3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit

Eric Lehman and Rina Panigrally

! Google, Mountain View, CA. Emaikl ehman@oogl e. com
2 Microsoft Research, Mountain View, CA. Emaili na@ri cr osoft. com

Abstract. The study of hashing is closely related to the analysis d¢$laald bins;
items are hashed to memory locations much as balls are thirdavbins. In par-
ticular, Azar et. al. [2] considered putting each ball in lass-full of two random
bins. This lowers the probability that a bin exceeds a aeittsad from exponen-
tially small to doubly exponential, giving maximum lo&sk log n + O(1) with
high probability. Cuckoo hashing [20] draws on this ideacliEdem is hashed
to two buckets of capacity. If both are full, then the insertion procedure moves
previously-inserted items to their alternate buckets t&emspace for the new
item. In a natural implementation, the buckets are reptedeny partitioning a
fixed array of memory into non-overlapping blocks of skizeAn item is hashed
to two such blocks and may be stored at any location withimeeibne. We ana-
lyze a simple twist in which each item is hashed to tawbitrary size4 memory
blocks. (So consecutive blocks are no longer disjoint, atiter overlap by — 1
locations.) This twist increases the space utilizatiomfrio— (2/e 4 o(1))* to

1 — (1/e + o(1))*°°* in general. Fok = 2, the new method improves utiliza-
tion from 89.7% to 96.5%, yet lookups access only two items at each of two
random locations. This result is surprising because the@sifghappens in the
non-cuckoo setting; if items are not moved during later ritiees, then shifting
from non-overlapping to overlapping blocks makes the itligtion less uniform.

1 Introduction

The study of hashing is closely related to the analysis d§laald bins; items are hashed
to memory locations much as balls are thrown into bins. Serpists on balls and bins

processes have produced surprising observations and lagathroughs in hashing

methods.

In particular, it is well-known that if balls are thrown inta: bins independently
and randomly, then the largest bin gétst- o(1)) Inn/ In In » balls with high probabil-
ity. Azar et. al. [2] showed that assigning each ball to thes4&ill of two random bins
makes the final distribution far more uniform. In fact, thelpability that a bin exceeds
a certain load drops from exponentially small to doubly exexttial. This leads to the
concept of two-way hashing, where the most-loaded buckstgglogn 4+ O(1) items
with high probability. So dramatic is this improvement thatan be used in practice to
efficiently implement hash lookups in packet routing hardwa]. The lookup opera-
tion must search for an item in two buckets, but these operatan be parallelized in
hardware by placing two different hash tables in separatmong components. More
generally, if each item is hasheddo> 2 buckets, then the maximum load improves to
loglogn/logd+ O(1).

Cuckoo hashing [20, 12] extends two-way hashing by movimyipusly-inserted
items to their alternate buckets to make space for a new Ragh and Rodler [20]
showed that even with buckets of capacity one, moving itearing inserts gives a
space utilization 050% with high probability. Several generalizations of cucka@sh-
ing perform even better. Fotakis et al [12] suggested hgstach item tal > 2 buckets,
and Dietzfelbinger and Weidling [9] suggested using buxkeéth capacityt > 1. One
appealing choice is to hash itemsdo= 2 buckets of capacityy: = 2, which gives
89.7% [21,14, 6] space utilization. (The latter two referencegiiave upon the ear-
lier, weaker estimate.) More generally, the analysis okoodashing is related to the
appearance of dense subgraphs in random graphs. For exdahgpkpace utilization
achieved by cuckoo hashing where items are hashéd=@ buckets of capacity is
directly related to the threshold at which a dense subgrppbars in the random graph
G(n, p). The space utilization is precisely k wherep is the threshold at which a dense
subgraph with ratio of edges to vertices exceediagpears. Analysis of this threshold
in [14, 6] implies a space utilization of abolit- (2/e + o(1))*.

