
3.5-Way Cuckoo Hashing for the Price of 2-and-a-Bit

Eric Lehman1 and Rina Panigrahy2

1 Google, Mountain View, CA. Email:elehman@google.com
2 Microsoft Research, Mountain View, CA. Email:rina@microsoft.com

Abstract. The study of hashing is closely related to the analysis of balls and bins;
items are hashed to memory locations much as balls are throwninto bins. In par-
ticular, Azar et. al. [2] considered putting each ball in theless-full of two random
bins. This lowers the probability that a bin exceeds a certain load from exponen-
tially small to doubly exponential, giving maximum loadlog log n + O(1) with
high probability. Cuckoo hashing [20] draws on this idea. Each item is hashed
to two buckets of capacityk. If both are full, then the insertion procedure moves
previously-inserted items to their alternate buckets to make space for the new
item. In a natural implementation, the buckets are represented by partitioning a
fixed array of memory into non-overlapping blocks of sizek. An item is hashed
to two such blocks and may be stored at any location within either one. We ana-
lyze a simple twist in which each item is hashed to twoarbitrary size-k memory
blocks. (So consecutive blocks are no longer disjoint, but rather overlap byk − 1
locations.) This twist increases the space utilization from 1 − (2/e + o(1))k to
1 − (1/e + o(1))1.59k in general. Fork = 2, the new method improves utiliza-
tion from 89.7% to 96.5%, yet lookups access only two items at each of two
random locations. This result is surprising because the opposite happens in the
non-cuckoo setting; if items are not moved during later insertions, then shifting
from non-overlapping to overlapping blocks makes the distribution less uniform.

1 Introduction

The study of hashing is closely related to the analysis of balls and bins; items are hashed
to memory locations much as balls are thrown into bins. Simple twists on balls and bins
processes have produced surprising observations and led tobreakthroughs in hashing
methods.

In particular, it is well-known that ifn balls are thrown inton bins independently
and randomly, then the largest bin gets(1+ o(1)) lnn/ ln lnn balls with high probabil-
ity. Azar et. al. [2] showed that assigning each ball to the less-full of two random bins
makes the final distribution far more uniform. In fact, the probability that a bin exceeds
a certain load drops from exponentially small to doubly exponential. This leads to the
concept of two-way hashing, where the most-loaded bucket gets log log n+O(1) items
with high probability. So dramatic is this improvement thatit can be used in practice to
efficiently implement hash lookups in packet routing hardware [5]. The lookup opera-
tion must search for an item in two buckets, but these operations can be parallelized in
hardware by placing two different hash tables in separate memory components. More
generally, if each item is hashed tod ≥ 2 buckets, then the maximum load improves to
log log n/ log d + O(1).

Cuckoo hashing [20, 12] extends two-way hashing by moving previously-inserted
items to their alternate buckets to make space for a new item.Pagh and Rodler [20]
showed that even with buckets of capacity one, moving items during inserts gives a
space utilization of50% with high probability. Several generalizations of cuckoo hash-
ing perform even better. Fotakis et al [12] suggested hashing each item tod > 2 buckets,
and Dietzfelbinger and Weidling [9] suggested using buckets with capacityk > 1. One
appealing choice is to hash items tod = 2 buckets of capacityk = 2, which gives
89.7% [21, 14, 6] space utilization. (The latter two references improve upon the ear-
lier, weaker estimate.) More generally, the analysis of cuckoo hashing is related to the
appearance of dense subgraphs in random graphs. For example, the space utilization
achieved by cuckoo hashing where items are hashed tod = 2 buckets of capacityk is
directly related to the threshold at which a dense subgraph appears in the random graph
G(n, p). The space utilization is preciselyp/k wherep is the threshold at which a dense
subgraph with ratio of edges to vertices exceedingk appears. Analysis of this threshold
in [14, 6] implies a space utilization of about1 − (2/e + o(1))k.

