An Improved Algorithm Finding Nearest
Neighbor Using Kd-trees

Rina Panigrahy

Microsoft Research, Mountain View CA, USA

rina@microsoft.com

Abstract. We suggest a simple modification to the Kd-tree search algo-
rithm for nearest neighbor search resulting in an improved performance.
The Kd-tree data structure seems to work well in finding nearest neigh-
bors in low dimensions but its performance degrades even if the number
of dimensions increases to more than two. Since the exact nearest neigh-
bor search problem suffers from the curse of dimensionality we focus on
approximate solutions; a c-approximate nearest neighbor is any neighbor
within distance at most ¢ times the distance to the nearest neighbor. We
show that for a randomly constructed database of points if the query
point is chosen close to one of the points in the data base, the traditional
Kd-tree search algorithm has a very low probability of finding an approx-
imate nearest neighbor; the probability of success drops exponentially in
the number of dimensions d as e~ (¥/¢) . However, a simple change to the
search algorithm results in a much higher chance of success. Instead of
searching for the query point in the Kd-tree we search for a random set of
points in the neighborhood of the query point. It turns out that search-
ing for e(?/¢) guch points can find the c-approximate nearest neighbor
with a much higher chance of success.

1 Introduction

In this paper we study the problem of finding the nearest neighbor of a query
point in a high dimensional (at least three) space focusing mainly on the Euclid-
ean space: given a database of n points in a d dimensional space, find the nearest
neighbor of a query point. This fundamental problem arises in several appli-
cations including data mining, information retrieval, and image search where
distinctive features of the objects are represented as points in RY [28][30L6l[7112]
27,10,

One of the earliest data structures proposed for this problem that is still
the most commonly used is the Kd-tree [3] that is essentially a hierarchical de-
composition of space along different dimensions. For low dimensions this struc-
ture can be used for answering nearest neighbor queries in logarithmic time
and linear space. However the performance seems to degrade as a number of
dimensions becomes larger than two. For high dimensions, the exact problem
of nearest neighbor search seems to suffer from the curse of dimensionality;
that is, either the running time or the space requirement grows exponentially
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in d. For instance Clarkson [5] makes use of O(n/%/210%8)) space and achieves
0(200d1o8d) 1og n) time. Meiser [24] obtains a query time of O(d® logn) but with
O(n4+%) space.

The situation is much of a better for finding an approximate solution whose
distance from the query point is at most 1 + e times its distance from the
nearest neighbor [2L211[18,22]. Arya et. al. [2] use a variant of Kd-trees that
they call BDD-trees (Balanced Box-Decomposition trees) that performs (1 + €)-
approximate nearest neighbor queries in time O(d[1 + 6d/e]%logn) and linear
space. For arbitrarily high dimensions, Kushilevitz et. al. [22] provide an algo-
rithm for finding an (1 + €)-approximate nearest neighbor of a query point in
time O(dlogn) using a data structure of size (nd)°(/<"). Since the exponent
of the space requirement grows as 1/e2, in practice this may be prohibitively
expensive for small e. Indeed, since even a space complexity of (nd)? may be too
large, perhaps it makes more sense to interpret these results as efficient, practi-
cal algorithms for c-approximate nearest neighbor where ¢ is a constant greater
than one. Note that if the gap between the distance to the nearest neighbor and
to any other point is more than a factor of ¢ then the c-approximate nearest
neighbor is same as the nearest neighbor. So in such cases — which may very well
hold in practice — these algorithms can indeed find the nearest neighbor.

