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Abstract

In this study we propose sketching algorithms for com-
puting similarities between hierarchical data. Specifi-
cally, we look at data objects that are represented us-
ing leaf-labeled trees denoting a set of elements at the
leaves organized in a hierarchy. Such representations
are richer alternatives to a set. For example, a docu-
ment can be represented as a hierarchy of sets wherein
chapters, sections, and paragraphs represent different
levels in the hierarchy. Such a representation is richer
than viewing the document simply as a set of words.
We measure distance between trees using the best pos-
sible super-imposition that minimizes the number of
mismatched leaf labels. Our distance measure is equiv-
alent to an Earth Mover’s Distance measure since the
leaf-labeled trees of height one can be viewed as sets
and can be recursively extended to trees of larger height
by viewing them as set of sets. We compute sketches
of arbitrary weighted trees and analyze them in the
context of locality-sensitive hashing (LSH) where the
probability of two sketches matching is high when two
trees are similar and low when the two trees are far un-
der the given distance measure. Specifically, we com-
pute sketches of such trees by propagating min-hash
computations up the tree. Furthermore, we show that
propagating one min-hash results in poor sketch prop-
erties while propagating two min-hashes results in good
sketches.

1 Introduction

The proliferation of information on the internet cre-
ates a huge amount of data in different formats. In the
absence of rigid standards, ad hoc methods are used
by different entities to represent data. For instance, a
book may be represented hierarchically as a collection
of chapters and these in turn as a collection of sections.
Such an abstraction may be represented as a tree in
the emerging XML standard. Similarly directory struc-

tures may be viewed as hierarchical entities that can
be communicated in different formats. It then becomes
a challenge to compare two such information corpora.
For example, the same information can be represented
under different isomorphic permutations of the under-
lying directory structure. A database record could be
presented with attributes in different order. In such
cases, rather than looking at the exact tree structure
representing the objects, it may be more appropriate
to check the similarity of the two tree structures under
all possible isomorphic permutations. Again, to mea-
sure the similarity between two directory structures, it
may be more appropriate to ignore the directory names
and check if there is an ordering of the directory struc-
ture that minimizes mismatch between the file contents.
However, computing the ordering that minimizes the
mismatch on the tree data becomes intractable as the
degree and height of the tree increase.

Sketching is a powerful tool for concise represen-
tation and comparison of complex and large data. For
instance, strings and sets can be compressed into points
in hamming space. This typically yields sketches repre-
sented by bit-vectors. Such sketches, although are not
identical to the original data, preserve many of their
properties. For instance sketches can be used to mea-
sure containment and distance [2]. Given the plethora
of applications for sketching, there have been several at-
tempts to compute sketches of more complex data such
as trees and graphs. Some examples include file system
directories, XML DOM trees, and phylogenetic trees
[19, 14, 1, 6, 18]. Other works of research have pre-
sented sketch based measurement of similarity between
trees [1, 5]. Another important application of sketch-
ing sets is comparison of documents such as web pages
wherein a document is viewed as a set of words. How-
ever, we lose the structure of the document by viewing
it as a set. A hierarchical structure is richer in captur-
ing context in which words occur such as a paragraph,
chapter, etc. In this work, we propose a sketch based al-
gorithm via an Earth Mover’s Distance metric for trees
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with provable guarantees.

1.1 Related Work

Similarity among trees has been widely studied in the
context of edit distance between trees, i.e., the number
of edits required to transform one tree into the other
[13, 17, 18] while others have approached this prob-
lem of matching via alignment of trees and effectively
computing the best alignment that minimized the ob-
jective function [12]. The distance function adopted in
this work is similar in spirit and is based on the op-
timal super-imposition that minimizes the number of
mismatches in the set of leaf labels between the two
trees. A more recent work of Augsten et al [1] uses
pq-grams to match hierarchical data. A sketch of the
tree is composed of a set of pq-gram profiles and sketch
similarity is computed using well known set similarity
measures. This approach, however, is not resistant to
permutations in the leaf labels when q = 1. The other
case of q > 1 generates mismatches that are amplified
by the shingling approach adopted to generate the pq-
grams, thus resulting in a poor match between trees
even when they are similar.

1.2 Contributions of this study

We introduce the distance between arbitrary weighted
trees as the best possible super-imposition that results
in the maximum number of matches between the trees.
Specifically, we look at data objects that are repre-
sented using leaf-labeled trees denoting a set of ele-
ments at the leaves organized in a hierarchy. Our dis-
tance measure is equivalent to an Earth Mover’s Dis-
tance measure since the leaf-labeled trees of height one
can be viewed as sets and can be recursively extended
to trees of larger height by viewing them as set of sets.
For weighted trees, this is equivalent to recursive frac-
tional weighted matching between the leaves according
to the tree hierarchy. We propose sketching algorithms
that generalize the concept of min-wise independent
permutations to trees. We analyze the sketching al-
gorithms in the framework of locality-sensitive hashing
and show how our sketch functions can be used to per-
form nearest-neighbor search among trees.

Specifically, we use sketching algorithms on sets to
compute their min-hashes and then propagate the min-
hashes up the hierarchy. We show that propagating
only one min-hash can result in poor similarity guaran-
tees. For example, two trees that are far apart can pro-
duce very similar sketches using this scheme. Finally,
we show that by propagating two min-hashes for each
set of labels, we can compute similarity accurately be-
tween two trees in the context of locality-sensitive hash-

ing. Although, our provable guarantees hold only under
the assumption that the trees are of uniform height and
leaves are uniquely labeled, the algorithms presented
are useful in more general practical scenarios.