In a natural implementation of two-way cuckoo hashing, theldets are represented
by partitioning a fixed array of memory into non-overlappbigcks of sizek. Each
item is hashed to two such blocks and may be stored at any @kthreemory locations
within those blocks. This implementation avoids expensiyeamic memory alloca-
tion. Furthermore, a lookup searches just two contiguousong segments, which is
highly desirable in practice. For example, after an initedd from a random location
in main memory or on a disk, subsequent bytes can often beoreleds of magnitude
faster. (This is a heuristic, not a certainty; for examgie,éxtra bytes might lie beyond
a cached portion of memory.) And &l memory locations can be probed in parallel in
a hardware implementation.

We suggest another simple twist that significantly imprasesce utilization while
preserving the desirable property of only two random menamgesses per lookup.
Previously, the hash table memory was partitioned intaafisplocks of sizet. Now,
we regard every set of consecutive memory locations as a block. So consecutive
blocks are no longer disjoint, but rather overlapfy 1 memory locations. As be-
fore, each item is hashed to two blocks and may be stored atremyory location
within those blocks. We show that this simple change impsdhe space utilization
from1 — (2/e+o0(1))* to1 — (1/e + o(1))**?%. Experimentally, we demonstrate that
space utilization improves fro89.7% t0 96.5% in the practically-important case where
each item is hashed to two blocks of capadity- 2. This result is surprising because
the opposite happens in the non-cuckoo setting; if itemsarenoved during later in-
sertions, then shifting from non-overlapping to overlaggpblocks actually makes the
distribution of items less uniform.

2 Related Work

Balls and bins analysis still continues to produce sunpgisesults. Vocking [24] ob-
served that asymmetry helps in load balancing. If each batiapped tal bins with
equal load, then the ball should be inserted in the leftmiosith this simple change,

the maximum load drops t©(log logn/d). He also showed that breaking ties in this
way is the best possible policy to minimize the maximum load.

Berenbrinket al. [4] extended the balls and bins analysis to the case where the
number of ballsn is greater than the number of bins showing that the difference
in the height of the minimum and maximum bin is independeninofPrecisely, it
is loﬂofn -+ O(1). Corresponding results hold when ties are broken asymecaéyri
Balls and bins on graphs has been analyzed in [17]. Weigtalysis of balls and bins
was studied in [23]. Multi-choice hashing with a limited nloen of moves was studied
in [21]. Extensive work has been done in the area of parali#stand bins [1] and
the related study of algorithms to emulate shared memornhmas (as for example,
PRAMSs) on distributed memory machines (DMMs) [8, 7, 13, 22].

More recent works have studied the idea of using a small CAMt@nt-addressable
memory) in conjunction with cuckoo hashing to lower the i'skelete time [18, 19].
Arbitmanet al. [25] proved that it is possible to get constant time for alegiions
with about50% space utilization by using a small auxiliary hash table. appearance
of dense subgraphs in random graphs was studied in [14, 8k€Thuild upon earlier
works that investigate the appearance éf@ore — a subgraph with minimum degree at
leastk — in random graphs [3, 16].

Other related work includes the first static dictionary dsttacture with constant
look up time by Fredman, Komlos and Szemeredi [15] that waeigdized to a dy-
namic data structure by Dietzfelbinger et al. in [11] and][16 practice, however,
these algorithms are more complex to implement than cuckshbihg.

3 Our Contribution

We propose a new twist on multi-choice hashing that sigmifigamproves memory
utilization, yet accesses only two small regions of memOty. main theorem compares
this new variation to the algorithm analyzed in [14, 6]. Irttbalgorithms, each item is
hashed to two memory blocks of size The item may be stored at any location in
either block, and previously-inserted items may be movetthédr alternate locations
to make space for the new item. The lookup operation seathbéslocations in each
of the two blocks associated with the item sought. The dititin is that the earlier
ALG-DISJOINT-CUCKOO algorithm hashes items to only a riestd set of memory
blocks; specifically, the hash table memory is initiallytieoned into disjoint blocks of
sizek, and items are hashed only to those blocks. In our new twisG-®VERLAP-
CUCKOOQ, an item may be hashed to any two sizetemory blocks. Our main result
states that this new algorithm has better space utilizdtiolargek. Let o, denote the
utilization for ALG-CUCKOO-DISJOINT ang;, for ALG-CUCKOO-OVERLAP.