In a natural implementation of two-way cuckoo hashing, the buckets are represented
by partitioning a fixed array of memory into non-overlappingblocks of sizek. Each
item is hashed to two such blocks and may be stored at any of the2k memory locations
within those blocks. This implementation avoids expensivedynamic memory alloca-
tion. Furthermore, a lookup searches just two contiguous memory segments, which is
highly desirable in practice. For example, after an initialread from a random location
in main memory or on a disk, subsequent bytes can often be readorders of magnitude
faster. (This is a heuristic, not a certainty; for example, the extra bytes might lie beyond
a cached portion of memory.) And all2k memory locations can be probed in parallel in
a hardware implementation.

We suggest another simple twist that significantly improvesspace utilization while
preserving the desirable property of only two random memoryaccesses per lookup.
Previously, the hash table memory was partitioned into disjoint blocks of sizek. Now,
we regard every set ofk consecutive memory locations as a block. So consecutive
blocks are no longer disjoint, but rather overlap byk − 1 memory locations. As be-
fore, each item is hashed to two blocks and may be stored at anymemory location
within those blocks. We show that this simple change improves the space utilization
from 1− (2/e + o(1))k to 1− (1/e + o(1))1.59k. Experimentally, we demonstrate that
space utilization improves from89.7% to96.5% in the practically-important case where
each item is hashed to two blocks of capacityk = 2. This result is surprising because
the opposite happens in the non-cuckoo setting; if items arenot moved during later in-
sertions, then shifting from non-overlapping to overlapping blocks actually makes the
distribution of items less uniform.

2 Related Work

Balls and bins analysis still continues to produce surprising results. Vöcking [24] ob-
served that asymmetry helps in load balancing. If each ball is mapped tod bins with
equal load, then the ball should be inserted in the leftmost bin. With this simple change,

the maximum load drops toO(log log n/d). He also showed that breaking ties in this
way is the best possible policy to minimize the maximum load.

Berenbrinket al. [4] extended the balls and bins analysis to the case where the
number of ballsm is greater than the number of binsn, showing that the difference
in the height of the minimum and maximum bin is independent ofm. Precisely, it
is log log n

ln d
+ O(1). Corresponding results hold when ties are broken asymmetrically.

Balls and bins on graphs has been analyzed in [17]. Weighted analysis of balls and bins
was studied in [23]. Multi-choice hashing with a limited number of moves was studied
in [21]. Extensive work has been done in the area of parallel balls and bins [1] and
the related study of algorithms to emulate shared memory machines (as for example,
PRAMs) on distributed memory machines (DMMs) [8, 7, 13, 22].

More recent works have studied the idea of using a small CAM (content-addressable
memory) in conjunction with cuckoo hashing to lower the insert/delete time [18, 19].
Arbitman et al. [25] proved that it is possible to get constant time for all operations
with about50% space utilization by using a small auxiliary hash table. Theappearance
of dense subgraphs in random graphs was studied in [14, 6]. These build upon earlier
works that investigate the appearance of ak-core – a subgraph with minimum degree at
leastk – in random graphs [3, 16].

Other related work includes the first static dictionary datastructure with constant
look up time by Fredman, Komlos and Szemeredi [15] that was generalized to a dy-
namic data structure by Dietzfelbinger et al. in [11] and [10]. In practice, however,
these algorithms are more complex to implement than cuckoo hashing.

3 Our Contribution

We propose a new twist on multi-choice hashing that significantly improves memory
utilization, yet accesses only two small regions of memory.Our main theorem compares
this new variation to the algorithm analyzed in [14, 6]. In both algorithms, each item is
hashed to two memory blocks of sizek. The item may be stored at any location in
either block, and previously-inserted items may be moved totheir alternate locations
to make space for the new item. The lookup operation searchesthek locations in each
of the two blocks associated with the item sought. The distinction is that the earlier
ALG-DISJOINT-CUCKOO algorithm hashes items to only a restricted set of memory
blocks; specifically, the hash table memory is initially partitioned into disjoint blocks of
sizek, and items are hashed only to those blocks. In our new twist, ALG-OVERLAP-
CUCKOO, an item may be hashed to any two size-k memory blocks. Our main result
states that this new algorithm has better space utilizationfor largek. Let αk denote the
utilization for ALG-CUCKOO-DISJOINT andβk for ALG-CUCKOO-OVERLAP.

