.

Lemma 4.4. Let A1, . . . , Am be partition of {0, 1}d and let L = {i : |Ai| ≤ 2d/
√
m} be the set of

light cells. Then
Pr

y∈{0,1}d
[max
i∈L

µy,ε(Ai) ≥ m−
ε
12 ] < m−

ε
12 .

Proof. Let ai = |Ai|
2d

. The above probability ≤
∑

i∈L a
1+ ε

6
i ≤ maxi∈L a

ε
6
i

∑
i∈L ai ≤ m

− ε
12 .
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4.4 Lower bound for Lenses

We first give a rough outline of the proof. For the purposes of this proof outline, it will be convenient
to think of t as a fixed constant, and m

n ≈ w ≈ n
O(ε).

Lemma 4.4 essentially shows that a light cell can only have a small intersection with any of the
balls µpi around the dataset points pi. This implies that (Lemma 4.5) a function F cannot be a
( ε

12 ,
1
4r )-lens with high probability.

We now repeatedly use the single query lower bound to prove the main result. For a fixed popu-
lation of D, the single query lower bound suffices to show that with probability (1−exp(−n logm)),
it does not focus more than a constant fraction of the points. While the number of possible popu-
lations of D is exp(mw)—much too large to support a union bound argument, we can still derive
an upper bound (of roughly exp(mw − n logm)) on the expected number of D’s that focus many
pi’s, where the expectation is taken over random choice of the dataset p1, . . . , pn.

We then show that focusing populations of D occur in large groups. In other words, if for a given
choice of pi’s there is one population D that focuses many pi’s, then we can derive a large number
(roughly exp(mw− mw

nε )) of ways to populate D that still focus many pi’s: we show in Lemma 4.11
that if D focuses pi, then preserving a very small fraction of table cells while arbitrarily changing the
rest results in a new population that (with high probability) continues to focus pi. This, combined
with the bound on the expected number of focusing populations, gives us the desired upper bound
on the algorithm’s success probability (Lemma 4.9).

4.4.1 A fixed F is unlikely to be a lens for a random dataset

Lemma 4.5. The probability that a function F : {0, 1}d → [m] is a ( ε
12 ,

1
4r )-lens for a randomly

chosen dataset p1, ..., pn is at most 2(n(1− ε
48r

logm)).

Proof. Lemma 4.4 says that the probability that for a random y ∈ {0, 1}d, maxi∈L µy(Ai) exceeds
m−

ε
12 is at most m−1− ε

12 , where L is the set of light cells. Thus the probability that F is ε
12 -focusing

for a random y is at most m−
ε
12 . The probability that F is ε

12 -focusing for at least a n
4r of the n

data points is then at most
(
n
n
4r

)
(m−

ε
12 )

n
4r . The claim follows.

Corollary 4.6. [Few Lenses] For an integer t ≤ r, let D1, . . . , Dt−1 be a fixed population of the
first (t−1) tables of a (r,m,w)-data structure and let a dataset p1, . . . , pn be chosen randomly. The
probability that D is a (t, ε12 ,

1
4r )-lens is at most 2(n(1− ε

48r
logm)).

Remark 4.7. This is the only property of the approximate nearest neighbor function that we will
use. Thus if we can show a similar upper bound on the probability of a fixed D being a lens
for another problem and input distribution, we can derive similar lower bounds for the cell-probe
complexity of the corresponding problem.

4.4.2 To t-table data structures

We introduce one more bit of notation. Let δ1 = ε
20 and δj+1 = δj − ε

40r .

Definition 4.8. We say D is t-concentrating for a datapoint p if D is not (j, δj)-focusing for p,
for j < t, but D is (t, δt)-focusing for p.

Observe that if D is (t, δt)-focusing for p, then it is j-concentrating for p for some 1 ≤ j ≤ t.
The following is the main technical result of this section:
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Lemma 4.9. Let a dataset p1, . . . , pn be chosen randomly. Let m ≤ n1+ ε
200r and w ≤ n

ε
200r . For

any integer t < r, the probability that there exists a (r,m,w)-datastructure D that is t-concentrating
for more than n

3r data points is at most exp(−Ω(n)),

Proof. For t = 1 the claim follows from Corollary 4.6: Note that δ1 ≤ ε
12 and observe that whether

or not D is (1, δ)-focusing for p depends only on the lookup algorithm and on p, but not on the
contents of D.

Assume t > 1 and let B be the event that there is such a (r,m,w)-datastructure that is t-
concentrating for more than n

3r data points in the randomly chosen dataset. Let Y be a random
variable denoting the number of (t, ε12 ,

n
4r )-lenses for a random dataset.

From Corollary 4.6, we conclude that

E[Y ] ≤ 2mwr2n(1− ε
48r

logm).