Theorem 1. For large k, o, < 1. Specifically,
— o <1—(2/e—o(1))"

— Br >1—(1/e+0(1))2=*, wherey is the maximum value of the functien: +
xlog(2(1 4 1/z)), which is aboub.41.

Experimentally, we show that memory utilization improvegméicantly for small,
practical values of as well. For exampleys; = 89.7% while 8 = 96.5%.

This resultis surprising, because the opposite effectsenied in the “non-cuckoo”
setting; that is, when previously-inserted items are nloinadd to be moved to make
space for a new item. Again, we compare two algorithms. lh bases, there areballs
andn bins in a line. For each ball, we randomly pick two blockscafonsecutive bins
and throw the ball into the least-loaded bin in the less-4abllock. As before, ALG-
NOMOVE-DISJOINT uses only blocks from an initial, disjoipartition, while ALG-
NOMOVE-OVERLAP uses all blocks. In this case, using ovepiag blocks actually
leads to a less uniform distribution:

Theorem 2. [17] For large k,

— with high probability, ALG-NOMOVE-DISJOINT gives a maximioad on a bin
of O(loglogn/k) and

— with high probability, ALG-NOMOVE-OVERLAP gives a maximoad on a bin
of 2(loglogn/logk).

Intuition: Here is a simple intuition as to why overlapping blocks giighler space
utilization for cuckoo-hashing than disjoint blocks. Cules the casé: = 2 with dis-
joint blocks. Note that in cuckoo-hashing, we perform a Otedirst-search for an
empty bin by first looking at the two blocks where a new ballhess If these are
full, then we look at thel alternate blocks where theballs in those blocks could go.
Continuing recursively, we visit* blocks at a depth 0. Thus the search tree is binary
for ALG-CUCKOO-DISJOINT. We will argue that this searchereas a slightly higher
degree for ALG-CUCKOO-OVERLAP, which uses overlappingdie. The faster this
search tree branches, the more likely we are to find an emptlddbre getting stuck;
that is, before reaching leaves whose potential childrembualready in the tree. In the
ALG-CUCKOO-OVERLAP variant, the two balls in a full block can potentially be
moved to other bins besides those in their alternate blddkis. happens if one of the
blocks of these balls overlaps partially with — in this case, such a ball can also be
displaced to the other bin in this partially-overlappingdX. Thus the branching factor
of the search tree is slightly more thanWe will demonstrate this phenomena in the
experiment section.

Our analysis assumes that each item is hashed to two bloeksingle hash table.
But essentially the same analysis applies to the case wineitera is hashed to one
block in each of two, separate tables.

4 Theoretical Analysis

We will now prove the main theorem 1. We are comparing two ooekased al-

gorithms that access two random blocks of sizeach. Algorithm ALG-CUCKOO-

DISJOINT accesses from a collection of disjoint blocks & et that are multiples of
k; whereas ALG-CUCKOO-OVERLAP picks blocks at random offsétet us say we
havenk bins and we are adding balls one by one till we overflow.

For any balls and bins process, a configuration of balls amsldan be viewed as a
hypergraphG where each bin is a node and each ball is a hyperedge conpéstiyin
choices. The following lemma is well known.

Lemma 3. For any cuckoo algorithm (ALG-CUCKOO-DISJOINT or ALG-CUCH-
OVERLAP) a set of ball insertions succeeds iff there is n@agh with more hyper-
edges then vertices.

Remark 4.For ALG-CUCKOO-DISJOINT, we can think of a block as a singker-v
tex. Thusay, corresponds to the number of edges in a random géaphp) when a
subgraph with density (ratio of edges to vertices) more thappears.

