NOTE SUR LES HYPERPLANS ISOGONAUX D'UN SIMPLEXE

PAR

TUDOR ZAMFIRESCU (Bucarest)

1. Introduction

Cette note a été écrite pour mettre en évidence quelques propriétés relatives aux involutions d'hyperplans isogonaux dans un simplexe de l'espace euclidien à n dimensions E^n .

Soient $[p_1, p_2, \ldots, p_{n-1}, p_n]$ l'enveloppe convexe de l'ensemble des points $p_1, p_2, \ldots, p_{n-1}, p_n \in E^n$ et $(p_1, p_2, \ldots, p_{n-1}, p_n)$ la variété linéaire déterminée par ces points.

Définition 1. On appelle simplexe dans E^n un ensemble

 $[x_1, x_2, \ldots, x_n, x_{n+1}]$, tel que $(x_1, x_2, \ldots, x_n, x_{n+1}) = E^n$.

Définition 2. Deux hyperplans sont appelés isogonaux dans le simplexe $[x_1, x_2, \ldots, x_n, x_{n+1}]$ s'ils sont symétriques par rapport à chacun des hyperplans bissecteurs de l'angle déterminé par deux faces à n sommets,

Nous allons noter par μM la mesure de Lebesgue p-dimensionnelle de $M \subset E^n$, où p est la dimension de la variété linéaire déterminée

par M.

2. Une propriété métrique

Propriété 1. Si une paire d'hyperplans isogonaux du simplexe $[x_1, x_2, \ldots, x_n, x_{n+1}], qui \ passent \ par \ [x_3, x_4, \ldots, x_n, x_{n+1}], \ rencontrent \ (x_1, x_2)$ en y1, y2 respectivement, alors

$$\frac{\mu[y_1, x_1]}{\mu[y_1, x_2]} \cdot \frac{\mu[y_2, x_1]}{\mu[y_2, x_2]} = \frac{\mu^2[x_1, x_3, \dots, x_n, x_{n+1}]}{\mu^2[x_2, x_3, \dots, x_n, x_{n+1}]} \cdot$$

Démonstration. Soit z_1 la projection de x_1 sur $(x_3, x_4, \dots$ (x_n, x_{n+1}) . Le plan $P \ni x_1$ orthogonal à $(x_3, x_4, \dots, x_n, x_{n+1})$ n'est pas parallèle à $(x_2, x_3, \ldots, x_n, x_{n+1})$, parceque

$$z_1 \in P \cap (x_2, x_3, \ldots, x_n, x_{n+1}).$$

Donc le plan P et l'hyperplan $(x_2,\,x_3,\ldots,\,x_n,\,x_{n+1})$ ont une droite (z_1,v) commune. Le plan $(x_2,\,z_1,\,v)$ et la variété linéaire $(x_3,\,x_4,\ldots,\,x_n,\,x_{n+1})$ ne sont pas parallèles, car

$$z_1 \in (x_2, z_1, v) \cap (x_3, x_4, \dots, x_n, x_{n+1}),$$

donc, en faisant partie du même hyperplan $(x_2, x_3, ..., x_n, x_{n+1})$, ont une droite D commune. Considérons le point $w \in D$ tel que $w \neq z_1$ et $(x_2, w) \cap (z_1, v) \neq \emptyset$. Alors, soit

$$u = (x_2, w) \cap (z_1, v).$$

Notons aussi

$$y'_i = (y_i, x_3, x_4, \ldots, x_n, x_{n+1}) \cap (x_1, u), \quad (i = 1,2).$$

Il est connu que dans le triangle $[x_1, u, z_1]$ on a

$$\frac{\mu[y_1', x_1]}{\mu[y_1', u]} \cdot \frac{\mu[y_2', x_1]}{\mu[y_2', u]} = \frac{\mu^2[x_1, z_1]}{\mu^2[u, z_1]}$$