We show that E[Y |B] is much larger, thus deducing that Pr[B] ≤ E[Y ]/E[Y |B] is small.

Lemma 4.10. [One implies many] E[Y |B] ≥ 2mwr−(2mwrm−
ε

100r +
√
mw)

In other words we show that one such D implies a large number of (t, ε12 ,
n
4r )-lenses. We conclude

that

Pr[B] ≤ E[Y ]/E[Y |B]

≤ 2mwr2n(1− ε
48r

logm)2−mwr+(2mwrm−
ε

100r +
√
mw)

= 22mwrm−
ε

100r +
√
mw+n−n ε

48r
logm

Since mw ≤ n1+ ε
200r , the first term is negligible compared to the last whenever r = O(log n).

Moreover, the second term is o(n). Finally, for r ≤ ε
96 logm, the last term is at least 2n in

magnitude. This concludes the proof of Lemma 4.9.

We next prove Lemma 4.10.
Intuition: To get an intuition into the proof, consider a simple case where t = 2 (two tables). Event
B means that there is a data structure with two tables which is (2, δ2)-focusing for Ω(n) points in
the dataset; for simplicity assume that all cells are light and the data structure is (2, 0)-focusing for
these points pi. This means that the function l2 maps the entire ball µpi,ε to the same cell. Let us
now select a random α fraction of cells in the first table and perturb the contents of the remaining
cells to random values. We will argue that even after this alteration the function l2 still does a
reasonable job of focusing the ball µpi,ε.

If all cells are light, by Lemma 4.4, no cell in D1 receives more than m−ε/12 fraction of the ball
under the function l1. This means the ball breaks into at least mε/12 small pieces scattering across
different cells. Since α fraction of the cells remain unchanged after the perturbation, we can expect
about α fraction of the ball to remain unchanged under the new perturbed function l2, as long
as αmε/12 >> 1. Setting α = m−ε/24 for instance would essentially imply that the new function
is α = m−ε/24-focusing. This means the number of data structures that are m−ε/24-focusing is at
least 2mw−mwm

−ε/24
.

For a more general proof, suppose that B occurs, and let D be t-concentrating for at least n
3r

of the pi’s. Note that the t-concentrating property depends only on the first (t − 1) columns of
D. We extend the idea of perturbation of these columns of D to obtain a large number of ways to
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populate the tables that are (t, ε12 ,
n
4r )-lenses.

Perturbation: The perturbation is done by selecting a small number of cells of D that are left
unchanged, and then arbitrarily changing the cells that are not selected. We consider the following
two-step randomized selection procedure. In the first step, we select each cell with probability
m−ε/100r. In the second step, each heavy cell is (deterministically) selected. Since each heavy cell
contains a volume of at least

√
m, there are no more than

√
m heavy cells in each column. Note

that each cell, heavy or light, is selected with probability at least m−ε/100r.
The following Lemma shows that the perturbations of D are likely to be good lenses.

Lemma 4.11. [Perturbations create many lenses] Let t > 1 be any integer less than r. Suppose
that for a data point p, a table D is t-concentrating so that m−δt of the probability mass in µp gets
mapped to cell lp in table Dt. Then with probability at least (1 − exp(−m

ε
200r )) (taken over coin

tosses of the selection procedure), the resulting perturbed data structure D′ has the property that
m−δt−

ε
50 of the probability mass in µp gets mapped to cell lp in table D′t.

Proof Sketch: We now sketch the proof of Lemma 4.11. By assumption, a fraction m−δt of the
measure in µp gets mapped to cell lp in table Dt.

For any q ∈ {0, 1}d, the location lt(q) depends only on the population of D1(l1), . . . , Dt−1(lt−1).
Since any perturbation D′ of D agrees with D on all selected entries, lt(q,D′) is the same as lt(q,D)
whenever all these (t− 1) locations are selected, which happens with probability at least m−ε/100.
Thus if an m−δt fraction of the measure in µp gets mapped to cell lp in D, at least a m−δt−

ε
100

fraction of the measure on µp gets mapped to lp in D′, in expectation.
It remains to show that this fraction is unlikely to be much smaller than its expectation. Intu-

itively, this fraction depends upon many independent choices, and thus should be well concentrated.
The details can be found in the appendix.

We now complete the proof of Lemma 4.10.

Proof of Lemma 4.10. A standard Chernoff bounds argument implies that the number of cells
selected in the first step of the selection process is well concentrated. Thus there exists a choice of
coin tosses for the selection procedure such that the following two properties hold

1. The number of selected cells is at most 2mrm−
ε

100r +
√
m.

2. For at least n
3r (1−o(1)) ≥ 2n

7r of the pi’s, there is a cell li that gets m−δt−
ε
50 of the probability

mass in µpi .