Proof. The “only if” part is straightforward. For the “if” part, caider the case when
a ball insertion fails. We will look at another bipartite ghawith balls on one side and
bins on another and an edge between them if the ball is allbaved placed in the bin.
So each ball has degréeFurther, we mark an edge between a ball and a bin red if the
ball actually chooses that bin and blue otherwise. Now, foew ball insert, if there
is an alternating path of red and blue edges that leads to atydrm, then we can
successfully insert the ball using a sequence of cuckoo sx@&ea ball insert fails iff
all bins reachable through such alternating paths arelfufuch a case, look at the set
of bins reachable using such alternating paths from a nelwiase insertion failed.
This set of bins is a subgraph with more balls than bins becalidins have a ball
plus there is the new ball that could not be inserted. Thigsah of the bipartite graph
corresponds to a subgraph in the hypergr@phiith more hyperedges than nodes.

Our main theorem follows from the following two claims. Welvsometimes drop
the subscripk for convenience. Let, 3 denotel — « and1 — 3 respectively. Similarly
for other variables.

Claim. [6,16]a < 1 — (2/e — o(1))*

Proof. Although the exact threshold fer;, has been computed before in [6, 16], we
present a simpler analysis of the asymptotic formula. F@r@om graph om nodes
with k(1 —@)n edges, let us find the fractighof nodes that have degree at mbst 1.
This degree distribution of the nodes is given by the Poigtistribution with mean
2k(1 — @) andf is at least the fraction of nodes with degree exaktly 1.

f> e 20-3) k(1 —@)!

(k—1)!
_ 2ka 1 _ =\k,—2k (2k)*
BT L™
_ oL o 2R
= LO(1) ¢ (k/e)*

_ ekaka(l) (Q/G)k

So if we ignore thisf fraction of the nodes, the remainiig — f)n nodes have at
leastk(1 —@)n + fn edges; let us check when the density (ratio of edges to esitin

the remaining subgraph is more thianThis happens ik(1 —a@)n + fn > k(1 — f)n
or(k+1)f > kaor f > 5@

Plugging in the previous expression ffywe need:*k~9(1)(2/e)* > L@ or
a < k=Wl (2/e)k = k(2 /e 4 0(1))"

Clearly@ = (2/e — o(1))* satisfies this. Note that although we used the expected
value of f, the actual fraction is concentrated close to this with pgbbability by
Chernoff boundd]

Next we will show a lower bound fas,. We will make use of the following simple
claims.

Claim. If 0 < p < ¢ < 1 andgq is allowed to vary, the functioqlog(g) + (1 -
q)log(1=£) is decreasing in.

Proof. Taking derivative with respect tg, we getlog(g) - 1og(%) which is nega-
tive.

Claim. Let~y denote the maximum value of the functigfx) = —z+x log(2(1+1/x))
whenxz > 0. Theny < 0.41.

The claim can be verified by a simple plot of the function.
Claim. 8, > 1 — (1/e + o(1))2=1k

Proof. We need to demonstrate a valuedt (1/e + o(1))~7* for which there is
almost surely no subgraph in the hypergraph with more eduss tertices. We will
upper bound the probability of finding a subset of bins withrenedges than bins and
argue that this is unlikely with high probability. Considét nodes (bins) angnk hy-
peredges (balls) where each hyperedge chooses two get®nfiguous bins. Although
in our algorithm the bins are arranged in a line, for simpjicf analysis we will think
of them as arranged in a circle. Any subset of bins can be \degea union of con-
tiguous regions in this circle. Look at a subsebf nodes, say it consists of = en
contiguous regions and suppdse onk bins fall outsideS. A sequence of bins can
be viewed as a segment of lengdthif this is to lie in S, then both its endpoints must
be in one of the contiguous regions i¥. Of thenk possible segments of lengkhat
mostnk — r(k — 1) — ¢t = nk(1 — 0 — ¢(1 — 1/k)) lie in S. The probability that a
hyperedge falls in the nodes #isp = (1 — § — ¢(1 — 1/k))%. For S to have more
edges than nodes, the required fraction of edges to fadllimat leasty = (1 — §)/5
(note thaty > f3). Letz = d/e.