Theorem 1. For largek, αk < βk. Specifically,

– αk ≤ 1 − (2/e − o(1))k

– βk ≥ 1− (1/e + o(1))(2−γ)k, whereγ is the maximum value of the function−x +
x log(2(1 + 1/x)), which is about0.41.

Experimentally, we show that memory utilization improves significantly for small,
practical values ofk as well. For example,α2 = 89.7% while β2 = 96.5%.

This result is surprising, because the opposite effect is observed in the “non-cuckoo”
setting; that is, when previously-inserted items are not allowed to be moved to make
space for a new item. Again, we compare two algorithms. In both cases, there aren balls
andn bins in a line. For each ball, we randomly pick two blocks ofk consecutive bins
and throw the ball into the least-loaded bin in the less-loaded block. As before, ALG-
NOMOVE-DISJOINT uses only blocks from an initial, disjointpartition, while ALG-
NOMOVE-OVERLAP uses all blocks. In this case, using overlapping blocks actually
leads to a less uniform distribution:

Theorem 2. [17] For large k,

– with high probability, ALG-NOMOVE-DISJOINT gives a maximum load on a bin
of O(log log n/k) and

– with high probability, ALG-NOMOVE-OVERLAP gives a maximumload on a bin
of Ω(log log n/ log k).

Intuition: Here is a simple intuition as to why overlapping blocks give higher space
utilization for cuckoo-hashing than disjoint blocks. Consider the casek = 2 with dis-
joint blocks. Note that in cuckoo-hashing, we perform a breadth-first-search for an
empty bin by first looking at the two blocks where a new ball hashes. If these are
full, then we look at the4 alternate blocks where the4 balls in those blocks could go.
Continuing recursively, we visit2k blocks at a depth ofk. Thus the search tree is binary
for ALG-CUCKOO-DISJOINT. We will argue that this search tree has a slightly higher
degree for ALG-CUCKOO-OVERLAP, which uses overlapping blocks. The faster this
search tree branches, the more likely we are to find an empty bin before getting stuck;
that is, before reaching leaves whose potential children are all already in the tree. In the
ALG-CUCKOO-OVERLAP variant, the two balls in a full blockB can potentially be
moved to other bins besides those in their alternate blocks.This happens if one of the
blocks of these balls overlaps partially withB – in this case, such a ball can also be
displaced to the other bin in this partially-overlapping block. Thus the branching factor
of the search tree is slightly more than2. We will demonstrate this phenomena in the
experiment section.

Our analysis assumes that each item is hashed to two blocks ina single hash table.
But essentially the same analysis applies to the case where an item is hashed to one
block in each of two, separate tables.

4 Theoretical Analysis

We will now prove the main theorem 1. We are comparing two cuckoo-based al-
gorithms that access two random blocks of sizek each. Algorithm ALG-CUCKOO-
DISJOINT accesses from a collection of disjoint blocks at offsets that are multiples of
k; whereas ALG-CUCKOO-OVERLAP picks blocks at random offsets. Let us say we
havenk bins and we are adding balls one by one till we overflow.

For any balls and bins process, a configuration of balls and bins can be viewed as a
hypergraphG where each bin is a node and each ball is a hyperedge connecting its bin
choices. The following lemma is well known.

Lemma 3. For any cuckoo algorithm (ALG-CUCKOO-DISJOINT or ALG-CUCKOO-
OVERLAP) a set of ball insertions succeeds iff there is no subgraph with more hyper-
edges then vertices.

Remark 4.For ALG-CUCKOO-DISJOINT, we can think of a block as a single ver-
tex. Thusαk corresponds to the number of edges in a random graphG(n, p) when a
subgraph with density (ratio of edges to vertices) more thank appears.