Specifically, for our distance measures we show how
to find an approximate nearest neighbor of a query
tree. Given a database of N trees, we can construct
a data structure of size N1+ρ that can be used to com-
pute approximate nearest neighbor in time Nρ, where

ρ = O(1−log(1−δ)
log(1/ǫ) ). Given a query point whose nearest

neighbor is within distance δ, our search algorithm will
return a neighbor at distance at most i − ǫ from the
query point; essentially, our algorithm returns a 1−ǫ

δ -
approximate nearest neighbor when the query point has
a δ-near neighbor.

2 Models and Definitions

In this section, we present the preliminaries for hierar-
chies as well as introduce notions of similarities between
hierarchies. We classify trees as either labeled or un-
labeled and ordered or unordered. In the labeled case,
all nodes in the tree are labeled. A common example
of such a hierarchy is a file system directory structure.
Leaf-labeled trees where only the leaves are labeled have
no labels on the internal nodes. For example, we could
consider only the names and content of all files under
a directory to compute the similarity between two di-
rectories. In such a case, we ignore the names of the
directories themselves. An ordered tree has all leaves
in a defined order. For a tree of height h (a path from
the root to a leaf has h edges), we will say that the
leaves are at height 0 and the root is at height h. For
example, a string can be considered an ordered tree of
height one.

Observe that in practice two trees are considered
similar even if one is obtained by a isomorphic reorder-
ing of nodes. In this case, we assume the trees to be
unordered. We also assume that leaves are uniquely
labeled.

Before we analyze the similarity measures for leaf-
labeled trees, we introduce well-studied notions of simi-
larities between unordered entities such as sets and how
these notions have been successfully used in defining
similarity measures between ordered sequences such as
strings. Set similarity is computed using measures such
as intersection and (symmetric) difference. String sim-
ilarity is measured using edit distances. While there
are many efficient algorithms for sketching sets such as
min-hash computation [3], obtaining efficient sketching
algorithms for strings with strong guarantees is much
harder. The best known algorithm for sketching strings
work by embedding strings into L1 and the best known
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embedding has distortion 2O(
√

log n log log n) [15] which is
far less efficient compared to sketching algorithms for
sets which produce almost no distortion.

Many of these algorithms are based on shingling
[2], which essentially transform an ordered sequence
of characters into a set of substrings known as shin-
gles. Then by applying standard sketching algorithms
on these sets the similarity between the original strings
is estimated.

In this work, we present algorithms for unordered
leaf-labeled weighted trees. We believe our algorithms
may be extended to ordered trees just as shingling based
methods extend algorithms on sets to algorithms on
strings. Furthermore, we consider general trees with
arbitrary shape with non-uniform degrees but of the
same height. More generally, we allow the nodes to be
weighted where the total weight of all children under
any given node is 1.

Before we analyze similarity measures for trees, we
introduce some of the basic concepts we employ in our
sketching algorithms. First is the concept of sketching
sets using the technique of min-wise independent per-
mutations which are often referred to as min-hash [3].
The commonly used similarity measure for sets A and

B is sim(A, B) = |A∩B|
|A∪B| [3]. A simple method for esti-

mating the similarity between two sets (or bags) is the
min-hash technique introduced by [10].

A weighted tree of height one can be viewed as a
weighted set (a bag) instead of a set with leaves at
height 0. In this case, the similarity measure is com-
puted via min-hash computations on bags. This ex-
tension can be easily introduced by replacing a bag
A = {(a1, α1), . . . , (an, αn)} with integral weights by a
set Ã = {a1,1, a1,2, . . . , a1,α1

, . . . , an,1, an,2, . . . , an,αn
}

where ai,j is an element obtained by concatenating the
bag element ai with a frequency j. Note that this trans-
formation can be extended to bags with real weights as
well. Under this transformation, we can easily show
|A ∩ B| = |Ã ∩ B̃| and |A ∪ B| = |Ã ∪ B̃| [10, 9]
where intersections(unions) over bags is obtained by
assigning to each element a weight equal to the mini-
mum(maximum) of its weights in the two bags Ã and B̃.
Thus, under a given permutation π : [|U |] → [|U |], we

have Pr[MHπ(A) = MHπ(B)] = |A∩B|
|A∪B| = Pr[MHπ(Ã) =

MHπ(B̃)] = |Ã∩B̃|
|Ã∪B̃| [10, 9].

Definition 1. Let U denote the universal set. Given
a set A ⊆ U and a permutation π : [|U |] → [|U |], we
define the min-hash MHπ(A) to be argminx{π(x)|x ∈
A}. Essentially, MHπ(A) is the element in A whose
value in the permutation is the minimum. Alternately,
let f(x), x ∈ U be a real valued (hash) function that
maps elements from the universe U to a real number
randomly and uniformly in the interval [0, 1]. Then

MHf(A) = argminx{f(x)|x ∈ A}. Therefore, MHf (A)
is the element in A whose hash value into the interval
[0, 1] is minimum. Note that this definition of min-hash
can be applied to weighted sets or bags as well.