We next account for some of these li’s becoming heavy in a perturbed tables. Note that since
the cells li are all light in D, at most m−

1
2 /m−δt of the li’s can take any fixed value l. Thus one cell

becoming heavy can hurt at most m−
1
2 /m−δt of the pi’s. Since there are at most

√
m heavy cells

in any set of tables, no more than mδt < n
8r of the pi’s have their corresponding li’become heavy.

Thus each of these perturbed populations is a (t, δt + ε
50 ,

n
4r )-lens.

This gives us 2mwr−(2mwrm−
ε

100r +
√
mw) different (t, ε12 ,

n
4r )-lenses. Thus

E[Y |B] ≥ 2mwr−(2mwrm−
ε

100r +
√
mw).
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Theorem 4.12. Let A be some algorithm and let dataset p1, . . . , pn be chosen randomly. Let
m ≤ n1+ ε

200r and w ≤ n
ε

200r . The probability that there exists an (r,m,w)-data structure D which
is a (r, δr, 1

3)-lens is at most r · exp(−Ω(n)).

Proof. Note that any table D that is (r, δr)-focusing for a datapoint p must be j-concentrating for
p, for some j ≤ t. Thus for lemma 4.9, with probability (1− r · exp(−Ω(n)), the number of points
p for which D can be (r, δr)-focusing is at most r · n3r . The claim follows.

4.5 Putting it Together

Theorem 4.13. Any t-probe randomized data structure for 1
8ε -approximate near neighbor search

that succeeds with probability 2
3 and uses word size w ≤ m

ε
200t must use space m > n1+ ε

200t .

Proof. Suppose a randomized algorithm A succeeds with average probability 2
3 , when the average

is taken over choosing a random input a distribution D. By averaging, one can fix the coin tosses
of the algorithm so that we get a deterministic algorithm with the same guarantee. We thus need
to define a distribution over input instances such that no deterministic algorithm A can succeed
with probability larger than 2

3 .
Fix d ≥ 10 log n. The n points are drawn independently and uniformly at random from the

hypercube {0, 1}d. The query point is constructed as follows: We first pick an i ∈ [n] uniformly
at random. q is obtained from pi be flipping each bit of pi independently with probability ε = 1

8c .
The following geometric facts are standard:

Proposition 4.14. Let p1, . . . , pn be sampled uniformly and independently from {0, 1}d, then

• With probability (1− 1
poly(n)), mini 6=j ‖pi − pj‖1 ≥ d

4 .

• With probability (1− 1
poly(n)), mini ‖q − pi‖1 ≤ 2εd.

Assuming that these conditions are satisfied, any 1
8ε -approximate near neighbor algorithm must

output pi when given q. Thus Amust succeed with probability 1
2 on the distribution. By Lemma 4.2,

with probability 1
2 , there must be a (t + 1,m,w) table that is a (t + 1, 1

2 ,
1
3)-lens. Theorem 4.12

then implies the result.

Remark 4.15. For any success probability s > n−
1
2 , this approach gives a bound of (sn)1+ ε

100t .

4.6 Far Neighbor Problem

The instances for far-neighbor are created by asking the query q instead of q (i.e. flipping each bit
of q). We omit the details from this extended abstract.

4.7 Non-adaptive Lower bounds

In Section A, we improve the lower bounds for ANNS for algorithms that probe the data structure
non-adaptively. Our main result is:

Theorem 4.16. A non adaptive algorithm which probes r times a table with m entries and word
length w, and which succeeds with probability 1

2 must have mw ≥ εdn1+Ω(ε/r).
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5 Partial Match Lower bounds

For the partial match problem, we show the following result in Section B.

Theorem 5.1. Any t-probe randomized data structure for the partial match search problem that
succeeds with probability 2

3 and uses word size w ≤ m
c

200t must use space m > n1+ c
200t .

With some minor changes it is easy to show that the lower bound also holds for the approximate
partial match problem, where the match between the query point and the dataset entry is allowed
to have a small rate of errors. We omit the details from this extended abstract.

6 Conclusions

We presented a new non-communication-complexity-based approach to prove cell probe lower
bounds. While we show lower bounds for approximate near neighbor and partial match, sev-
eral open questions remain. It is natural to try to prove similar isoperimetric-type inequalities for
other problems, which would imply cell-probe lower bounds using our techniques.