Proof. The “only if” part is straightforward. For the “if” part, consider the case when
a ball insertion fails. We will look at another bipartite graph with balls on one side and
bins on another and an edge between them if the ball is allowedto be placed in the bin.
So each ball has degreek. Further, we mark an edge between a ball and a bin red if the
ball actually chooses that bin and blue otherwise. Now, for anew ball insert, if there
is an alternating path of red and blue edges that leads to an empty bin, then we can
successfully insert the ball using a sequence of cuckoo moves. So a ball insert fails iff
all bins reachable through such alternating paths are full.In such a case, look at the set
of bins reachable using such alternating paths from a new ball whose insertion failed.
This set of bins is a subgraph with more balls than bins because all bins have a ball
plus there is the new ball that could not be inserted. This subgraph of the bipartite graph
corresponds to a subgraph in the hypergraphG with more hyperedges than nodes.�

Our main theorem follows from the following two claims. We will sometimes drop
the subscriptk for convenience. Letα, β denote1−α and1−β respectively. Similarly
for other variables.

Claim. [6, 16]αk ≤ 1 − (2/e − o(1))k

Proof. Although the exact threshold forαk has been computed before in [6, 16], we
present a simpler analysis of the asymptotic formula. For a random graph onn nodes
with k(1−α)n edges, let us find the fractionf of nodes that have degree at mostk−1.
This degree distribution of the nodes is given by the Poissondistribution with mean
2k(1 − α) andf is at least the fraction of nodes with degree exactlyk − 1.

f ≥ e−2k(1−α) (2k(1 − α))k−1

(k − 1)!

= e2kα 1

2(1 − α)
(1 − α)ke−2k (2k)k

k!

= ekα 1

kO(1)
e−2k (2k)k

(k/e)k

= ekαk−O(1)(2/e)k

So if we ignore thisf fraction of the nodes, the remaining(1 − f)n nodes have at
leastk(1−α)n+ fn edges; let us check when the density (ratio of edges to vertices) in

the remaining subgraph is more thank. This happens ifk(1 − α)n + fn > k(1 − f)n
or (k + 1)f > kα or f > k

k+1α

Plugging in the previous expression forf , we needekαk−O(1)(2/e)k > k
k+1α or

α < k−O(1)ekα(2/e)k = ekα(2/e + o(1))k

Clearlyα = (2/e − o(1))k satisfies this. Note that although we used the expected
value off , the actual fraction is concentrated close to this with highprobability by
Chernoff bounds.�

Next we will show a lower bound forβk. We will make use of the following simple
claims.

Claim. If 0 ≤ p ≤ q ≤ 1 and q is allowed to vary, the functionq log(p
q
) + (1 −

q) log(1−p
1−q

) is decreasing inq.

Proof. Taking derivative with respect toq, we getlog(p
q
) − log(1−p

1−q
) which is nega-

tive. �

Claim. Letγ denote the maximum value of the functiong(x) = −x+x log(2(1+1/x))
whenx > 0. Thenγ ≤ 0.41.

The claim can be verified by a simple plot of the function.

Claim. βk ≥ 1 − (1/e + o(1))(2−γ)k

Proof. We need to demonstrate a value ofβ = (1/e + o(1))(2−γ)k for which there is
almost surely no subgraph in the hypergraph with more edges than vertices. We will
upper bound the probability of finding a subset of bins with more edges than bins and
argue that this is unlikely with high probability. Considernk nodes (bins) andβnk hy-
peredges (balls) where each hyperedge chooses two sets ofk contiguous bins. Although
in our algorithm the bins are arranged in a line, for simplicity of analysis we will think
of them as arranged in a circle. Any subset of bins can be viewed as a union of con-
tiguous regions in this circle. Look at a subsetS of nodes, say it consists ofr = εn
contiguous regions and supposet = δnk bins fall outsideS. A sequence ofk bins can
be viewed as a segment of lengthk. If this is to lie in S, then both its endpoints must
be in one of ther contiguous regions inS. Of thenk possible segments of lengthk at
mostnk − r(k − 1) − t = nk(1 − δ − ε(1 − 1/k)) lie in S. The probability that a
hyperedge falls in the nodes inS is p = (1 − δ − ε(1 − 1/k))2. For S to have more
edges than nodes, the required fraction of edges to fall inS is at leastq = (1 − δ)/β
(note thatδ ≥ β). Let x = δ/ε.