A common measure used to compute similarity be-
tween two sets of points, where the points are chosen
from a metric space, is the Earth Mover’s Distance.
Here each set can be viewed as a distribution of weights
over the metric space where the sum of the weights adds
up to 1. We now define the Earth Mover’s Distance be-
tween two such distributions.

Definition 2 ([4]). Let (X, d) be a metric on a set X
of weighted elements (xi, wi), 1 ≤ i ≤ n, where d(., .) is
the underlying distance measure between elements. Let
P (X) denote the a distribution of non-negative weights
u1, u2, . . . , un on X such that

∑

i ui = 1. The Earth
Mover’s Distance is a measure between two such distri-
bution P (X) = u1, u2, . . . , um and Q(X) = v1, v2, . . . , vm.
Specifically, the Earth Mover’s Distance defines the op-
timal cost of transforming P (X) into Q(X) and can be
formally stated as

EMD(P (X), Q(X)) = min
∑

ij

fijd(i, j)

∀i
∑

j fij = ui

∀j
∑

i fij = vj , and

∀i, j fij ≥ 0

In fact the EMD corresponds to a fractional weighted
matching in a bi-partite graph with the nodes on either
side of an edge corresponding to elements of X with
weights ui and uj respectively. Thus, the total weight
of the matching edges at a node equals the weight of
the point. This distance measure can be generalized to
a distance measure on leaf-labeled trees of same height.
Observe that a tree of height one can be viewed as a
weighted set (X, P (X)) where X is the set of leaf labels
and P (X) denotes the weights on the leaves. The above
EMD measure defines the distance between two such
trees (X, P (X)) and (X, Q(X)) of height one. This can
be extended to trees of larger height easily by treating
X as the set of subtrees at height h−1 and the weights
being assigned to subtrees instead of leaves in trees of
height one (leaves are at height 0).

Sketching functions can be used to estimate simi-
larity between two objects by comparing their sketches.
Given a sketching function that results in a low match-
ing probability when the underlying objects are dis-
similar and a higher probability when the objects are
similar, we can construct efficient data structures for
approximate nearest neighbor search on a database of
objects. Such sketching functions are also called local-
ity sensitive hash(LSH) functions[7]. For a domain X
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of points with distance measure d, an LSH family of
functions is defined as follows.

Definition 3. A family H = h : X → U is called (r1, r2, p1, p2)−
sensitive for d if for any v, q ∈ X

• if d(v, q) ≤ r1, then PrH[h(q) = h(v)] ≥ p1.

• if d(v, q) > r2, then PrH[h(q) = h(v)] ≤ p2.

Indyk and Motwani [11] show how LSH can be used
for nearest neighbor searches in high dimensions.

Theorem 1 ([7]). Suppose there is a (R, cR, p1, p2)-
sensitive family H for a distance measure d. Given a
query point with a nearest neighbor within distance R,
there is an algorithm to compute a c-approximate near-
est neighbor, i.e., a neighbor within distance cR using
an index of O(N1+ρ) space, and query time dominated
by O(Nρ) distance computations where N is the size of

the database of points and ρ = ln 1/p1

ln 1/p2
for N > 1/p2.

An information theoretic formulation of LSH result-
ing in linear size data structures has been studied in
[16].

3 Similarity measures for trees

In this study we focus on weighted leaf-labeled trees
of arbitrary shape with a given height h. The notion
of similarity between two such trees is measured by the
best possible super-imposition that minimizes the num-
ber of mismatched leaf labels. Given two trees of height
h, we view them as weighted sets of trees of height
h− 1. Given that the total weight of all children under
any given node is at most 1, we can recursively extend
the distance measure on trees of height h as the Earth
Mover’s Distance between their weighted sets of trees
of height h− 1.

Definition 4 (distance). For two trees T1 and T2

of height zero (trees are singleton leaves), the distance
d(T1, T2) = 0 if the singleton leaves have the same label
and 1 otherwise. Using this base case, we can recur-
sively define the distance between two trees of height h
by viewing such trees as a weighted set of trees of height
h− 1. If X denotes the space of all leaf-labeled trees of
height h−1, then any such weighted set with total weight
1 can be represented by a distribution. So, for two trees
T1 and T2 of height h, we can obtain the corresponding
distributions P (X) and Q(X) over trees of height h−1.
We then define d(T1, T2) = EMD(P (X), Q(X)) where
the underlying metric uses the distance between sub-
trees of height h−1 recursively. More precisely, let T1 =
{(a1, α1), . . . , (an, αn)} where ai is a subtree of height
h−1 with weight αi and let T2 = {(b1, β1), . . . , (bn, βn)}

with bj and βj correspondingly defined. Then, d(T1, T2) =
min

∑

ij fijd(ai, bj) where ∀i,
∑

j fij = αi, ∀j
∑

i fij =
βj, and ∀i, j fij ≥ 0.

Definition 5 (similarity). For trees T1 and T2 of
height h, the similarity between them is defined as sim(T1, T2) =
1−d(T1, T2). Alternately, similarity can also be defined
recursively as the maximum weighted fractional match-
ing between the weighted sets of trees of height h− 1.

We say that a tree T2 is a δ-near neighbor of tree
T1 if d(T1, T2) < δ. Similarly, a tree T2 is 1− ǫ-far from
a tree T1 if sim(T1, T2) < ǫ.