Indyk and Motwani [I8] provide results similar to those in [22] but use hashing
to perform approximate nearest neighbor search. They provide an algorithm for
finding the c-approximate nearest neighbor in time O(d + n'/¢) using an index
of size O(n't1/¢) (while their paper states a query time of O(dn'/°), if d is
large this can easily be converted to O(d + n!/¢) by dimension reduction). In
their formulation, they use a locality sensitive hash function that maps points
in the space to a discrete space where nearby points out likely to get hashed
to the same value and far off points out likely to get hashed to different values.
Precisely, given a parameter m that denotes the probability that two points at
most r apart hash to the same bucket and g the probability that two points more
than cr apart hash to the same bucket, they show that such a family of hash
functions can find a c-approximate nearest neighbor in O(d + nP) time using a
data structure of size O(n'*?) where p = log(1/m)/log(1/g). Recently, Andoni
and Indyk [1] obtained and improved locality sensitive hash function for the
Euclidean norm resulting in a p value of O(1/c?) matching the lower bounds for
locality sensitive hashing method from [25]. An information theoretic formulation
of locality sensitive hashing was studied in [26] resulting in a data structure of
linear size; the idea there was to perturb the query point before searching for it
in the hash table and do this for a few iterations.

However, to the best of our knowledge the most commonly used method in
practice is the old Kd-tree. We show that a simple modification to the search
algorithm on a Kd-tree can be used to find the nearest neighbor in high dimen-
sions more efficiently. The modification consists of simply perturbing the query
point before traversing the tree, and repeating this for a few iterations. This is
essentially the same idea from [20] on locality sensitive hash functions applied
to Kd-trees. For a certain database of random points if we choose a query point
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close to one of the points in the database, we show that the traditional Kd-tree
search algorithm has a very low probability of finding the nearest neighbor —
e~ 2(d/¢) where ¢ is a parameter that denotes how much closer the query point
is to the nearest neighbor than to other points in the database. Essentially ¢
is the inverse ratio of the distance of the nearest query point to the nearest
and the second nearest neighbor; so one can think of the nearest neighbor as a
c-approximate nearest neighbor. Next we show that the modified algorithm sig-
nificantly improves the probability of finding the c-approximate nearest neighbor
by performing e?(?/¢) iterations. One may be tempted to think that if the tradi-
tional algortithm has a success probability of e~ (4/¢) perhaps we could simply
repeat it e?(@/¢) times to boost the probability to a constant. However, this
doesn’t work in our situation since repeating the same query in a tree will al-
ways give the same result. One can use a different (randomly constructed) tree
each time but this will blow up the space requirement to that of e?(4/¢) trees.
Our result essentially shows how to boost the probability while using one tree
but by perturbing the query point each time. The intuition behind this approach
is that when we perturb the query point and then search the tree, we end up
looking not only at one leaf region but also the neighboring leaf regions that are
close to the query point thus increasing the probability of success. This is similar
in spirit to some of the variants of Kd-trees such as [2] that maintain explicit
pointers from each leaf to near by leaves; our method on the other hand per-
forms this implicity without maintaining pointers which keep the data structure
simple. We also provide empirical evidence through simulations to show that
the simple modification results in high probability of success in finding nearest
neighbor search in high dimensions.

We apply the search algorithms on a planted instance of the nearest neighbor
problem on a database of n points chosen randomly in a unit d-dimensional
cube. We then plant a query point close of one of the database points p (chosen
randomly) and then ask the search algorithm for the nearest neighbor of our
planted query point. The query point is chosen randomly on a ball of a certain
radius around p so that it is much closer to p than to any other point in the
database — by a factor of ¢. We measure the efficacy of an algorithm by looking
at the probability that it returns the nearest neighbor p on query ¢. It is for
this distribution that we will show a low success probability for the traditional
Kd-tree search algorithm and a high probability of success for our modified
algorithm.