First, a simple calculation will show that unlessδ = O(1/
√

k) andε = Ω̃(kβ2),
the probability of finding such a high-density subgraph onS is exponentially small. To
see that, note that the subset of(1 − δ)nk bins inS is expected to get no more than
(1 − δ)2βnk edges. To get(1 − δ)nk edges, it has to get at least factor1

β(1−δ) ≥
1 + δ + β of the expectation. By Chernoff bounds, the probability this happens it at
moste−Ω(δ+β)2nk. The number of ways of choosingS is at most the number of ways
of choosing the2εn endpoints of the regions, which is

(

n
2εn

)

≤ (e
2ε

)2εn ≤ e2ε log e

2ε
n.

So the total probability is at mosten(2ε log e

2ε
−kΩ(δ+β)2). This is exponentially small

unless the exponent is nonnegative, which happens whenε log(1/ε) ≥ kΩ(δ + β)2.
Sinceδ > 0, we getε > Ω̃(kβ2). Also sinceε log(1/ε) < 1, we getkδ2 ≤ O(1) or
δ ≤ O(1/

√
k).

Next, we will do a more detailed calculation of the probability. The number of ways
of choosing the subsetS is at most the number of ways of first choosing ther starting
points of ther regions which is at most

(

nk
εn

)

, and then choosing ther closing points of
the regions so that the total size of ther segments isδnk. This can be done in at most
(

δnk
εn

)

ways.
ForS to have more edges than nodes, it must get at leastqN edges, whereN = nβk

is the total number of edges andq ≥ (1 − δ)/β ≥ 1 − δ. The probabilityL, that a set
S getsqN edges is

(

N
qN

)

pqN (1 − p)N(1−q). Taking natural log, we get.:

log L = log

(

N

qN

)

+ qN log p + qN log p

≤ N(−q log q − q log q̄) + qN log p + qN log p

= N(q log(p/q) + q log(p/q))

= βnk(q log(p/q) + q log(p/q))

= βnka

wherea = q log(p/q) + q log(p/q). Since,1 − δ ≤ q ≤ 1, a as a function ofq is
maximized whenq = 1 − δ, so

a ≤ (1 − δ) log
(1 − δ − ε(1 − 1/k))2

1 − δ
+ δ log

2(δ + ε)

δ

≤ (1 − δ)(−2(δ + ε)) − (1 − δ) log(1 − δ) + δ log
2(δ + ε)

δ

≤ −2(1 − δ)(δ + ε) + δ + δ log
2(δ + ε)

δ

≤ (1 − δ)(−2ε − 2δ) + (1 − δ)(δ + δ log
2(δ + ε)

δ
)

≤ (1 − o(1))(−2ε − δ + δ log
2(δ + ε)

δ
)

≤ (1 − o(1))ε(−2 − x + x log 2(1 + 1/x))

The total log probability of finding some componentS that has more edges than
vertices is at most

log[

(

nk

nε

)(

δnk

εn

)

L]

≤ log

(

nk

nε

)

+ log

(

δnk

εn

)

+ nkβa

= nε log
ek

ε
+ nε log

eδk

ε
+ nk(1 − o(1))ε(−2 − x + x log 2(1 + 1/x))

= nε log
ek

ε
+ nε log ekx + nk(1 − o(1))ε(−2 − x + x log 2(1 + 1/x))

= nf

where

f = ε(log
ek

ε
+ log(ekx) + k(1 − o(1))(−2 − x + x log 2(1 + 1/x)))

= ε(log
e2k2

ε
+ k(1 − o(1))(o(x) − 2 − x + x log 2(1 + 1/x)))

≤ ε(log
e2k2

ε
+ k(1 − o(1))(−2 + γ + o(1)))

= ε(log
e2k2

ε
+ k(1 − o(1))(−2 + γ)).

Observe that the expression boundingf is independent ofn. So if for a givenβ
for all ε andδ, f is negative and less than some fixed value independent ofn, then it
means that the probability that there is a high density setS is exponentially small. Also
ε cannot be arbitrarily small as we know that it isΩ̃(kβ2). Now forf to be non negative
we needlog e2k2

ε
> (1 − o(1))k(2 − γ) or ε < e−(1−o(1))(2−γ)k. We also need to add

the probability over all possible values ofr andt for S but there are onlyn2 possible
values which cannot compensate for an exponentially decreasing function; so w.h.p. no
such setS exists.