Under our distance measure, the distance between
any two trees lies in [0, 1]. Given two trees of height 1,
let Ã and B̃ be their weighted set of leaves (with total
weight 1 each). Then the above similarity measure co-
incides with the bag intersection, i.e. sim(T1, T2) =
|Ã ∩ B̃|. This implies |Ã ∩ B̃| = 1 − d(T1, T2) and
|Ã∪ B̃| = 1+ d(T1, T2). We also note that for complete
unweighted trees of uniform degree, the distance mea-
sure d(., .) ∈ [0, 1] is indeed the fraction of unmatched
leaf labels under the best possible super-imposition.
For two unweighted trees of height 1, with the same
number of leaves, the EMD measure is the same as
the fraction of unmatched leaf labels. This is because
for such trees, the best fractional matching becomes
an integral matching. The same reasoning applies re-
cursively for larger heights for two complete trees of
uniform degree.

Since the object of interest in this study are trees,
our goal is to study tree sketching algorithms in the
LSH framework. We will refer to such a sketch of
tree T as tree-hash TH(T ). The framework studies
the probability of the sketches matching under a gap
in the distance between the trees. Using theorem 1,
this framework can be used to find a near neighbor of
a query tree. Given a database of N trees, we can
construct a data structure of size N1+ρ that can be
used to compute approximate nearest neighbor in time

Nρ, where ρ = O(1−log(1−δ)
log(1/ǫ) ). Given a query point

whose nearest neighbor is within distance δ, our search
algorithm will return a neighbor at distance at most
i − ǫ from the query point; essentially, our algorithm
returns a 1−ǫ

δ -approximate nearest neighbor when the
query point has a δ-near neighbor. Formally, we will
lower bound the probability p1 of the sketches match-
ing when the d(T1, T2) < δ and upper bound the prob-
ability p2 when the d(T1, T2) > 1− ǫ (correspondingly,
sim(T1, T2) ≤ ǫ). Given two trees T1 and T2 of same
uniform height, let sij denote sim(T1i, T2j), where Tki

denotes the ith sub-tree of tree Tk. We have,

Lemma 1.
∑

i sij ≤ 1 and
∑

j sij ≤ 1.
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Proof. We will say that two trees are disjoint if their
set of leaf labels are disjoint. Since all the leaves of a
tree are uniquely labeled, we observe that all the sub-
trees of T1 of a given height are disjoint. The lemma
follows if we show that for any tree U of height h
and a collection of disjoint trees (leaf sets are disjoint),
V1, V2, . . . , Vn, of same height h,

∑

i sim(U, Vk) ≤ 1.
We will prove this by induction on height h. The base
case when h = 0 is obvious since for h = 0, each tree
Vk is a singleton leaf with a distinct label. Therefore,
∑

i sim(U, Vk) ≤ 1 since U ’s label can match the label
of at most one of Vk’s. We use induction on the height
of the tree. Note that U can be viewed as a weighted
set of trees ui of height h−1 with weight αi. Therefore
U = {(u1, α1), . . . , (un, αn)}. Similarly, let vkj be the
sub-trees of height h− 1 of Vk. Now, consider the frac-
tional matching fk

ij which corresponds to the similarity
sim(U, Vk). Then,

sim(U, Vk) =
∑

ij

fk
ijsim(ui, vkj)

But fk
ij ≤ αi since

∑

j fk
ij ≤ αi. So,

∑

k

sim(U, Vk) =
∑

k

∑

ij

fk
ijsim(ui, vkj)

≤
∑

i

∑

kj

αisim(ui, vkj)

=
∑

i

αi

∑

kj

sim(ui, vkj)

Observe that trees vkj are disjoint. So, by induction
∑

kj sim(ui, vkj) ≤ 1 giving us
∑

k sim(U, Vk) ≤
∑

i αi ≤
1.

4 Sketching algorithms for trees

of height two

Trees of height one are same as sets and therefore,
sketching such trees are equivalent to sketching a set.
We note that trees of height two are good abstractions
for recursing the similarity computations from a set to
set of sets. Therefore, they present a good starting
point for experimenting with different approaches. We
will show a sketching algorithm for trees of height two
where the sketches match with high probability if the
trees are similar and with low probability if the trees
are far; if the trees are δ-near, the probability that the
sketches differ is at most O(δ). On the other hand, if
the trees are (1−ǫ)-far, the probability that the sketches
match is at most O(ǫ log(1/ǫ)). In the following section,

we contrast different algorithms starting from naive ex-
tensions of sketching algorithms on sets to algorithms
on set of sets. We generalize many of the concepts intro-
duced for trees of height two to trees of larger height in
Section 5. We show how algorithms for sketching sets
can be extended recursively to such trees. We start
with a naive approach and show that it does not ad-
mit accurate similarity computations. We then show
an approach that does produce good sketches resulting
in effective similarity computations.

4.1 Propagating one min-hash does not

work

A naive recursive extension is to compute the min-
hash for each sub-tree of height one and then compute
the min-hash of the resulting min-hashes at level one.
Where applicable, a tree T of height one may also be
viewed as a weighted set of its leaves. Furthermore, we
use a different min-hash permutation at each level. We
will show that this method does not work as two com-
pletely different trees can result in the same min-hash
with high probability.