There is still a gap between our lower bounds and the known upper bounds for approximate
near-neighbor. A first step may be to try and improve our non-adaptive lower bounds to match
the upper bound. More generally, understanding the gap between adaptive and non-adaptive
algorithms for near-neighbor and for partial match is an interesting open question.
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A Non-Adaptive Algorithms

An (m, r,w) non-adaptive algorithm is an algorithm in which given n input points p1 . . . pn in
{0, 1}d, we prepare a table D which consists of m words, each w bits long. Given a query point
q the algorithm can probe the table at most r times. For every t ≤ r, the location of the t’th
probe lt = lt(q) depends only upon the query point q and not upon the content that was read
in the previous queries. In other words, the functions l1, l2, . . . , lr are functions of q only. In this
section we show a time-space cell-probe lower bound which is slightly stronger than the one shown
for general adaptive algorithms. While non adaptivity is a harsh restriction, we stress that the
best known upper bounds are all non-adaptive; thus improving the non-adaptive lower bound is of
interest.
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As before, fix ε = 1
8c . The way the dataset and the query point are sampled is slightly different

from the adaptive case. We prepare the input as follows: First sample uniformly at random n
points S := s1, . . . , sn. For each i we set pi to be an independent sample from µsi,ε/2. Note that in
effect, the p’s are uniformly sampled from {0, 1}d. We choose i at random and sample the query
point qi from µsi,ε/2 as well. Note, that while it is not true that qi is sampled from µpi,ε, it is still
the case that with high probability ||qi − pi||1 ≤ 2εd while ||pi − pj ||1 ≥ d

4 for i 6= j. The table
is populated based on the p’s. Our assumption regarding the correctness of the algorithm is that
when the input is thus sampled, for each i, with probability 1/2 over the choice of si and pi it
holds that with probability 2/3 over the choice of qi, the algorithm can reconstruct pi. Note that,
as before, we can fix the coin tosses of the algorithm and assume the algorithm is deterministic.
We now assume that the query algorithm is given S too. The access to S is considered free and is
not accounted as a memory query5. Clearly, giving the algorithm access to S may only increase its
probability of computing pi successfully.

Theorem A.1. A (m, r,w)-non adaptive algorithm with the above properties has mw ≥ εdn1+Ω(ε/r)

In particular, in the important case where w is Θ(d) and m is O(n), we have that r ∈ Ω(log n).
We note that such a bound is beyond the power the communication complexity techniques.

Our methods are similar to the ones in the non-adaptive case. We use the isoperimetric in-
equality to show that the information learnt from a single query is bounded. The non-adaptivity
allows us to avoid the random perturbation argument of the adaptive case and deal directly with
the information learnt from each query.

Proof. Let k be some parameter to be fixed later and let L be a set of k locations chosen uniformly
at random in 1, . . . ,m. For notational convenience we write D[L] to indicate the set {D[i] | i ∈
L}. Note that once S is fixed, it holds that q|S is independent from pi|S. Also, since D was
populated given the p’s (i.e. S is not given to the preprocessing procedure), it holds that D[L] | S
is independent from q | S. It follows that once S,L and q are fixed it holds that

I(D[L]; pi | S,L, q) = I(D[L]; pi | S,L) (1)

where I(· ; ·) indicates mutual information. Now since the pi’s are mutually independent (also
given S and L) we have that for every fixed S,L

n∑
i=1

I(D[L]; pi | S,L) ≤ H(D[L] | S,L) ≤ wk

where H(·) indicates the entropy function. Taking expectations on both sides we have:

n∑
i=1

EL,S
[
I(D[L]; pi | S,L)

]
≤ wk (2)

We set k := m
nΩ(ε/r) . Our goal is therefore to show that EL,S

[
I(D[L]; pi | S,L)

]
∈ Ω(εd), as this

would immediately imply the theorem. Note that H(pi)−H(pi | S) is Ω(εd), thus it is enough to
5We emphasize that our lower bounds are for the search problem. The instance is a YES instance of the natural

decision problem.
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show that for every i, when probing D[L], the algorithm can reconstruct pi given S with constant
probability.

Denote by li(q) the location of the i′th query when the query point is q. We write l[r](q) to
denote l1(q) ∪ ... ∪ lr(q). We say a point qi is good for pi if it is of distance at most εd from si and
pi can be reconstructed from qi, si and D[L[r](qi)]. Let Qi denote the set of points which are good
for pi. The correctness of the algorithm implies that Pr[|Qi| ≥ nε/2] ≥ 1

2 .
Define Atj to be the set of q ∈ {0, 1}d such that j = lt(q). In the non-adaptive domain we can

assume that all cells are light; i.e. w.l.o.g for every 1 ≤ j ≤ m and 1 ≤ t ≤ r it holds that |Atj | ≤ 2d

m .

The reason is that a cell j for which Atj is large (for some t) could be split into |Atj |/2d

m light cells
with the total number of new cells bounded by m.

Definition A.2. A point si is shattered if maxj,t µsi,ε/2(Atj) ≤ nε/12.