et aussi, dans $[x_1, x_2, w]$,

$$\frac{\mu[y_i, x_1]}{\mu[y_i, x_2]} \cdot \frac{\mu[w, x_2]}{\mu[w, u]} \cdot \frac{\mu[y_i', u]}{\mu[y_i', x_1]} = 1, \qquad (i = 1, 2),$$

done

$$\frac{\mu[y_1, \ x_1]}{\mu[y_1, \ x_2]} \cdot \frac{\mu[y_2, \ x_1]}{\mu[y_2, \ x_2]} \cdot \frac{\mu^2[w, \ x_2]}{\mu^2[w, \ u]} = \frac{\mu^2[x_1, \ z_1]}{\mu^2[u, \ z_1]}.$$

Soit z_2 la projection de x_2 sur $(x_3, x_4, \ldots, x_n, x_{n+1})$. On peut écrire

$$rac{\mu[w, \ x_2]}{\mu[w, \ u]} = rac{\mu[x_2, z_2]}{\mu[u, z_1]},$$

done

$$\frac{\mu[y_1,\ x_1]}{\mu[y_1,\ x_2]}\cdot\frac{\mu[y_2,\ x_1]}{\mu[y_2,\ x_2]}=\frac{\mu^2[x_1,\ z_1]}{\mu^2[x_2,\ z_2]}\cdot$$

On a, pour i = 1, 2,

$$\mu[x_i, x_3, x_4, \ldots, x_n, x_{n+1}] = \frac{1}{n} \mu[x_3, x_4, \ldots, x_n, x_{n+1}] \cdot \mu[x_i, z_i].$$

Par conséquent.

$$rac{\mu[y_1,\,x_1]}{\mu[y_1,\,y_2]} \cdot rac{\mu[y_2,\,x_1]}{\mu[y_2,\,x_2]} = rac{\mu^2[x_1,\,x_3,\,x_4,\ldots,x_n,\,x_{n+1}]}{\mu^2[x_2,\,x_3,\ldots,\,x_n,\,x_{n+1}]}.$$

Il résulte tout de suite le suivant

Corollaire. Si $P_1, P_2 \supset [x_3, x_4, \ldots, x_n, x_{n+1}]$ sont des hyperplans bissecteurs dans le simplexe $[x_1, x_2, \ldots, x_n, x_{n+1}]$ et $P_i \cap (x_1, x_2) = y_i$, alors

$$rac{\mu[y_i,\ x_1]}{\mu[y_i,\ x_2]} = rac{\mu[x_1,\ x_3,\ x_4,\ldots,\ x_n,\ x_{n+1}]}{\mu[x_2,\ x_3,\ldots,\ x_n,\ x_{n+1}]}, \qquad (i=1,2).$$

3. Une propriété de concurrence

Propriété 2. Les hyperplans isogonaux à $\binom{n+1}{2}$ hyperplans concurrents qui passent par les faces à n-1 sommets d'un simplexe, sont, eux aussi, concurrents.

Démonstration. Soient $\Pi_1, \Pi_2, \ldots, \Pi_{\binom{n+1}{2}}$ les hyperplans concurrents considérés et $\Pi_1', \Pi_2', \ldots, \Pi_{\binom{n+1}{2}}'$ les hyperplans isogonaux, tels que

$$[x_1, x_4, x_5, \ldots, x_n, x_{n+1}] \subset \Pi_1 \cap \Pi'_1,$$

 $[x_2, x_4, x_5, \ldots, x_n, x_{n+1}] \subset \Pi_2 \cap \Pi'_2$
 $[x_3, x_4, \ldots, x_n, x_{n+1}] \subset \Pi_3 \cap \Pi'_3.$

Soient $p = \bigcap_{i=1}^{\binom{n+1}{2}} \Pi_i$ et $q = \bigcap_{i=2}^{n+1} \Pi_i'$.

Démontrons que $q \in \Pi'_1$.