Let π1 and π2 denote the min-hash permutation
used on the leaves and nodes at height one respectively.
Then, if T1, T2, . . . , Tn are the height one subtrees of T ,
the tree hash TH(T ) = MHπ2

(MHπ1
(T1), . . . , MHπ1

(Tn)).
The following two propositions show that a random as-
signment of a given set of labels results in very different
trees, but with a same tree-hash with significant proba-
bility. For this we will consider trees of height two that
are unweighted and have degree n with n2 leaves.

Proposition 1. For given permutations π1 and π2 on
the two levels of the tree and a set of n2 labels, if the
labels are randomly assigned without replacement to the
n2 leaves, there is some fixed label among these so that
with at least constant probability Ω(1), the min-hash of
the tree will result in that label.

Proof. Let l1, l2, . . . , ln2 denote the labels according to
the min-hash permutation order π1. We will show that
with constant probability the tree-hash will be equal
to MHπ2

(l1, l2, . . . , ln2). Essentially, we will show that
the set of min-hashes at level one has a big overlap with
the set H = {l1, l2, . . . , ln}. Precisely, if A is the set of
min-hashes at level one, then E[|A ∩H |] ≥ n/2. This
is because the probability of l1 being present in H is 1;
l2 is present in H if l1 is not in the same subtree which
happens with probability at least 1 − 1/n. Similarly,
li (i ≤ n) is present in H with probability at least
1− (i− 1)/n. By linearity of expectations, the E[|A ∩
H |] ≥ 1 + (1− 1/n) + . . . + 0 ≥ n/2.

From set similarity, it follows that Pr[MHπ2
(A) =

MHπ2
(H)] = |A ∩H |/|A ∪H | > n/2

2n = 1/4.
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Proposition 2. Given two different random assign-
ments (without replacement) of a given set of n2 labels,
then w.h.p., the distance between the resulting trees is
1− o(1).

Proof. Consider one set of leaves in a subtree. The
expected number of leaves from this set present in any
given subtree of the other tree is 1. By Chernoff bounds,
w.h.p, the overlap between any two subtrees across the
trees is O(log n). So, even under the best super-imposition,

the distance is 1− O(log n)
n .

Given two random trees of degree n and height two,
they have the same hash value with high probability
Ω(1) but have a large distance with high probability.

4.2 Propagating multiple min-hashes at

each height

We now consider the following modification to the naive
algorithm wherein we compute more than one min-hash
at all nodes in the tree. Specifically, each height one
node computes c min-hashes of the set of leaves in its
subtree. The compound min-hash, CMH(T ) of the
tree T rooted at the height one node is computed by
concatenating all the c min-hashes. Then the root node
computes one min-hash from the compound min-hashes
at height one nodes as shown in Algorithm 1. We note
that we keep the number of permutations c constant
and can hence be treated as an implicit parameter in
all our analysis.

Algorithm 1 TH(T )

1: Π← {π1,1, π2,1, . . . , πc,1} be the permutations used
by height one nodes

2: πr,1 be the permutation used by the root node; n←
degree of T

3: for all subtree Ti do
4: Li ← leafs(Ti)
5: CMH(Ti) ← MHπ1,1

(Li) • MHπ2,1
(Li) • . . . •

MHπc,1
(Li)

6: end for
7: return MHπr,1

{CMH(T1), . . . , CMH(Tn)}

We now present the bounds on the probability of
sketches matching for this case.

4.2.1 Lower bound p1 on the matching proba-
bility

We now prove a lower bound on Pr[TH(T1) = TH(T2)]
given d(T1, T2) ≤ δ. Let T1 = {(a1, α1), . . . , (an, αn)}
where ai is a subtree of height one with weight αi and
let T2 = {(b1, β1), . . . , (bn, βn)}.

Lemma 2. Given d(T1, T2) ≤ δ, Pr[TH(T1) = TH(T2)] ≥
max{2−(c+1)(1− δ)c, 1− 4cδ}.

Proof. From the distance measure, EMD(T1, T2), it
follows that there is a fractional matching fij so that the
distance between T1 and T2 is equal to

∑

ij fijd(ai, bj) ≤
δ. Using this bound on the distance, we need to prove
a lower bound on the probability that the two sketches
match.

For a subtree of height one, ai from T1 and bj from
T2, the probability that a min-hash computation will
result in the same hash value for the two trees is |ai ∩
bj|/|ai∪bj | = (1−d(ai, bj))/(1+d(ai, bj)). So the prob-
ability that all c min-hashes match for the two subtrees

is≥ (
1−d(ai,bj)
1+d(ai,bj)

)c. Let A and B denote the weighted sets

of compound min-hashes in the tree-hash computation
of T1 and T2 respectively. Then the probability that

the final sketches match is E[ |A∩B|
|A∪B| ] = E[ |A∩B|

2−|A∩B| ] ≥
E[|A∩B|]

2−E[|A∩B|] (by concavity of x/(2−x) in the range [0, 1]).

But, E[|A∩B|] ≥
∑

ij fij Pr[CMH(ai) = CMH(bj)] ≥
∑

ij fij(
1−d(ai,bj)
1+d(ai,bj)

)c. By concavity of (1−x
1+x )c and Jensen’s

inequality, this expectation is at least (
1−P

ij
fijd(ai,bj)

1−P

ij
fijd(ai,bj)

)c ≥

(1−δ
1+δ )c ≥ (1 − 2cδ). Since, x/(2 − x) is an increas-

ing function of x, E[ |A∩B|
|A∪B| ] ≥

1−2cδ
2−(1−2cδ) = 1−2cδ

1+2cδ ≥

(1 − 4cδ). Therefore the probability that the sketches
match is at least (1 − 4cδ) giving us the proof for the
second part. The proof for the first part follows by ob-

serving that E[ |A∩B|
|A∪B| ] ≥ E[|A ∩ B|]/2 ≥ 1/2(1−δ

1+δ )c ≥

2−(c+1)(1− δ)c.