First, a simple calculation will show that unle§s= O(1/vk) ande = 2(k{3?),
the probability of finding such a high-density subgraphsois exponentially small. To
see that, note that the subset(df— §)nk bins in S is expected to get no more than
(1 — §)?Bnk edges. To gefl — &)nk edges, it has to get at least fac 11_5) >
1 + 6 + 3 of the expectation. By Chernoff bounds, the probabilitg thappens it at

moste~2(6+8)°nk_The number of ways of choosirf§jis at most the number of ways
of choosing the2en endpoints of the regions, which (5") < (&) < elogzn,

So the total probability is at most! (2l 5= —k2(5+58)°) Thijs is exponentially small
unless the exponent is nonnegative, which happens wheyi1/¢) > k(5 + 3)2.
Sinced > 0, we gete > 2(k3?). Also sinceelog(1/¢) < 1, we getkd> < O(1) or
5§ <O(1/VE).

Next, we will do a more detailed calculation of the probakill he number of ways
of choosing the subsét is at most the number of ways of first choosing th&tarting
points of ther regions which is at mos(ﬁ'r’j), and then choosing theclosing points of
the regions so that the total size of theegments i$nk. This can be done in at most
(°"") ways.

For S to have more edges than nodes, it must get at igdstdges, wher&/ = njsk
is the total number of edges and> (1 — §)/3 > 1 — 6. The probabilityZ, that a set
S getsqN edges is(ql}’v)qu(l — p)N(1=9) Taking natural log, we get.:

N
log L = log (qN) + gNlogp +qN logp

< N(—qlogq—7qlogq) + gNlogp +qN logp
= N(qlog(p/q) +qlog(p/q))

= pnk(qlog(p/q) + qlog(p/q))

= fnka

wherea = glog(p/q) + qlog(p/q). Since,l — 6 < ¢ < 1, a as a function of; is
maximized whery = 1 — ¢, so

(1—0—cl—1/k))? 2(6 + €)

a < (1-9¢)log - 1 5log .
<(1—8)(—2(8+¢) — (1 -) log(1 — 8) + dlog 2(5; 2
< 21 —0)(0+e)+5+0log 209
< (1=0)(—2¢—20) + (1 —0)(d +dlog 2(‘”6))

< (1= o(1))(=2¢ — 5 + S log 2(5; 20

<(1—-o0(1))e(—2—x+xlog2(l+1/x))

The total log probability of finding some componéhthat has more edges than
vertices is at most

1og[(nk) (5nk) I
ne) \ en
<log <nk‘> + log ((5nk> + nkBa
ne en
= nelog ck + nelog cok +nk(l —o(1))e(—2 -z +xlog2(1+ 1/x))
€ €

= nelog ck + nelogekx + nk(l —o(1))e(—2 — z + zlog 2(1 + 1/x))
€

=nf

where

f =¢(log % +log(ekz) + k(1 —o(1))(—2 — x + xlog2(1 + 1/x)))

= ¢(log 626 i k(1 — o(1))(o(x) — 2 — = + 2 log 2(1 + 1/x)))
< ellog = 1 k(1 — o(1)(—2+ 7+ o(1))
= e(log ok k(1 —o0(1))(=2 + 7).

€

Observe that the expression boundihd@s independent of.. So if for a givens
for all e ando, f is negative and less than some fixed value independent thien it
means that the probability that there is a high densitypsstexponentially small. Also
e cannot be arbitrarily small as we know that it(%kﬁQ). Now for f to be non negative
we needog £ > (1 — o(1))k(2 — 7) ore < e~ (1=0(1(2=7k We also need to add
the probability over all possible values ofndt for S but there are only.? possible
values which cannot compensate for an exponentially dsicrgéunction; so w.h.p. no
such sefS exists.