For every non-adaptive algorithm, Lemma 4.4 implies that the probability over the choice of si
that si is not shattered, is at most n−ε/12. We conclude that with probability ≥ 1

3 it holds that si
is shattered and |Qi| ≥ nε/2. In such a case we show that with constant probability there exists
a q ∈ Qi such that l[r](q) ⊂ L, i.e. there exists a good point for which all the query points are
covered by L, thus, a procedure which samples points from µsi,ε/2 until it finds a point covered by
D[L] can reconstruct pi with a constant probability.

Since si is shattered it holds that there are at most r|Qi|/nε/12 points in Qi that are mapped
to the same cell. Since |Qi| ≥ nε/2 we have that there are at least nε/12

r different good q with
disjoint hash locations. Each one of these q is covered by L with probability at least r

nε/12 , so with
probability ≥ 1

2 we cover at least one and reconstruct pi.

A.1 Connection to Locally Decodable Codes

Let m = m(n, q, r) be the minimum size of a data structure that can reconstruct each of n bits
b1, . . . , bn by reading one r-tuple out of q possible disjoint r-tuples, where the minimum is taken
over all possible configurations q disjoint r-tuples. When q is Θ(n) and r is O(1) this problem is
tightly related to the problem of designing small locally decodable codes (LDC)[18]: if an adversary
corrupts a small constant fraction of the data structure, it is still possible to reconstruct a bit bi with
constant probability by reading a random r-tuple. Locally decodable codes have been extensively
studied, and proving a superpolynomial lower bound on m is a well known open problem.

Our work reveals an interesting connection between the query complexity of non-adaptive al-
gorithms and LDC with a different choice of parameters. In particular, a bound of the form
m(n, nΩ(ε), r) ∈ n1+Ω(ε)/r would imply that locality sensitive hashing techniques are (essentially)
the best one can achieve with non-adaptive algorithms. The reduction to LDC only uses the fact
that most points are shattered, it does not use the geometry of the Near Neighbor problem in
any other way. Thus, if one hopes to prove a lower bound for the Near Neighbor problem using
information theory alone, one might as well aim at proving a lower bounds for locally decodable
codes.

B Partial Match

The Partial Match Problem: The partial match problem consists of building a data structure that
supports partial match queries. The dataset consists of entries from {0, 1}d and the query is taken
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from {0, 1, ?}d where ? is interpreted as a ‘don’t cares’. A query q is then compared against a
dataset entry p bitwise where a match is interpreted to mean that a 0 matches a 0, a 1 matches a 1
and a ?(a don’t care) in q matches either a 0 or a 1. Given such a query, the objective of the data
structure and the algorithm is to find a matching entry from the database if any.

We prove a lower bound for this problem similar to the lower bound proven for the near neigh-
bor search problem. Our approach is to prove an isoperimetric inequality similar to Lemma 4.4.
To that end we first define the distribution from which the data is drawn.

Our Distribution: Let Hδ denote the set of points in {0, 1}d with exactly δd 1’s. Each entry in the
dataset is chosen uniformly and independently in Hδ. Once the data structure is built we sample
a query point ‘around’ a random dataset point p as follows: first, we convert the 1’s in p to ?’s.
Then we convert an additional (d2 − δd) 0′s to ?’s at random so that the resulting query point q has
exactly d/2 0’s and d/2 1’s. Observe that for each point p the query point q is randomly sampled
from

((1−δ)d
( 1

2
−δ)d

)
possible choices. Observe that for d ≥ Ω(log n), with high probability the query point

generated in this way can only be matched to the point p used to generate q, and not to any other
point in the dataset.

We will use the notation νp,δ to denote the distribution of q obtained from a database entry p.
Our goal is Lemma B.3 which is an isoperimetric inequality for the operator νp,δ.

Let F : {0, ?}d → [m] where d = Ω(log n). Light and heavy cells are defined as before with
respect to the query space consisting of {0, ?}d with exactly equal number of 0’s and ?’s. Let L
denote the set of light cells. We first show that two random query points around p are unlikely to
go to the same light cells.

Lemma B.1. Let p be a random database entry. Let q1 and q2 be two random points chosen from
the distribution νp. Pr[(F (q1) = F (q2) = i) ∧ (i ∈ L)] ≤ m−Ω(1)

Proof. Since F operates on {0, ?}d, we can substitute ‘?’ by ‘1’ and think of it as a function
F : H 1

2
→ [m]. We will now use the fact that there is no hash function F for the near neighbor

search problem that hashes two nearby points to the same bucket. Let q1 and q2 be two independent
samples from νp,δ. It is easy to check that E[||q1 − q2||1] = d(1/2− δ)/(1− δ) =: h0. Furthermore,
by standard concentration bounds we have Pr[||q1 − q2||1 ≤ h0/2] ≤ m−Ω(1).