Computing the upper bound is dependent on whether
we consider the overlap between every pair of subtrees
to bounded by ǫ or we use the more general case wherein
the average overlap is bounded by ǫ. We consider both
the cases next.

4.2.2 Upper bound p2 on the matching proba-
bility

In this section, we will upper bound Pr[TH(T1) = TH(T2)]
given d(T1, T2) > 1− ǫ.

Lemma 3. Given two trees T1 and T2 of height two
and similarity ǫ, the probability their sketches match is
at most O(ǫ log(1/ǫ)).

Let dij denote the distance d(ai, bj). Then for all
fij satisfying

∑

j fij ≤ αi and
∑

i fij ≤ βj , we have
∑

ij fijdij ≥ 1 − ǫ. Let A and B denote the weighted
sets of min-hashes at level one in the tree-hash com-
putation of T1 and T2 respectively. Let sij = 1 − dij .
Then, E[|A ∩ B|] ≤

∑

ij min(αi, βj) Pr[CMH(Ai) =
CMH(Bj)] =

∑

ij min(αi, βj)(sij/(2−sij))
c ≤

∑

ij θijs
c
ij ,

6



where θij = min(αi, βj). We have the upper bound

p2 = E[ |A∩B|
|A∪B| ] ≤ E[|A ∩B|] ≤

∑

ij θijs
c
ij .

Special case - To simplify, we first bound p2 assuming
that the similarity sij between every pair of subtrees is
bounded by ǫ and root nodes have degree n.

We know that sij is at most ǫ and
∑

i sij ≤ 1 and
∑

j sij ≤ 1. The sum
∑

ij sc
ij is maximized when each

sij is either ǫ or 0. Exactly, n/ǫ will be non-zero giving
a maximum value of n

ǫ ǫc for the sum. So the probability
is bounded above by ǫc−1. This shows that for c = 1,
the algorithm works poorly to distinguish between very
different trees. In fact, as shown in Proposition 2, if we
take two trees with the same set of leaves appearing in
random order, for c = 1, they will result in the same
sketch with high probability.

Next, we compute the upper bound p2 in the general
case.

General case - We eliminate the assumption in the
special case.

In this case, all that we are given is that the distance
between the two trees is at least 1−ǫ. By our definition
of tree distance, this means for all fractional matchings,
fij ,

∑

ij fijsiπ(i) ≤ ǫ. Thus, the maximum weight frac-
tional matching between the two sets of subtrees is at
most ǫ where the weight is set to be the similarity mea-
sure. Now, we need to bound

∑

ij θijs
c
ij .

To prove the existence of this bound, we represent
the subtrees of height one T1 and T2 as the left and
right nodes in a weighted bi-bipartite, respectively. The
weights on the edges between the nodes denotes the
similarity between the sub-trees. This naturally leads
to an optimization problem on a complete bipartite
graph with a given maximum weight matching formu-
lation.

Problem Definition 1. Given a complete bipartite
graph with edge weights wij and weights αi, βj on the
left and right vertices, what is the maximum value of
∑

ij θijw
c
ij where θij = min(αi, βj) given

1. the weighted degree of any node in G is bounded
by 1, i.e.,

∑

i wij ≤ 1, and
∑

j wij ≤ 1,

2.
∑

i αi = 1 and
∑

j βj = 1,

3. the maximum weight fractional matching is at most
ǫ, that is ∀fij, if

∑

j fij ≤ αi and
∑

i fij ≤ βj

then
∑

ij fijwij ≤ ǫ.

The following lemma shows that for the above prob-
lem the maximum value of

∑

ij θijw
c
ij is at most O(ǫ log(1/ǫ)).

Lemma 4. Given a complete weighted bipartite graph
G = (V, E) on m left vertices and n right vertices
with weight wij ∈ [0, 1] on each edge and weights αi,

βj on the left and right vertices such that
∑

i αi = 1
and

∑

j βj = 1, and given that the maximum fractional
weight matching of G is bounded by ǫ where ǫ > 0, then
for any c ≥ 2,

∑

ij θijw
c
ij ≤ O(ǫ log(1/ǫ)).

Proof. We will partition the edges into two sets - those
with weights less than ǫ and those with weights more
than ǫ. So,

∑

ij θijw
c
ij =

∑

ij θijw
c
ij +

∑

ij θijw
c
ij .

Part 1 - We have,
∑

ij

θijw
c
ij =

∑

ij

θijwijw
c−1
ij

≤
∑

ij

θijwijǫ
c−1

≤ ǫc−1
∑

ij

αiwij

= ǫc−1
∑

i



αi

∑

j

wij





≤ ǫc−1
∑

i

αi

≤ ǫc−1

Part 2 - We now bound the contribution from edges
with weights in the range [ǫ, 1]. We round up all weights
to the nearest power of 1/2 and group the edges by their
weights. This gives us log(1/ǫ) groups where all the
edges in the k-th group have weight γk = (1/2)k. We
will show that contribution from each group is O(ǫ).