Also from the expressiofi = ¢(log @ +k(1—o(1))(o(x) —2—x+xlog2(1+
1/2))) < e(log CE 4 k(1—o0(1))(—z+xlog 2+zlog(1+1/z)) < e(log < 4 k(1 -

e i 1 k2 qivi
o(1))(—xlog e/222+ 1) itis clear that forf to be non negatwﬁ < O(3 log %) giving
5 < O(Llog £2)e < ===k This givesF < § < e (1-oE=1k <

(1/e 4 0(1))=1F O

5 Experiments

Experiments suggest that using overlapping blocks immovemory utilization sub-
stantially even for smalt. This implies that our twist gives a significant practicatim
provement. The situation is summarized in the figure below:

< 100

= 98

N

= 96

)

> 94

]

GEJ 92

= g0k Overlapping ——

X Disjoint ------

88]] J
2 3 4 5 6

k

For the basic case of buckets with capadity= 2, memory utilization increases
from89.7% t0 96.5% when overlapping is allowed. For largerthe overlapping scheme
rapidly approaches full memory utilizatio9.44% for k = 3 and99.90% for k = 4.
Each percentage is from twenty trials using hash tablesavitabsolute capacity af°
items and “random” hash functions based on a cryptograpbhédity pseudorandom
number generator. Items were inserted into the hash talddprone until some item
could not be added. The results were notably stable. In ezsd) the standard deviation
was a few hundredths of a percent, so error bars would bebteis the diagram. Such
strongly-predictable behavior is appealing from a pratstandpoint.

Other experimental data gives additional insight into ffeésformance gap. Recall
that the cuckoo insertion algorithm performs a breadthgearch for an empty location
in the hash table. The table below shows the number of sel@embdes at each depth
for a typical insertion using various hashing schemes. Thetire of these trees is
random in all cases, but much more noticeably for the newrsehso three examples
are given for that case:

of Nodes at Depth
Each Itemis Hashedto: |1 2 3 4 5 6
3 buckets, capacityl |3 6 12 24 48 96
4 buckets, capacity 1 |4 12 36 108 324 972
2 disjoint buckets, capacity 24 8 16 32 64 128
2 overlapping blocks, capacityf211 24 55 136 330
same as above 49 20 49 122 305
same as above 41024 62 150 364

For example, if each item is hashed to 4 buckets of capacias bn the second
line, then the root of the search tree has 4 children. ltememadng the corresponding
locations can each move to 3 other slots, so nodes lower irs¢hech tree have 3
children each. This gives the sequence 4, 12, 36, 108, 324,18 tontrast, suppose
each item is hashed to two disjoint buckets of capakit 2 as on the third line.
Again, the root of the search tree has 4 children. But itentkdse slots can be moved
to at mostwo slots not already explored. Thus, lower nodes in the seagethtave only
2 children instead of 3.

The last three lines show data for the new scheme introduexed ®nce again, the
root has 4 children. But now items occupying those locatemmize moved to eithéwo
or threeother slots with equal probability. Thus, the width of tharsh tree is greater
than for the disjoint-buckets approach and lies somewhetieden the 3- and 4-bucket
schemes shown on the first two lines. Since the new schemessascenly two small,
contiguous regions of memory, one might regard it as 3.5-euekoo hashing for the
price of 2-and-a-bit.

References

1. M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. RasreassParallel randomized load
balancing.In Proceedings of the Twenty-Seventh Annual ACM Symposiutred heory of
Computing pages 238-247, May 1995.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balancelibaations. SIAM Journal on
Computing, 29:180-200, 1999.A preliminary version of ffaper appeared in Proceedings
of the Twenty-Sixth Annual ACM Symposium on the Theory opQlimg, 1994.

. S. Spencer B. Pittel and N. Wormald. Sudden emergenceiafglgcore in a random graph.
J. Combin. Theory Ser. B 67 (1996), nophges 111-151.

. Petra Berenbrink, Artur Czumaj, Angelika Steger, andigd VVocking. Balanced alloca-
tions: The heavily loaded cas8IAM J. Comput.35(6):1350-1385, 2006.

. A. Broder and M. Mitzenmacher. Using multiple hash fuoies to improve ip lookups.
Proceedings of IEEE INFOCOM 200fages 1454-1463, 2001.

. Julie Anne Cain, Peter Sanders, and Nick Wormald. Theorangraph threshold for k-
orientiability and a fast algorithm for optimal multipléaice allocation. INSODA '07:
Proceedings of the eighteenth annual ACM-SIAM symposiubDisaete algorithmspages
469-476, Philadelphia, PA, USA, 2007. Society for Indas@ind Applied Mathematics.

. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Sharegione simulations with
triple-logarithmic delayLecture Notes in Computer Science, 9@ages 46-59, 1995.

. M. Dietzfelbinger and F. Meyer auf der Heide. Simple edfitishared memory simulations.
Proc. of the 5th SPAA (1993)ages 110-119.

. M. Dietzfelbinger and P. Woelfel. Almost random graphghwvgimple hash functions35th

STOG pages 629638, 2003.

Martin Dietzfelbinger and Friedhelm Meyer auf der Heidenew universal class of hash

functions and dynamic hashing in real timke. Proceedings of the 17th International Col-

loquium on Automata, Languages and Program- ming (ICALP,’96lume 443 of Lecture

Notes in Computer Sciengeages 6—19. Springer—Verlag, Berlin, 1990.

Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, ledhelm Meyer auf der Heide, Hans

Rohnert, and Robert E. Tarjan. Dynamic perfect hashing:@dppd lower boundsSIAM J.

Comput., 23(4)pages 738-761, 1994.

Peter Sanders Dimitris Fotakis, Rasmus Pagh and Paak&piSpace efficient hash tables

with worst case constant access tim&0th Annual Symposium on Theoretical Aspects of

Computer Science, 2003.

C. Scheideler F. Meyer auf der Heide and V. Stemann. Hiplostorage redundancy

to speed up randomized shared memory simulatiorfiBheoretical Computer Science,

162(2):245-281, 1996. Preliminary version in Proc. of tH#H. STACS (1995pages 267—

278.

Daniel Fernholz and Vijaya Ramachandran. The k-ori@litta thresholds for gn, p. In

SODA '07: Proceedings of the eighteenth annual ACM-SIAMpsginm on Discrete al-

gorithms pages 459-468, Philadelphia, PA, USA, 2007. Society fdustrial and Applied

Mathematics.

Michael L. Fredman, Janos Komlos, and Endre Szemeréaliing a sparse table with o(1)

worst case access timé. Assoc. Comput. Mach., 31(®ages 538-544, 1984.

Svante Janson and Malwina J. Luczak. A simple solutichedk-core problemRandom

Struct. Algorithms30(1-2):50-62, 2007.

Krishnaram Kenthapadi and Rina Panigrahy. Balancedatibn on graphs. I8ODA '06:

Proceedings of the seventeenth annual ACM-SIAM symposiuDiscrete algorithmpages

434-443, New York, NY, USA, 2006. ACM.

A. Kirsch and M. Mitzenmacher. Using a queue to de-amertiuckoo hashing in hard-

ware. 45th Allerton Conference on Communication, Control, anan@o-ting pages 751—

758, 2007.

A. Kirsch, M. Mitzenmacher, and U. Wieder. More robusstiiag: Cuckoo hashing with a

stash.16th ESA, pages 611-622, 2008.

20. R. Pagh and F. Rodler. Cuckoo hashidgurnal of Algorithms 51 (2004), p. 122-144. A
preliminary version appeared in proceedings of the 9th AshriEuropean Symposium on
Algorithms, pages 121-133, 2001.

21. Rina Panigrahy. Efficient hashing with lookups in two rnogynaccesses. ISODA '05:
Proceedings of the sixteenth annual ACM-SIAM symposiumiscrdde algorithmspages
830-839, Philadelphia, PA, USA, 2005. Society for Indastind Applied Mathematics.

22. Jan H. M. Korst Peter Sanders, Sebastian Egner. Fasfircentaccess to parallel disks.
Algorithmica, 35(1). A Preliminary version appeared in S®200Q pages 21-55,2003.

23. Kunal Talwar and Udi Wieder. Balanced allocations: theighted case. II8TOC '07:
Proceedings of the thirty-ninth annual ACM symposium orofjhef computingpages 256—
265, New York, NY, USA, 2007. ACM.

24. Berthold Vocking. How asymmetry helps load balancihgACM 50(4):568-589, 2003.

25. Moni Naor Yuriy Arbitman and Gil Segev. De-amortized ko hashing: Provable worst-
case performance and experimental results. 2009.