Soient

et

$$p' = (x_4, x_5, ..., x_n, x_{n+1}, p) \cap (x_1, x_2, x_3),$$

$$q' = (x_4, x_5, ..., x_n, x_{n+1}, q) \cap (x_1, x_2, x_3),$$

$$y_1 = \Pi_1 \cap (x_2, x_3), \quad y'_1 = \Pi'_1 \cap (x_2, x_3),$$

$$y_2 = \Pi_2 \cap (x_3, x_1), \quad y'_2 = \Pi'_2 \cap (x_3, x_1),$$

$$y_3 = \Pi_3 \cap (x_1, x_2) \quad \text{et} \quad y'_3 = \Pi'_3 \cap (x_1, x_2).$$

Alors (x_1, p', y_1) , (x_2, p', y_2) , (x_2, q', y'_2) , (x_3, p', y_3) et (x_3, q', y'_3) sont des droites.

Selon la propriété 1,

$$\frac{\mu[y_1, x_2]}{\mu[y_1, x_3]} \cdot \frac{\mu[y_1', x_2]}{\mu[y_1', x_3]} = \frac{\mu^2[x_1, x_2, x_4, x_5, \dots, x_n, x_{n+1}]}{\mu^2[x_1, x_3, x_4, \dots, x_n, x_{n+1}]},$$

$$\frac{\mu[y_2, x_3]}{\mu[y_2, x_1]} \cdot \frac{\mu[y_2', x_3]}{\mu[y_2', x_1]} = \frac{\mu^2[x_2, x_3, \dots, x_n, x_{n+1}]}{\mu^2[x_1, x_2, x_4, x_5, \dots, x_n, x_{n+1}]},$$

$$\frac{\mu[y_3, x_1]}{\mu[y_3, x_2]} \cdot \frac{\mu[y_3', x_1]}{\mu[y_3', x_2]} = \frac{\mu^2[x_1, x_3, x_4, \dots, x_n, x_{n+1}]}{\mu^2[x_2, x_3, \dots, x_n, x_{n+1}]},$$

d'où

$$\frac{\mu[y_1, x_2]}{\mu[y_1, x_3]} \cdot \frac{\mu[y_1', x_2]}{\mu[y_1', x_3]} \cdot \frac{\mu[y_2, x_3]}{\mu[y_2, x_1]} \cdot \frac{\mu[y_2', x_3]}{\mu[y_2', x_1]} \cdot \frac{\mu[y_3, x_1]}{\mu[y_3, x_2]} \cdot \frac{\mu[y_3', x_1]}{\mu[y_3', x_2]} = 1.$$
Mais

$$\frac{\mu[y_1, x_2]}{\mu[y_1, x_3]} \cdot \frac{\mu[y_2, x_3]}{\mu[y_2, x_1]} \cdot \frac{\mu[y_3, x_1]}{\mu[y_3, x_2]} = 1,$$

done

$$\frac{\mu[y_1', x_2]}{\mu[y_1', x_3]} \cdot \frac{\mu[y_2', x_3]}{\mu[y_2', x_1]} \cdot \frac{\mu[y_3', x_1]}{\mu[y_3', x_2]} = 1.$$

Par conséquent, $q' \in (x_1, y_1') \subset \Pi_1'$. Mais $(x_4, x_5, \ldots, x_n, x_{n+1}) \subset \Pi_1'$, donc $q \in (x_4, x_5, \ldots, x_n, x_{n+1}, q') \subset \Pi_1'$.

On prouve d'une manière analogue l'appartenance de q aux hyperplans $\Pi'_i(j=n+2,\ n+3,\ldots,\binom{n+1}{2})$.

Done, à tout point p de l'espace $E^n \setminus \{ \bigcup (x_{i_1}, x_{i_2}, \dots, x_{j_i}); j_h \leqslant n+1 \}$ ($h \leqslant i$), $i \leqslant n$, il correspond un point q du même espace, y compris les points à l'infini. C'est une correspondance involutive qui a comme points fixes les centres des hypersphères inscrite et exinscrites au simplexe.

Reçu le 19.XI.1965