Look at the sub-graph obtained by considering all
edges from the k-th group, Gk. Since the total weight
at node is at most 1 (in fact, it’ll be at most 2 after the
rounding, but does not affect our analysis), the degree
of any node in this sub-graph is at most 1/γk. We
know that such a sub-graph can be decomposed into at
most 1/γk matchings. Therefore, it suffices to bound
the contribution from each matching. For any matching
M ,

∑

ij∈M θijwij ≤ ǫ. To see this we set fij = θij if
(i, j) is in the matching and 0 otherwise. These values of
fij are a valid fractional matching satisfying condition
(3) in the problem definition. Summing over all the
matchings in group Gk, we get

∑

ij∈Gk
θijwij ≤ ǫ/γk.

Now,

∑

k

∑

ij∈Gk

θijw
c
ij ≤

∑

k

∑

ij∈Gk

θijwijγ
c−1
k

≤
∑

k

∑

ij∈Gk

θijwijγk for c ≥ 2

≤
∑

k

ǫ

= ǫ log(1/ǫ)
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Adding the bounds on the two parts completes the
proof.

Observe that choosing any value of c > 2 does not
improve the bound on p2. Therefore c = 2 is good
choice for our algorithm. We summarize the result with
the following theorem.

We are ready to prove Lemma 3.

Proof of Lemma 3. Recall that the probability that the
hash values of T1 and T2 match is at most

∑

ij θijs
c
ij .

We now map this to our problem on bi-partite graphs
by setting wij = sij . Condition (1) of our problem
is satisfied Lemma 1. Condition (2) follows from the
definition of θij and condition (3) follows from the fact
that the similarity between the two trees is at most ǫ.
So, Lemma 4 implies the bound on the probability.

4.3 Connections to Locality-Sensitive

Hashing

Given that p1 = 1 − 4cδ and p2 = ǫlog(1
ǫ ), for c = 2,

the above probabilities give ρ = O( δ
log(1/ǫ) ). From the-

orem 1, we obtain the following result. Essentially,
we have a sub-linear time algorithm to find the near-
est neighbor in a setting where the nearest neighbor is
much closer than all the other points.

Theorem 2. Given a database of N trees of height
2, we can construct a data structure of size N1+ρ that
can be used to compute approximate nearest neighbor in
time Nρ, where ρ = O( δ

log(1/ǫ) ). Given a query point

whose nearest neighbor is within distance δ, our search
algorithm will return a 1−ǫ

δ -approximate nearest neigh-
bor; essentially, our algorithm returns a neighbor of the
query point within a distance at most 1− ǫ.

5 Sketching algorithms for trees

of larger height

We continue the analysis for weighted trees of larger
height with arbitrary shape and present a generaliza-
tion to compute the bounds for the matching probabil-
ities between such trees.

We now generalize the algorithm for computing the
tree-hash, TH(T h), of a tree T h, of height h. If h = 1,
then tree-hash is equal to the min-hash of the leaf set.
For h > 1, we consider c random instances of the tree-
hash function with independent coin tosses. We use
these functions to compute the compound tree-hash for
every subtree at height h− 1. Thus, a compound tree-
hash, CTH(.), itself is a concatenation of all the c tree-
hash values obtained using the c functions. The tree-
hash for a subtree at height h is computed from the

n compound tree-hashes at level h − 1. In practice, to
avoid min-hashes that are concatenation of many labels,
we can simply use a hash value of the concatenation
instead. However, for the analysis, we will conceptually
use the concatenated value.

Remark 1. In the current definition of Algorithm 2,
the number of min-hash computations at the leaf level
becomes 2h for c = 2 because of the recursion. This
can be avoided by using the same set of c min-hashes
at each level resulting in 2h min-hash computations for
c = 2. Under this assumption, the analysis of the lower
bound can be easily extended, while the analysis of the
upper bound remains an open question.

Algorithm 2 TH(T h)

1: πr ← permutation used by the root node; h ←
height(T h); n← degree(root(T h))

2: if h > 1 then
3: use c random instances of tree-hash functions,

TH1, . . . , THc with independent coin tosses
4: for subtree T h−1

i at height h− 1 do
5: CTH(T h−1

i )← TH1(T
h−1
i )•TH2(T

h−1
i )• . . .•

THc(T
h−1
i )

6: end for
7: return MHπr{CTH(T h−1

1 ), . . . , CTH(T h−1
n )}

8: else if h = 1 then
9: L← leafs(T h)

10: return MHπr(L)
11: end if

Using the above recursive formulation for comput-
ing the tree-hash of a tree with height greater than 2,
we compute the probability bounds p1,h and p2,h. We
show inductively that the bounds hold for all levels in
the tree. Since there is an super-exponential depen-
dence on h, our analysis should be viewed in the context
where h is a small constant.