For any h > h0/2, let ε = h/d and ε0 = h0/2d. From Lemma 4.4 we know that for a random
point v1 ∈ {0, 1}d and a random point v2 chosen from µv1,ε, Pr[F (v1) = F (v2) ∈ L] ≤ m−ε/6 ≤
m−ε0/6. In our case the points q1, q2 are sampled from a somewhat different distribution, yet
Lemma 4.4 is useful for our distribution as well. We use the following key observation:

Lemma B.2. Let E denote the event that v1 and v2 have equal number of 0′s and 1′s. for every
h and every ε, δ, if v2 is sampled from µv1,ε and q1, q2 are sampled from νp,δ it holds that

{v1, v2 | E, ||v1 − v2||1 = h} is distributed as {q1, q2 | ||q1 − q2||1 = h}

Proof. The proof is a straight forward coupling. Both v1 and q1 are chosen uniformly in H 1
2
, so they

could be coupled to each other. Now, v2 is sampled uniformly from all points in H 1
2

which are of
Hamming distance h from v1. Note that we do not condition on p, thus q2 is also sampled uniformly
among all points in H 1

2
which are of Hamming distance h from q1. The Lemma follows.
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Note that the probability of E is high, at least Ω(1/d). Furthermore, if ε = h/d it holds that
Pr[||v1 − v2||1 = h | E] ∈ Ω(1/

√
d). Now we have

Pr[F (q1) = F (q2) ∈ L] ≤ Pr[F (q1) = F (q2) ∈ L | ||q1 − q2||1 > h0/2] + Pr[||q1 − q2||1 ≤ h0/2]

≤ Pr[F (q1) = F (q2) ∈ L | ||q1 − q2||1 > h0/2] +m−Ω(1)

≤ max
h>h0/2

Pr[F (q1) = F (q2) | ||q1 − q2||1 = h] +m−Ω(1).

By Lemma B.2 the above expression is at most

≤ max
h>h0/2

Pr[F (v1) = F (v2 ∈ L) | E, ||v1 − v2||1 = h] +m−Ω(1)

where v2 is sampled from µε,v1 and ε = h/d

≤ max
h>h0/2

Pr[F (v1) = F (v2) ∈ L]
Pr[E] Pr[||v1 − v2||1 = h | E]

+m−Ω(1)

≤ max
h>h0/2

Pr[F (v1) = F (v2) ∈ L]O(d3/2) +m−Ω(1)

≤ m−Ω(1)O(d3/2) +m−Ω(1)

= m−Ω(1)

Let Ai denote the set of query points that are mapped to cell i by F .

Lemma B.3. Prp[maxi∈L νp(Ai) ≥ m−c/2] ≤ m−c/2

Proof.

Pr[(F (q1) = F (q2) = i) ∧ (i ∈ L)] =
∑
i∈L

Pr[F (q1) = F (q2) = i]

=
∑
i

νp(Ai)
2

≥ max
i
νp(Ai)

2

But Prp[(F (q1) = F (q2) = i) ∧ (i ∈ L)] = Ep[Pr[F (q1) = F (q2) = i ∧ i ∈ L]] So by Lemma B.1
Ep[maxi νp(Ai)

2] ≤ m−c. By Markov’s inequality, Prp[maxi νp(Ai) ≥ m−c/2] ≤ m−c/2

Lemma B.3 has the same form as Lemma 4.4, which is the only property of the near-neighbor
problem we used. Thus we can show that

Theorem B.4. Any t-probe randomized data structure for the partial match search problem that
succeeds with probability 2

3 and uses word size w ≤ m
c

200t must use space m > n1+ c
200t .

Remark B.5. With some minor changes it is easy to show that the lower bound also holds for the
approximate partial match problem, where the match between the query point and the dataset entry
is allowed to have a small rate of errors.
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C Connection to Communication Complexity

Miltersen et al. [21] show the following connections between cell probe complexity and two-player
asymmetric communication complexity:

Theorem C.1. [21] Let f be computable by a t-probe data structure using m = 2a words of size b
bits each. Then f has a t-round protocol where Alice, holding the query communicates a = logm
bits per round, and Bob, holding the dataset communicates w bits per round.

Theorem C.2. [21] Let f have a t-round protocol where Alice and Bob communicate a and b bits
per round respectively. Then f has a t-probe data structure that stores 2ta words of size tb each.

Thus while, we have equivalence between the models for t = 1, the reduction is lossy for large
t.

