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SIMPLICIAL CONVEXITY IN VECTOR SPACES
BY

TUDOR ZAMFIRESCU (Bucharest)

All considerations which follow will be made in a real vector space.
While the principal definitions will be given in an arbitrary one, the main
results remain true only in vector spaces whose dimension is finite.

We shall introduce a new notion, namely the simplicial convexity,
more general than convexity, and study some of its relations with the
usual convexity. Also, we shall introduce some numbers associated to
a simplicial convex set and establish several properties of these numbers.

§ 0. Introduction

We give here a number of definitions, among them the last seven
being new. The other are given to facilitate the reader’s task, as well as
the two first lemmas. For initiated readers, only the definitions 7—13 are
indispensable in § 0.

Let us consider a vector space @. We use the notations: 4 — B
for ANCB, when 4, BC@, and [r] for the integral part of the real posi-
tive number r. Denote by & (M) the convex cover of M C @ and
&y, ., m)y= &({@y,. ., o}), where @,..., @, 0. A set

E(Bryeney @) =Y, M@ A real, 2> 0, Y Aizl},
= i=1

i=1

where {#, — 2,3 2 <j < s} is linear independent, is called simplex with
vertices @;,..., @, @.

Although boundedness and closure are respectively metric and topo-
logical notions, they both can be defined for convex sets in our arbitrary
vector space.

Definition 1. Consider the convex set C and the point ze .
If there exist ye C and z< V, where y can coincide with , 2 5 @ and V
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18 the smallest linear manifold containing C, such that
(L(z,y) — O)U (E(m,2) N C) = {a},

then x is a boundary point of C and the set of all these points is the frontier
of C.
Observe that each boundary point « lies on V, since

& (wy ?/) ST 0:{'77}
implies & (z,y) CV.

Definition 2. The interior of a convex set C is the set of all the
points of C which are not boundary points.

Definition 3. The convex set C is said to be closed if C includes
its frontier.

Definition 4. A convex set C is said to be bounded if there exist
no- semilines included in C.

Definition 5. A point x is said to be an extreme point of a con-
vex set C if C — {x} is convex, or — equivalently — if

velC— U (£, 2) — {, %)
v, 2€C

Definition 6. A set MC@ is called convexly connected if there
is mo hyperplame I1 such that IN M= @ and M contains points in both
the open half-spaces determined by 11 ; a set M’ possesses m convexly connec-
ted components if there are m convexly conmected sets whose wunion is M’,
but the union of any m' convexly connected sets (m' < m) does not equal M'.

The next well-known result is obvious in a finite-dimensional vector
space, because one can use its Euclidean topology in which the two con-
cepts about frontier coincide. But it holds too in an arbitrary vector space.

Lemma 1. A bounded closed convex set is the convex cover of ils
Jrontier.

Let us remark that this lemma remains true for an arbitrary closed
convex set different from a linear manifold or a half-linear manifold.

In order to respect the unity of exposition, we also give the follo-
wing well-known lemma. We shall prove it in a simple direct manner *).

Lemma 2 (Krein-Milman). 4 closed bounded convexr set in
fimite-dimensional vector space is the convexw cover of its ewtreme points.

Proof**). Let C be the given convex set, B its frontier and E,
the set of all extreme points of O. Obviously, & (E;) C C. Prove that
¢ cC & (B,). Suppose that this inclusion is valid in an (» —1)-dimensional
vector space and prove it in an n-dimensional one.

By a consequence of Hahn-Banach theorem, there exists, even
in an arbitrary vector space, a supporting hyperplane at each boundary
point of a convex set. Let #« B and H be a supporting hyperplane at «.
The intersection H()C is, obviously, a convex bounded set. Prove that

*) In [2] the proof of this lemma is indicated to use Carathéodory’s theorem.
**) This proof has been given in a seminar on convex sets at Bucharest University, 1964.
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it is closed. Let ' be a boundary point of H(C. There are ye HN(
and z == &’ in H such that

(S(z,y) — O) U (& (%) N C) = {a}.