Also from the expressionf = ε(log e2k2

ε
+ k(1− o(1))(o(x)− 2− x+ x log2(1 +

1/x))) ≤ ε(log e2k2

ε
+k(1−o(1))(−x+x log 2+x log(1+1/x)) ≤ ε(log e2k2

ε
+k(1−

o(1))(−x log e/2+1) it is clear that forf to be non negativex ≤ O(1
k

log e2k2

2ε
) giving

δ ≤ O(1
k

log e2k2

2ε
)ε ≤ e−(1−o(1))(2−γ)k. This gives,β ≤ δ < e−(1−o(1))(2−γ)k ≤

(1/e + o(1))(2−γ)k. �

5 Experiments

Experiments suggest that using overlapping blocks improves memory utilization sub-
stantially even for smallk. This implies that our twist gives a significant practical im-
provement. The situation is summarized in the figure below:

 88

 90

 92

 94

 96

 98

 100

 2 3 4 5 6

%
 M

em
or

y
U

til
iz

at
io

n

k

Overlapping
Disjoint

For the basic case of buckets with capacityk = 2, memory utilization increases
from89.7% to96.5% when overlapping is allowed. For largerk, the overlapping scheme
rapidly approaches full memory utilization:99.44% for k = 3 and99.90% for k = 4.
Each percentage is from twenty trials using hash tables withan absolute capacity of220

items and “random” hash functions based on a cryptographic-quality pseudorandom
number generator. Items were inserted into the hash table one-by-one until some item
could not be added. The results were notably stable. In each case, the standard deviation
was a few hundredths of a percent, so error bars would be invisible in the diagram. Such
strongly-predictable behavior is appealing from a practical standpoint.

Other experimental data gives additional insight into thisperformance gap. Recall
that the cuckoo insertion algorithm performs a breadth-first search for an empty location
in the hash table. The table below shows the number of search tree nodes at each depth
for a typical insertion using various hashing schemes. The structure of these trees is
random in all cases, but much more noticeably for the new scheme, so three examples
are given for that case:

of Nodes at Depth
Each Item is Hashed to: 1 2 3 4 5 6

3 buckets, capacity 1 3 6 12 24 48 96
4 buckets, capacity 1 4 12 36 108 324 972

2 disjoint buckets, capacity 24 8 16 32 64 128
2 overlapping blocks, capacity 24 11 24 55 136 330

same as above 4 9 20 49 122 305
same as above 4 10 24 62 150 364

For example, if each item is hashed to 4 buckets of capacity 1,as on the second
line, then the root of the search tree has 4 children. Items occupying the corresponding
locations can each move to 3 other slots, so nodes lower in thesearch tree have 3
children each. This gives the sequence 4, 12, 36, 108, 324, 972. In contrast, suppose
each item is hashed to two disjoint buckets of capacityk = 2 as on the third line.
Again, the root of the search tree has 4 children. But items inthose slots can be moved
to at mosttwoslots not already explored. Thus, lower nodes in the search tree have only
2 children instead of 3.

The last three lines show data for the new scheme introduced here. Once again, the
root has 4 children. But now items occupying those location can be moved to eithertwo
or threeother slots with equal probability. Thus, the width of the search tree is greater
than for the disjoint-buckets approach and lies somewhere between the 3- and 4-bucket
schemes shown on the first two lines. Since the new scheme accesses only two small,
contiguous regions of memory, one might regard it as 3.5-waycuckoo hashing for the
price of 2-and-a-bit.

References

1. M. Adler, S. Chakrabarti, M. Mitzenmacher, and L. Rasmussen. Parallel randomized load
balancing.In Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of
Computing, pages 238–247, May 1995.

2. Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations. SIAM Journal on
Computing, 29:180-200, 1999.A preliminary version of thispaper appeared in Proceedings
of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing, 1994.

3. S. Spencer B. Pittel and N. Wormald. Sudden emergence of a giant k-core in a random graph.
J. Combin. Theory Ser. B 67 (1996), no. 1, pages 111–151.

4. Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking. Balanced alloca-
tions: The heavily loaded case.SIAM J. Comput., 35(6):1350–1385, 2006.