Unlike previous work, we do not prove lower bounds for the asymmetric communication com-
plexity of the problem, but rely directly on a more geometric approach. Our results can however
be re-interpreted as showing asymmetric communication complexity lower bounds for a multiple
non-interacting servers setting. Indeed consider the following multiple server communication com-
plexity model: There are t servers S1, . . . , St, each holding a copy of the dataset P . Alice is given
the query q and wants to compute a function f(q, P ). Alice, and each of the servers additionally
have access to a uniform random string R. An [a, b, t, δ] multiserver protocol in this setting is one
where in the ith round, Alice sends a bits to server Si and gets a b bit response. The servers are
isolated and not allowed to communicate with each other, and at the end of t rounds, Alice must
output f(q, P ) with probability (1− δ), where the probability is taken over the randomness in R.
Note that this model is similar to one used in Private Information Retrieval [11] but it allows for
arbitrary shared randomness. Moreover, if the servers were allowed to communicate the model
would reduce to the usual two-party asymmetric communication complexity setting.

The following theorems are to be compared with Theorems C.1 and C.2:

Theorem C.3. Suppose a function f can be computed with probability (1 − δ) by a t-probe data
structure with m = 2a cells of word size b. Then f has a [a = logm, b, t, δ] protocol.

Proof. Each of the servers constructs the data structure. The message to server i specifies the
(logm)-bit address of the ith query, and the response from server i is the word stored in the
corresponding location in the data structure.

Theorem C.4. Suppose a function f has an [a, b, t, δ] multiserver protocol where the servers use
r bits of randomness. Then f can be computed with probability (1− δ) by a t-probe data structure
with 2a cells of word size bt+ r.

Proof. The jth cell in data structure contains the concatenation of the responses that the servers
would give when they receive the binary representation of j from Alice, along with the randomness
used by the servers.

Thus this communication complexity model is a more faithful proxy for the cell probe model
that asymmetric communication complexity, as t grows. We remark that in this language, our
proof technique in section 4.4 can be interpreted as a server elimination technique.
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D Proof of Lemma 4.2

Proof. Let h be some function from {0, 1}d to [m]. The algorithm A′ is as follows: it simulates
A for the first t reads, after which A outputs some point x (hopefully the correct answer to the
query). The algorithm now queries location h(x) in Dt+1. We claim that there exists a function h
so that the database is (t+ 1, 1

2 ,
1
3)-focusing with probability 1

3 .
Indeed, let h be chosen uniformly at random from all function from {0, 1}d to [m]. By assump-

tion, with probability 1
2 it holds that for half of the points the algorithm A succeeds with probability

at least n−
1
2 . We call this set of points S. For each p ∈ S it holds that n−

1
2 of the mass of µp,ε is

mapped to Dt+1[h(p)]. Thus if Dt+1[h(p)] is a light cell then the database is (t+ 1, 1
2)-focusing for

p.
There are at most

√
m heavy cells in Dt+1. Since the dataset is chosen randomly and the

function h is independent of A and the dataset, the expected number of points in S that h maps
to one of the heavy cells is at most |S|/

√
m. Thus the probability that more than |S|/6 of these

points are mapped to heavy cells, is at most 1
6 . We conclude that with probability 1

2 −
1
6 over the

choice of h and the dataset, there are at least n
3 points for which the table is (t+ 1, 1

2)-focusing, as
required. Recall that A′ must be deterministic. To that end not that there must exist at least one
specific h for which the above condition holds. We hardwire h into A′.

E Proof of Lemma 4.4

Proof. Let ρ = 1 − 2ε and let Tρ denote the noise operator: for a function f : {0, 1}d → R, we
define Tρf(y) = Ez∼µy,εf(z), that is, the expectation is taken over points sampled from µy,ε.

Define 〈f, g〉 := 1
2d

∑
u∈{0,1}d f(u)g(u) and let ||f ||p =

(∑
f(u)p

2d

) 1
p for p ≥ 1.

We shall use the following properties of the noise operator, see for instance [13]:

Proposition E.1. For any function f and any ρ1, ρ2 ∈ [0, 1], Trho1(Tρ2f) = Tρ1ρ2f .

Theorem E.2. [Hypercontractivity of the noise operator] ‖Tρf‖2 ≤ ‖f‖1+ρ2

Let B be the set of points for which a perturbation is likely to land in A. More precisely,
B = {y ∈ {0, 1}d : µy(A) ≥ aε/6}. We shall show that |B| ≤ 2da1+ ε

6 .
Suppose on the contrary that |B| > 2da1+ ε

6 . By definition, for every y ∈ B, the measure
µy(A) > aε/6 and thus if we pick a random y ∈ B and apply the noise operator, the probability
that we land up in A is at least aε/6. However, we shall show that Theorem E.2 implies that this
is not possible.