Now, we see that &’ is a boundary point of C, hence 2’ €. But the fron-
tier of H(C lies in H, hence '€ H\ C.
By the induction hypothesis,

zeC N HCS(Enn)-

Prove that E,ng C E,. Let ye E,nz. Suppose there exist z,2'€C
such that 2=~y ; 2’ =y and ye & (2, 2'). The point 2 belongs to H if and
only if 2’ belongs also to H, because the line through z and 2’ either lies
on H or intersects it in a single point, y. It results from ye H;n, that
2,2« H. Then H cuts & (2, 2')CC, which is impossible, H being a suppor-
ting hyperplane. Thus y € E,, whence & (Hynz) C &(E,). Hence z e & (H)
and BC & (B,).

Now, following lemma 1,

0 = <& (B) C S (By),

hence O = & (H,).
Definition 7. The function S, called the l-simplicial convex
cover is defined in the family of all the subsets of O by

Jl(ﬂf)z{ucﬂ(pl,...,pi);p,-EM, T<y<i l<ig<l

(& (Pay- - -, p;) are simplexes), for arbitrary set M C O and natural number 1 >2.

One easily proves that this function possesses the properties that
Sn = Smo S, and &, (M) C & (M), whence, also,

Cg'nlp == cg?n i (gm Ofeiezad cs,’In = (;)I;L

p times

and
Sr(M)C & (M)

for natural numbers m,n, p > 2 and arbitrary M C @.

S, (M) is an increasing fonction of [; it is also an increasing fonction
of M relative to inclusion ordering.

Let us denote &, (Byy- - -y Lo)= S Iy yv .+ &,});, Where @,,. . ., &, € 0.

Definition 8. 4 set KC @ is said to be l-simplicial convex if
there exists a set MCV such that K = S,(M).

Definition 9. The l-order of an l-simplicial convex set K (the
I-simplicial convexity order) is

o, (K) = sup min {k; St (M) = K}.

Definition 10. A set K is said to be simplicial convex if there
exists a number 1 such that K is l-simplicial convew.
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Definition 11.. The degree of a simplicial convex set K is
3 (K) = min {I; K is l-simplicial convex}.

Definition 12. The order of a simplicial convex set K (the sim-
plicial convexity order) is

QE) = 31111) w; (K).

By convenience, we set oo the order of a simplicial convex 'set,
whose l-order is oo for at least one number 1.

Definition 13. The power of a simplicial convex set K of finite
order s

A (K) = min {I; Q (K) = o, (K)}.

§ 1. Relations between convex cover and l-simplicial econvex eover

We shall state here two theorems important in the study of sim-
plicial convexity. They both give relations between the usual convex
cover and the I-simplicial convex cover in finite-dimensional vector spaces.
They can be found as corollaries in [1], but we shall prove directly the
first of them because it is peculiarly fundamental.

Theorem 1. If@ is an n-dimensional vector space and M C D), then

S (M) = &9 (H).
Proof. Clearly, & (M)C & (M) for every m. Prove that
& (M) C & (M)

Iftm = [log;n] 4+ 1, thenm —1 Llog;n<m and "1 L<n<i™.

For n = m = 1, the inclusion is obviously valid. Assume inducti-
vely that it is true for the dimensions » satisfying the above inequalities
i.e. m = [log; n] 4+ 1 and prove it for » satisfying m = [log, n].

Let ve £ (M). By Carathéodory’s theorem [2], there is a simplex
with vertices @,,...,2,€e M (s <n + 1), such that zed& (2,..., @,).
If s LI", then the simplex is contained in an (I™ — 1) -dimensional
linear manifold and by the induction hypothesis

Sty iz 8) © STV M) = Sp ) & 3T M,

Suppose now that I” +1 <s < n -+ 1. We can write

s p—1 (j+1)M
X = Z ;\i wi = 2
i=1

1

8
N+ Y Nag,

7=0 4=41M41 j=plm 1

where }} A, =1, 2, > 0 and p = [_l%] < 1, the last sum vanishing by

t=1



5 SIMPLICIAL CONVEXITY IN VECTOR SPACES 141

. = S
convenience if l_m is an integer. Denote

(G + 1l s

= Y N o m= Y N

P=jlm+1 i=plM +1
(F+1im o s :
i 3 . e 4
Y = 2 ==l Y= — &;.
i=jlm a1 Ly i=plin 41 tp
Then
D
2=y u; Y
i=0

and this sum contains at most ! terms because, if p = I, then s > I"*!;
hence n 4 1> 1" and since m» <I"', the equality » 41 =1"*1
holds, thus s and I"*! are equal, whence I" devides s and p, = 0. Since

D S
5: b= 5: A =1,
i=0 i=1

the point # belongs to a simplex with vertices y;,..., 7, (p <1). Every
vertex y; belongs to a simplex with at most 1™ vertices in M ; by the
induction hypothesis, y;edy (M). It follows that

weé,;nJrl (M) — Aglogln]ﬁ'l (M) >

Remark 1. The exponent [logm] +1 of 8, in theorem 1 is the
best possible, i.e. in general & (M) 5= S¢(M) with g < [logn].