5. A. Broder and M. Mitzenmacher. Using multiple hash functions to improve ip lookups.
Proceedings of IEEE INFOCOM 2001, pages 1454–1463, 2001.

6. Julie Anne Cain, Peter Sanders, and Nick Wormald. The random graph threshold for k-
orientiability and a fast algorithm for optimal multiple-choice allocation. InSODA ’07:
Proceedings of the eighteenth annual ACM-SIAM symposium onDiscrete algorithms, pages
469–476, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics.

7. A. Czumaj, F. Meyer auf der Heide, and V. Stemann. Shared memory simulations with
triple-logarithmic delay.Lecture Notes in Computer Science, 979, pages 46–59, 1995.

8. M. Dietzfelbinger and F. Meyer auf der Heide. Simple efficient shared memory simulations.
Proc. of the 5th SPAA (1993), pages 110–119.

9. M. Dietzfelbinger and P. Woelfel. Almost random graphs with simple hash functions.35th
STOC, pages 629–638, 2003.

10. Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal class of hash
functions and dynamic hashing in real time.In Proceedings of the 17th International Col-
loquium on Automata, Languages and Program- ming (ICALP ’90), volume 443 of Lecture
Notes in Computer Science, pages 6–19. Springer–Verlag, Berlin, 1990.

11. Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide, Hans
Rohnert, and Robert E. Tarjan. Dynamic perfect hashing: Upper and lower bounds.SIAM J.
Comput., 23(4), pages 738–761, 1994.

12. Peter Sanders Dimitris Fotakis, Rasmus Pagh and Paul Spirakis. Space efficient hash tables
with worst case constant access time.20th Annual Symposium on Theoretical Aspects of
Computer Science, 2003.

13. C. Scheideler F. Meyer auf der Heide and V. Stemann. Exploiting storage redundancy
to speed up randomized shared memory simulations.Theoretical Computer Science,
162(2):245-281, 1996. Preliminary version in Proc. of the 12th STACS (1995), pages 267–
278.

14. Daniel Fernholz and Vijaya Ramachandran. The k-orientability thresholds for gn, p. In
SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 459–468, Philadelphia, PA, USA, 2007. Society for Industrial and Applied
Mathematics.

15. Michael L. Fredman, Janos Komlos, and Endre Szemeredi. Storing a sparse table with o(1)
worst case access time.J. Assoc. Comput. Mach., 31(3), pages 538–544, 1984.

16. Svante Janson and Malwina J. Luczak. A simple solution tothe k-core problem.Random
Struct. Algorithms, 30(1-2):50–62, 2007.

17. Krishnaram Kenthapadi and Rina Panigrahy. Balanced allocation on graphs. InSODA ’06:
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
434–443, New York, NY, USA, 2006. ACM.

18. A. Kirsch and M. Mitzenmacher. Using a queue to de-amortize cuckoo hashing in hard-
ware. 45th Allerton Conference on Communication, Control, and Compu-ting, pages 751–
758, 2007.

19. A. Kirsch, M. Mitzenmacher, and U. Wieder. More robust hashing: Cuckoo hashing with a
stash.16th ESA, pages 611-622, 2008.

20. R. Pagh and F. Rodler. Cuckoo hashing.Journal of Algorithms 51 (2004), p. 122-144. A
preliminary version appeared in proceedings of the 9th Annual European Symposium on
Algorithms., pages 121–133, 2001.

21. Rina Panigrahy. Efficient hashing with lookups in two memory accesses. InSODA ’05:
Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages
830–839, Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

22. Jan H. M. Korst Peter Sanders, Sebastian Egner. Fast concurrent access to parallel disks.
Algorithmica, 35(1). A Preliminary version appeared in SODA 2000, pages 21–55,2003.

23. Kunal Talwar and Udi Wieder. Balanced allocations: the weighted case. InSTOC ’07:
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 256–
265, New York, NY, USA, 2007. ACM.

24. Berthold Vöcking. How asymmetry helps load balancing.J. ACM, 50(4):568–589, 2003.
25. Moni Naor Yuriy Arbitman and Gil Segev. De-amortized cuckoo hashing: Provable worst-

case performance and experimental results. 2009.