In our experiments we observed that our modified algorithm indeed boosts
the probability of success. For instance in a database of million points in 3
dimensions we plant a query point close to a random database point; the query
point is closer to its nearest neighbor than any other point by a factor of ¢ =
2. For this instance we find that the Kd-tree search algorithm succeeds with
probability 74%; whereas, this can be boosted to about 90% byrunning our
modified algorithm with only 5 iterations. The success probability increases with
more iterations.
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2 Preliminaries

2.1 Problem Statement

Given a set S of n points in d-dimensions, our objective is to construct a data
structure that given a query finds the nearest (or a c-approximate) neighbor. A
c-approximate near neighbor is a point at distance at most ¢ times the distance to
the nearest neighbor. Alternatively it can be viewed as finding the exact nearest
neighbor when the second nearest neighbor is more than c¢ times the distance to
the nearest neighbor.

We also work with the following decision version of the c-approximate nearest
neighbor problem: given a query point and a parameter r indicating the distance
to its nearest neighbor, find any neighbor of the query point that is that distance
at most cr. We will refer to this decision version as the (r, ¢r)-nearest neighbor
problem and a solution to this as a (r, cr)-nearest neighbor. It is well known that
the reduction to the decision version adds only a logarithmic factor in the time
and space complexity [I8[I3]. We will be working with the euclidian norm in R?
space.

2.2 Kd-trees

Although many different flavors of Kd-trees have been devised, their essential
strategy is to hierarchically decompose space into a relatively small number of
cells such that no cell contains too many input objects. This provides a fast way
to access any input object by position. We traverse down the hierarchy until
we find the cell containing the object. Typical algorithms construct Kd-trees by
partitioning point sets recursively along with different dimensions. Each node in
the tree is defined by a plane through one of the dimensions that partitions the
set of points into left/right (or up/down) sets, each with half the points of the
parent node. These children are again partitioned into equal halves, using planes
through a different dimension. Partitioning stops after logn levels, with each
point in its own leaf cell. The partitioning loops through the different dimensions
for the different levels of the tree, using the median point for the partition. Kd-
trees are known to work well in low dimensions but seem to fail as the number
of dimensions increase beyond three.
Notations:

— B(p,r): Let B(p,r) denote the sphere of radius r centered at p a point in
R<; that is the set of points at distance r from p.

— I(X): For a discrete random variable X, let I(X) denote its information-
entropy. For example if X takes N possible values with probabilities
wy, Wa, ..., wy then I[(X) = I(wy,ws,..,wy) = > I(w;) = > —w;logw;.
For a probability value p, we will use the overloaded notation I(p,1 — p) to
denote —plogp — (1 — p)log(l — p)

— N(u,7r),n(z): Let N(u,r) denote the normal distribution with mean p and
variance r2 with probability density function given by T\}Qﬂe*(w*“ﬁ/ (@),

Let n(z) denote the function \/1%6*"”2/2.
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— N%p,r): For the d-dimensional Euclidean space, for a point p =
(p1,p2, ..., pa) € R% let N¢(p,r) denote the normal distribution in R? around
the point p where the ith coordinate is randomly chosen from the normal
distribution N (p;,/v/d) with mean p; and variance r2/d. It is well known
that this distribution is spherically symmetric around p. A point from this
distribution is expected to be at root-mean squared distance r from p; in
fact, for large d its distance from p is close to r with high probability (see
for example lemma 6 in [I§])

— erf(x),®(x): The well-known error function erf(z) = \/Qﬂ fom e du, is
equal to the probability that a random variable from N(0,1/v/2) lies be-

tween —z and z. Let &(z) = \/;ﬂ [ 2 de = 1_8”5”/‘/2). For = > 0,
&(z) is the probability that a random variable from the distribution N(0,1)
is greater than x.

— Pinv(k,r): Let Pinv(k,r) denote the distribution of the time it takes to
see k events in a poisson process of rate r. Pinv(1l,r) is the exponential

distribution with rate r.