The proof will be given by a suitable example. Let 3 be a set of
n -+ 1 vertices of a simplex. Then &,(M) is the union of the subsimplexes
with at most 1 vertices. Suppose that S} (M) is included in the union
of the subsimplexes with at most I’ vertices and prove that this inclusion
is true for v + 1. Indeed,

Sy (M) = & ($1(M) = {UJ & (P1y-- -5 D)5 P;ES (M),
T 1=l

Consider a simplex & (py,..., p;) of this union. Every vertex p, belongs
to a subsimplex §; with at most I’ vertices (j < 7). Then

L(Pyye ey e ‘Z(U Si,’
oy

where the second convex cover is a simplex with at most I’"! vertices.
Hence S7 (M) is included in (even equal to) the union of the subsimplexes
with at most 1 vertices. But from [* < n, it results that S¢ (M) is
included in the frontier of & (M), hence &(M) strictly includes S7 (M).
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Theorem 2. If @ is an n-dimensional vector space and MC @
has at most n components *) or is compact *) and has at most n convexly
connected components, then

(,/; (M) == Cs)l[logl(n—l)]+l (ﬂ[) 3
Proof. To prove the inclusion
SM) < S5 (ary,

we use again Carathéodory’s theorem and a result of O. Hanner and
H. Radstrém [3], which state that each point ze (M) belongs to a
simplex with vertices ay,..., #,€ M (s < n). One obtains now by an
analogous way (changing everywhere n by n—1), the desired inclusion.

Remark 2. The exponent [log,(n —1)] +1 of S, in theorem 2 is
the best possible, i.e. in general & (M) == St (M) with q < [log; (n — 1)]
under the hypothesis of theorem 2.

Again a suitable example will be given: Let ;,..., z,,, be the
vertices of a simplex and

M= U 8 (ms7 ‘,'vn-l-l) &

8=1

Then
Jz (M) = (S (Byyeeey Byyy) — & (@15 o9 2,)) U {U cZ(wg-l,..., wi;)?
1l sin g, & Jil)

Suppose that &y (M) contains no interior points of & (zy,..., z,)
reative to the hyperplane H containing z,,. .., «, (see definitions 1 and 2)
if &7 (#,..., @,) does not meet the interior of & (ay,..., #,) and prove
that this is true for v 4 1 instead of v.

2 31““ (M) = (5’1 (‘SIY(]M)) = {U g(pl" cEey ]3,-); p,-EcS';(ml,. DAL w,,),
1<i<q, 1<} Uy L s )5
P, €8 (#y,. .., 2,), p;, €8 (M) —H, 1< j;<k, k<j,<iy, 1<k<d, 1<

But the union of the simplexes <& (py,..., p;), the vertices py,..., p;
varying in &} (@,...,®,) and ¢ between 1 and [, is 8)**(»,,..., 2,) and

HNA{US(pry-.- 005 P, €S (2155 @), P;, €85 (M) — H, 15, <k,
E<ja<t, 1 <k <i, 1< <Y TS (S (50005 3,)) TS (@12 2y 20).

Therefore
HN & (M) =& (@4, - ., @)

and if 7' (2y,..., #,) does not intersect the interior of & (#y,..., @,),
then §;*! (M) does not too.

*) — In the usual topology of the n-dimensional vector space .
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In the proof of remark 1, it is established that if 7% is n-dimen-
sional, S is a simplex with » + 1 vertices in %) and ¢ < [log;n], then
S7(8) is included in the frontier of 8. Consequently, if ¢ < [log; (n — 1)],
then §¢(2y,..., #,) does not contain interior points of & (zy,..., @,).
Hence 57 (M) is strictly included in &(M) = & (Byy. .-y Zpyiq)-

§ 2. The l-simplicial convexity order

We shall give in this paragraph some upper bounds for I-sim-
plicial convexity order in finite-dimensional vector spaces and prove the
existence of simplicial convex sets of infinite order in arbitrary spaces.