Theorem 3 (Lower bound p1). Given two trees T1

and T2 of height h with distance δ and the probability
that their tree-hashes match is p1,h(δ), then for h ≥ 1
and c = 2,

p1,h(δ) ≥
(1 − δ)2

h−1

22h−1
(1)

Proof. Let T1 = {(a1, α1), . . . , (an, αn)} be a tree of
height h where ai is a subtree of height h−1 with weight
αi in T1 and similarly, let T2 = {(b1, β1), . . . , (bn, βn)}
be a tree of height h with bi defined correspondingly.
It follows from the definition of EMD(T1, T2), there
is a fractional matching fij so that the distance be-
tween T1 and T2 is equal to

∑

ij fijd(ai, bj) ≤ δ We
want to lower bound Pr[TH(T1) = TH(T2)] given the

8



distance bound d(T1, T2) ≤ δ. Let dij denote the dis-
tance between two sub-trees ai and bj . This gives the
matching probability of the compound min-hashes of
ai and bj to be pc

1,h−1(dij). Let A and B denote the
weighted sets of compound min-hashes in the tree-hash
computation of T1 and T2 respectively. We know that

Pr[TH(T1) = TH(T2)] = E[ |A∩B|
|A∪B| ] ≥ E[ |A∩B|

2 ] (by

concavity of x/(2− x) in the range [0, 1]). But, E[|A ∩
B|] ≥

∑

ij fij Pr[CMH(ai) = CMH(bj)] ≥
∑

ij fijp1,h−1
c(dij).

By concavity of the p1,h−1(dij) in equation 1 and Jensen’s
inequality, this expectation is at least pc

1,h−1(
∑

ij fijdij) ≥
pc
1,h−1(δ). Given this recurrence, for h > 0 and c = 2,

we have

p1,h(δ) ≥
p2
1,h−1(δ)

2
=

(1− δ)2
h−1

22h−1

Theorem 4 (Upper bound p2). Given two trees T1

and T2 of level h with similarity ǫ and the probability
that their tree-hashes match is p2,h, for h ≥ 2 and c =
2, there exists some constants c1 and c2 for which

p2,h ≤ c1ǫ log(
1

ǫ
)c3h

2 (log(
n

ǫ
))2

h−1−2

Proof. Let A and B denote the set of compound tree-
hashes for the child subtrees of T1 and T2 respectively.
The probability that the sketches match is E[|A∩B|/|A∪
B|] ≤ E[|A ∩ B|]. Let pij = Pr[TH(T h

i ) = TH(T h
j )],

i.e., probability that the tree-hashes of two given sub-
trees match. Now, given pij , we want to bound p2,h =
Pr[TH(T h

1 ) = TH(T h
2 )] recursively.

Similar to two-level trees, p2,h = E[|A ∩ B|/|A ∪
B|] ≤ E[|A ∩B|]. Thus, we have

E[|A ∩B|] ≤
∑

ij

θij Pr[CTH(Ai) = CTH(Bj)]

=
∑

ij

θij(Pr[TH(Ai) = TH(Bj)])
2

≤
∑

ij

θijp
2
ij

Therefore, by induction,

E[|A∩B|] ≤
∑

ij

θij(c1sij log(
1

sij
)c3h

2 (log(
n

sij
))2

h−1−2)2.

By concavity and Jensen’s inequality, we have,

E[|A ∩B|] ≤
∑

ij

θijc
2
1R log2(

1

R
)c3h2

2 (log2(
n

R
))2

h−4

where, R =
∑

ij θijs
2
ij/

∑

ij θij . Viewing sij as weights
in a weighted bipartite graph which satisfy conditions

of Lemma 4, we get
∑

ij

θijs
2
ij ≤ O(ǫ log(1/ǫ)),

since ǫ is the normalized maximum weight matching.
Using m =

∑

ij θij < n gives us p2,h+1

≤ c2
1m

ǫ log(1/ǫ)
m log2( m

ǫ log(1/ǫ) )c
3h2
2 (log( nm

ǫ log(1/ǫ)))
2h−4

≤ c2
1ǫ log(1/ǫ) log2( n

ǫ log(1/ǫ))(4c2)
3h2 log( n

ǫ log(1/ǫ) ))
2h−4

= c2
1ǫ log(1/ǫ)22h−4c3h2

2 log( n
ǫ log(1/ǫ) ))

2h−2

It follows that c12
2h−4c3h2

2 ≤ c3h+12
2 for small h and

c2 > c1 and c2 > 4. For the specified values of h, c2

and c1, we have,

p2,h+1 ≤ c1ǫ log(1/ǫ)c3h

2 (log(n/ǫ))2
h−2

Thus, we have shown inductively that the bound for
p2,h+1 holds given p2,h.

Given the upper and lower bounds for matching
probabilities, we have for trees of small height, ρ =
log 1/p1,h

log 1/p2,h
. Clearly for small values of h, 1/p2,h is dom-

inated by O(ǫ log(1/ǫ)). This gives us a value of ρ =

O(1−log(1−δ)
log(1/ǫ) ) which gives us the following result as a

consequence of theorem 1.

Theorem 5. Given a database of N trees, we can con-
struct a data structure of size N1+ρ that can be used
to compute approximate nearest neighbor in time Nρ,

where ρ = O(1−log(1−δ)
log(1/ǫ) ). Given a query point whose

nearest neighbor is within distance δ, our search al-
gorithm will return a 1−ǫ

δ -approximate nearest neigh-
bor; essentially, our algorithm returns a neighbor of the
query point within a distance at most 1− ǫ.

6 Conclusions

We analyze sketching algorithms to compute similari-
ties between trees. Specifically, we study our algorithms
using the framework of locality-sensitive hashing intro-
duced in [8]. This allows us to find an approximate
nearest neighbor among trees in time Nρ, where N is
the size of the database and δ and 1 − ǫ are well sepa-
rated upper and lower bounds of distance in our algo-
rithms.
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