3 An Improved Search Algorithm on Kd-trees

We will study the nearest neighbor search problem on the following planted
instance in a random database. Consider a database of points chosen randomly
and uniformly from the unit cube [0, 1]%. We will then choose a random database
point p and implant query point ¢ that is about ¢ times closer to p than its
distance to any other database point. Success of an algorithm is measured by
the probability of finding the nearest neighbor. Let r denote the distance of a
random point in [0, 1]¢ to the nearest database point. We will show that if the
query point is chosen to be a random point at distance about r/c¢ around p (
precisely, ¢ is chosen from N%(p,r/c) ) then the probability that a Kd-tree search
algorithm reports the nearest neighbor p is about e~ (/)

We then propose a minor modification to the search algorithm so as to boost
this probability to a large value. The modification is simple: Instead of search-
ing for the query point ¢ in the Kd-tree, perturb it randomly by distance r/c
(precisely, the perturbed point is chosen from N%(q,7/c)) and search for this
perturbed point in the Kd-tree using the regular Kd-tree search algorithm. Re-
peat this for e2(4/¢) random perturbations and report the nearest neighbor found
using the Kd tree. We will show that this simple modification results in an a
much higher chance of finding the nearest neighbor p.

4 Traditional Kd-tree Algorithms Fails with High
Probability

In this section we show that the traditional Kd-tree algorithm fails in solving
the planted instance of the nearest neighbor problem with high probability; the
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success probability is at most e~(4/¢) The following lemma estimates r, the
distance from a random point in the unit cube to the nearest database point.

Lemma 1. With high probability of 1 — O(1/2%), the distance v of a random
point in the unit cube to the nearest point in the database is ©(v/d/n'/%)

P . . . Lo ord/2pd
Proof. The volume of a sphere of radius r in d dimensions is ire) =

8(1)d31/2(23”)d/2rd. Since there are n random points in the database, the ex-
pected number of points in a ball of radius r is Q(I)nd31/2 (2¢m)4/2rd. So the
radius for which the expected number of points in this ball is one is given by
r=0( n\l/fld) (We have used the Stirlings approximation for the I" function which
is valid only for integral arguments. Although, d/2 may not be integral it lies be-
tween two consecutive integers and this proves the @ bound on r. Note that even
if the point is near the boundary of the cube, at least 1/2¢ fraction of the sphere
is inside the cube which does not change the value of » by more than a constant
factor). The value of r is sharply concentrated around this value as the volume of
the sphere in high dimensions changes dramatically with a change in the radius;
by a factor of 2¢ with a factor 2 change in the radius. High concentration bounds
can be used to show that there must be at least one point for larger radii and al-
most no point for smaller radii. For this value of r, the probability that there is a
database point at distance /2 is at most n1/(2%) = 1/2%. And the probability
that there is no point within distance 2r is atmost (1 — 2¢/n)" = exp(—27).

Lemma 2. If we pick a random query point q at distance r/c from a random
point in the database then the probability that a Kd-tree search returns the nearest
neighbor is at most e=2(d/¢),

Proof. Let us focus on a leaf cell containing the point p. We need to compute
the probability that a random query point ¢ chosen from N(p,r/c) lies within
the same cell.

If we project the cell along any one dimension we get an interval. Since the
Kd-tree has depth logn, the number of branches along any one dimension is
lofl”. And since we are picking a random cell, the expected value of the length
I of this interval containing p is E[l] = 1/2"%" = 1/n/4. So with probability at
least 1/2, 1 < 2/n'/4. Conditioned on the event that | < 2/n'/? we will argue
that the probability that the query point ¢ lies outside the interval is £2(1/c).
To see this note that if  denotes the distance of p from one of the end points of
the interval then z is distributed uniformly in the range [0, /] since p is a random
point in its cell. Since along one dimension g and p are separated by a distance

of N(0, C\’”/d) = N(0, cni/d) (ignoring the @ in the expression for r for simpler

notation), the probability that ¢ does not line the interval is ®(zen'/?). By a
standard change of variable to z = zen!/¢ this amounts to the expected value
of @(z) where z is uniformly distributed in the range [0, 2¢|. Looking at integral
values of z, observe that @(z) = e~ (+*) drops at least geometrically with each

increment of z. So the expected value of ¢(z) is OQC 21Ce_n(z2) dz = 82(1/c).
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This implies that along any one dimension the probability that g lies within the
projection along that dimension of the cell containing p is at most 1 — £2(1/c).
Since values along all dimensions are independent, the probability that g lies
within the cell of p is at most (1 — £2(1/c))¢ = e~ (/).