Let QB denote the random variable resulting from applying the noise operator to a random
y ∈ B, i.e. QB is obtained by first sampling y ∈ B and then sampling a point from µy.

19



Now:

Pr[QB ∈ A] =
2d

|B|
〈Tρ1B,1A〉 (by definition of Tρ)

=
2d

|B|
〈T√ρ1B, T√ρ1A〉 (proposition E.1)

≤ 2d

|B|
‖T√ρ1B‖2‖T√ρ1A‖2 (by Cauchy Schwartz)

≤ 2d

|B|
‖1B‖1+ρ‖1A‖1+ρ (by Theorem E.2)

=
2d

|B|

(
|B|
2d

) 1
1+ρ
(
|A|
2d

) 1
1+ρ

=
(
|A|
2d

) 1
1+ρ
(
|B|
2d

) 1
1+ρ
−1

≤ a
1

1+ρa
(1+ ε

6
)( 1

1+ρ
−1)

≤ a
ε
6

when ρ = 1− 2ε and ε ≤ 12
13 .

F Proof of Lemma 4.11

Proof of Lemma 4.11. By assumption, a fraction m−δt of the measure in µp gets mapped to cell lp
in table Dt.

For any q ∈ {0, 1}d, the location lt(q) depends only on the population of D1(l1), . . . , Dt−1(lt−1).
Since any perturbation D′ of D agrees with D on all selected entries, lt(q,D′) is the same as lt(q,D)
whenever all these (t− 1) locations are selected, which happens with probability at least m−ε/100.
Thus if an m−δt fraction of the measure in µp gets mapped to cell lp in D, at least a m−δt−

ε
100

fraction of the measure on µp gets mapped to lp in D′, in expectation.
It remains to show that this fraction is unlikely to be much smaller than its expectation. Intu-

itively, this fraction depends upon many independent choices, and thus should be well concentrated.
Consider a layered directed graph G with one source node p in layer 0, and m nodes in each of

layers 1, . . . , t, each corresponding to a cell in D; we denote by v(j, l) the node in G corresponding
to location D[j][l]. Every node in layer j has an edge to every node in layer (j+ 1). For each point
q ∈ {0, 1}d, we have a flow of µp(q) units from the source p to the last layer, passing through nodes
v(j, lj(q,D)). Thus a flow of at least m−δt flows from source p to a node v(t, lp). Let G′ be the
subgraph of G that contains only the nodes corresponding to selected cells in layers 1, . . . , t− 1; for
convenience we deterministically select only cell lp in layer t. Our goal is to show that with high
probability, a large fraction of the flow from p to v(t, lp) survives in G′.

We construct a sequence of graphs G = G0, G1, . . . , Gt = G′, where Gj has only the selected
nodes from the last j layers (i.e. layers t+ 1− j, . . . , t), and all the nodes from levels 1, . . . , t− j.
We will show by induction that with probability at least (1− jexp(−mε/200r)), the flow from p to
v(t, lp) that survives in Gj is at least m−δt−(j−1) ε

50r . The base case when j is 1 is immediate.
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By the induction hypothesis, with probability at least (1− jexp(−mε/200r)), the flow from p to
v(t, lp) that survives in Gj is at least m−δt−(j−1) ε

50r . Suppose that the surviving flow fj is indeed
this large; we show that with probability at least (1− exp(−mε/200r)), at least a m−

ε
50r fraction of

this flow will survive in Gj+1 as well, which would imply the induction step. Let Xl be an indicator
variable for the cell D[t−j][l] being selected in the first step of the selection procedure. Let fj+1(X)
denote the flow that survives in Gj+1. Clearly, E[fj+1(X)] ≥ fjm−

ε
100r . Let bl denote the amount

of flow in Gj that passes through node v(t− j, l). Thus fj =
∑

l bl. Let cl the maximum amount by
which fj+1(X) can change by flipping the variable Xl. Clearly, cl is zero whenever cell D[t− j][l] is
heavy, and at most bl otherwise. Moreover, since D is not (t− j, δt−j)-focusing for p, cl is at most
m−δt−j . Thus ∑

l

c2
l ≤ max

l
cl
∑
l

cl

≤ max
l
clfj

≤ m−δ(t−j)fj

Thus by Azuma’s inequality,

Pr[fj+1(X) ≤ 1
2
Efj+1(X)] ≤ exp(−(Efj+1(X))2/8

∑
l

c2
l )

≤ exp(−f2
jm
− ε

50r /8m−δt−jfj)

≤ exp(−fjm−
ε

50r /8m−δt−j )

≤ exp(−m−δt−(j−1) ε
50r
− ε

50r
+δt−j/8)

≤ exp(−m
ε

200r )

since δt−j − δt = j ε
40r . This completes the proof of Lemma 4.11.
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