5 DModified Algorithm has a Higher Probability of
Success

We will show that the modified algorithm has a much higher probability of
success. Although our theoretical guarantee only provides a success probability
of 2(c/d), we believe this is simply an artifact of our analysis. Our experimental
results show that the success probability is very high.

Theorem 1. With probability at least 2(c/d), the new search algorithm finds
the nearest neighbor in e©\4/<) jterations for the random database and the planted
query point.

The proof of this theorem follows from the following two lemmas.

Guessing the value of a random variable: We first present a lemma that states the
number of times one needs to guess a random variable with a given distribution
so as to guess its correct value. If a random variable takes one of N discrete
values with equal probability then a simple coupon collection based argument
shows that if we guess N random values at least one of them should hit the
correct value with constant probability. The following lemma taken from [26]
states the required number of samples for arbitrary random variables so as to
‘hit’ a given random value of the variable.

Lemma 3. [26] Given an random instance x of a discrete random variable with
a certain distribution D with entropy I, if O(2') random samples are chosen

from this distribution at least one of them is equal to x with probability at least
Q21/1).

Proof. Assume that the distribution D takes N values with probabilites
w1, Wa, ..., wy. x is equal to the ith value with probability w;. If s samples are
randomly chosen from the distribution, the probability that at least one of them
takes the ith value is 1 — (1 — w;)*. After s = 4.(27 + 1) samples the probabil-
ity that x is chosen is ), w;[1 — (1 — w;)*]. If w; > 1/s then the term in the
summation is at least w;(1 — 1/e). Divide the probability values wy, wa, ..., wxn
into two parts — those at least 1/s and the others less than 1/s. So if all the
wis that are at least 1/s add up to at least 1/1 then the above sum is at least
£2(1/I). Otherwise we have a collection of w;s each of which is at most 1/s and
they together add up to more than 1 —1/1.

But then by paying attention to these probabilities we see that the entropy I =
Yo wilog(l/w;) >3 wilogs > (1—1/I)logs > (1—-1/I)(I+2) =1+1—-2/I.
For I > 4, this is strictly greater than I, which is a contradiction. If I < 4 then
the largest w; must be at least 1/16 as otherwise a similar argument shows that
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I =75, wilog(l/w;) > w;log16 = 4, a contradiction; so in this case even one
sample guesses x with constant probability.

Distribution of Kd-tree partition sizes: Let us now estimate the distribution of
the Kd-tree partition sizes as we walk down the tree. Consider a random point p
in the database and the Kd-tree traversal while searching p. As we walk down the
tree the cell containing p shrinks from the entire unit cube to the single leaf cell
containing p. The leaf cell of p is specified by logn choices of left or right while
traversing the Kd-tree. Let us track the length of the cell along a dimension as
we walk down the tree. The number of decisions along each dimension is 105".
Focusing on the first dimension (say x-axis), look at the interval along the x-axis
containing p. The interval gets shorter as we partition along the x-axis. Let [;
denote the length of this interval after the i*” branch along the x-axis; note that
two successive branches along the x-axis are separated by d — 1 branches along
the other dimensions. The initial cell length o = 1. E[l;] = 1/2% let us look at
the distribution of [;. The database points projected along the x-axis gives us n
points randomly distributed in [0, 1]. For large n, any two successive values are
separated by an exponential distribution with rate 1/n, and the distance between
k consecutive points is given by Pinv(k, 1/n), the inverse poisson distribution at
rate 1/n for k arrivals. The median point is the first partition point dividing the
interval into two parts containing n/2 points each. p lies in one of these intervals
of length [y distributed as Pinv(n/2,1/n).

To find the distribution of ls, note that there are d — 1 branches along other
dimensions between the first and the second partition along the x-axis, and each
branch eliminates 1/2 the points from p’s cell. Since coordinate values along
different dimensions are independent, this corresponds to randomly sampling
1/2471 fraction of the points from the interval after the first branch. From the
points that are left, we partition again along the median and take one of the
two parts; each part contains n/2¢ points. Since the original n points are cho-
sen randomly and we sample at rate 1/2971, after the second branch successive
points are separated by an exponential distribution with rate 1/2971. So af-
ter the second branch along x-axis the side of the interval [ is distributed as
Pinv(n/2% 1/2971). Note that this is not entirely accurate since the points are
not sampled independently but instead exactly 1/297! fraction of the points are
chosen in each part; however thinking of n and 2¢ as large we allow ourselves
this simplification.

Continuing in this fashion, we get that the interval corresponds to [; con-
tains n/29" points and the distance between successive points is distributed
as the exponential distribution with rate 2(=1/n. So I; is distributed as
Pinv(n/2% 24~ /n). Since p is a random point in its cell, the distance z;
between p and the dividing plane at the i*" level is a random value between 0

and [;. At the leaf level li,5,,/4 is distributed as Pinv(1, g TnEn /n) which is
d—1) log n

same as the exponential distribution with rate g /n = 1/n"? Extending
this argument to other dimensions tells us that at the leaf level the length of
the cell along any dimension is given by an exponential distribution with rate

O(1/nt/?).
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Now p is a random database point and ¢ is a random point with distribution
Né(p,r/c). Let L(p) denote the leaf of the Kd-tree (denoted by T) where p
resides. For a fixed Kd-tree, look at the distribution of L(p) given q. We will
estimate I[L(p)|q,T] — the information required to guess the cell containing p
given the query point ¢ and the tree structure T' (the tree structure 7" includes
positions of the different partition planes in the tree).

Lemma 4. I[L(p)|q,T] = O(d/c)

Proof. The cell of p is specified by logn choices of left or right while traversing
the Kd-tree. The number of decisions along each dimension is 105". Let b;; (i €
1--logn/d, j € 0--d—1) denote this choice in the i*" branch along dimension j. Let
B;; denote the set of all the previous branches on the path to the branch point
bi;. Then since the leaf cell L(p) is completely specified by the branch choices b;;,
I[L(p)la, T < >2; ; Ibij| Bij, q,T]. Let us now bound I[b;;| Bij, g, T]. Focusing on
the first dimension for simplicity, for the i*" choice in the first dimension, the
distance x; between p and the partition plane is uniform in the range [0,;]
where I; has mean 1/2° (and distribution Pinv(n/2%,2(@=1¢/n) ). The distance
between ¢ and p along the dimension is given by N (0, C\T/d) = N(0, mi/d) (again
ignoring the © in the expression for r for simpler notations). So it is easy to verify
that the distribution of the distance y; of ¢ from the partition plane is close to
uniform (up to constant factors) in the range [0, 1/2%] (essentially y; is obtained
by first picking a random value in the interval [0,/;] and then perturbing it by a
small value drawn from N (0, Cn} sa) )

If the distance y; of ¢ from the partition plane in the i-th branch is equal to y,
the probability that p and ¢ are on different sides is &(ycn'/?). Since y; is com-
pletely specified by the path B;g, ¢ and the tree structure T', I[b;o|Bio, q,T] <
Ibiolyi = y] = Ey[I(®(yen'/?),1 — &(yen'/?))]. So we need to bound the ex-
pected value of I(P(yen'/?),1 — &(yen'/?)). Again by a change of variable to
z = yen/ this is equal to E,[I(D(2),1 — &(2))].

We will argue that this is O(anf/d). Looking at integral values of z, observe
that I(®(z),1 — @(z)) = e~ 2=") drops faster than geometrically with each in-
crement of z. It is o mzf sa) for z > C";i/d. Further since the distribution of y
in the range [0, 1/2] is uniform (up to constant factor) so is the distribution of

z in the range [0, m;-/d]. So the probability that z lies in any unit interval in

this range is O(Cff/d). So the expected value of I(®(z),1—®(z)) is O(2,,)- So
I[bio|Bij, q,T] = O( Cn217'/ 4 )- Similarly bounding and summing over all dimensions,

I[L(p)la,T] < 32, ; I[bij| Bij, 0, T) < d -, O(cf;/d) = 0(d/c)
We are now ready to complete the proof of Theorem [l

Proof. [of Theorem [J. The proof follows essentially from lemmas Bl and @l
Lemma M states that I[L(p)|q,T] = O(d/c). But I[L(p)|q,T] is the expected
value of I[L(p)] for a random fixed choice of ¢ and T'. So by Markov’s inequality
for a random fixed choice of ¢ and T, with probability at least 1/2, I[L(p)] <
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2I[L(p)|q, T] = O(d/c). So again with probability at least 1/2 for a random
instance of the problem, I[L(p)] = O(d/c). Now lemma [ states that 20(c/4)
samples from the distribution of L(p) given ¢ must hit upon the correct cell
containing p, completing the proof.

6 Experiments

We perform experiments on the planted instance of the problem with both the
standard Kd-tree algorithm and our modified algorithm on a database of n =1
million points chosen randomly in the unit cube in d dimensions. We then picked
a random point p in the database and measured its distance r from the nearest
other database point. We then planted a query point ¢ with the distribution
N4(p,r/c) so that it is at distance about r/c from p. We tried four different
values for d : 3,5,10 and 20; and three different values for ¢ : 4/3,2 and 4.
For each combination of values we performed 10,000 search operations using
both the traditional Kd-tree search algorithm and our modified algorithm. In
the modified algorithm the query point was perturbed before the search and
this was repeated for a few iterations; the number of iterations was varied from
5 to 30.

The success rates of finding the nearest neighbor are summarized in table [T
The third column shows the success rate of the traditional kd-tree search algor-
tihm and the remaining columns state the success rate for the modified algorithm
for different number of iterations. As can be seen, in 3 dimensions for ¢ = 4, Kd-
trees report the nearest neighbor 84% of the time whereas even with 5 iterations
of the new algorithm this goes up to 96%. In 5 dimensions for ¢ = 4 our algo-
rithm boosts the success rate from 73% to 91% in 5 iterations and to 97.5% in 15

Table 1. Simulation Results: The entries indicate the percentage of times the nearest
neighbor is found. As the number of iterations k is increased the success rate increases.
The third column gives the success rate for the standard Kd-tree search algorithm. The
latter columns report the performance of the modified algorithm for different number
of iterations of searching for perturbed points.

d ¢ Kd-tree 5 iter 15 iter 20 iter 25 iter 30 iter
3 4 84 96.1 98.8 99.3 99.3 99.8
3 2 739 89.5 974 984 99.0 98.7
3 4/373 88.5 96 96.6 98.7 98.7
5 4 736 91 97.5 98.1 985 99.3
5 2 54 78 92.1 949 944 96.2
5 4/350.7 71.3 87 91.2 923 94
104 60.7 80.5 94.8 96.6 96.7 96.8
102 36 56.4 776 84.3 86.6 88.4
10 4/3 25 43.7 61 70 73.4 75.6
204/3 13 25 28 41 42 46

202 22 42 67 68 70 72
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iterations. In 10 dimensions for ¢ = 4, 15 iterations raises the success rate from
60% to about 95%. In 20 dimensions for ¢ = 2, Kd-trees succeed only 22% of the
time, where as the new algorithm succeeds 67% of the time with 15 iterations.
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