Theorem 3. The l-order of an l-simplicial convex set in an n-di-
mensional vector space is at most [log;n] + 1.

Proof. Prove that, if K is the given set,
min {k; §¥(M) = K} < [log;n] + 1

for arbitrary M. Consider a number k& such that SF (M) = K. If
k< [log;n]+1, then clearly the above inequality holds. If £> [log, n]+1,
then, simultaneously,

S¥(M)C &(M)
and
SEM) DS (M) = &(M),
according to theorem 1. Hence S (M)=<E (M), that is
' E = g5 ton
and the inequality is proved. Since M is arbitrary,
o (K) < [log;n] + 1

which concludes the theorem.

Theorem 4. In an n-dimensional vector space, a bounded closed
convex set, whose extreme points form a set which has at most n components
or is closed and has at most n convexly connected components, is l-simplicial
convex of l-order at most [log,(n — 1)] + 1.

Proof. One sees immediately that a convex set is also [-sim-
plicial convex (see begining of § 3). Let M be such that SF(M) = K,
where k is a natural number and K the given set. Then §;* (M) = K
for each m > k. The set E, of all extreme points of K must be included
in M. Suppose it is not true : there is a point y € B, — M. Suppose that
yed (M) and prove that ye &) (M) (v>1, SY(M) = M). If

yed (M) = & (5" (M),
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then y belongs to a simplex with vertices z,..., z,€5/ (M) (s < ).
Hence ye & (%y,..., ;) — {#,,..., 2,} and there are v, we & (z,,..., ,),
such that » ==y, w == y and y € & (v,w). Thus y would belong to the inte-
rior of a segment with end points in &(z,..., z,) C & (M) C K, which
is not possible owing to the definition of the extreme points. We proved
that y« &) (M). Hence yedSF (M) = K; this contradiction shows that
E,C M, whence :

CS,l[logl(n—l)]+1 (;M) =5 é,l[logl(n—l)]+1(EK).
Also
$i T (By) = & (B)
by theorem 2, & (E;) = K by lemma 2 and

l[logl(nvlJ]+1 (M) C K.
Hence -
(Sglogl(vn»l)n-l (M) = .K,
min {k; (M) = K} < [logi(n —1)] +1

and the theorem is prov ed.

We remark that in theorems 2 and 4, compactness and convexly
connectedness on the one hand and usual connectedness on the other
hand are different assumptions. However, in theorem 4 they are equiva-
lent for n = 2.

An example of an [ -simplicial convex set of l-order cois given by
the convex cover of an infinite linear independent family of wvectors
{#:}rea in an infinite-dimensional vector space .

For, consider a number N arbitrarily great and

MN = (& ({WK}AEA) — & (3?11,. oy wAlN—l_:_l)) U {977\17- Sy leN—l 1}’
where 2;€ A for ¢ ¥ ! + 1. Prove that

min {k, J;"(MN) =00 ({-’E}.})\EA)} ==V (*)
By an analogous way as that used to prove remark 2, we obtain
that if 87 (2 ,. .., @y ) does not meet the interior of & (3 5o+ oy Ty, )y

then &} (My) does not too. The proof of remark 1 shows that
S 1 (@ 5.+ oy Dyy_q,) is included in the frontier of & (@) ,.-., Tyy-1,)
whence 87 ~1(My) does not include the interior of & (@ e vy Byn-1, )
But, following theorem 1,

5?'(-%\,1- ey Byy-1,) = & (@ 5+ vy Dywoa,)y

the dimension of the linear manifold defined by @y ye ey Tyy-1,, being
Y=L The inclusion {@ ,..., #yn-1,} C M, implies

Sy (@, ey Bay-1,) © 57 (My).
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Since MyCSF (My) trivially,
C{mhren) = My UL (50117- ) wxlzx"—lﬂ)cgi\' (My).

Evidently,
Y (My) C & (My) = & ({mhen);

then & {:m}xEA) = 8F (M) and this is not wvalid for S 1 instead of
S Thus ()i proved

Since we can choose for each natural number N a convenient set M
such that (*) holds,

o, ({m)ren) = sup min {k; 8 (M) = & ({orn}ren)} = oo.

It results also that Q ({#:}»es) = oo, which proves the existence
of simplicial convex sets of infinite order.

Theorem 5. The l-order of a non-convex l-simplicial convex set
K equals

sup {iv; S (I0) = K}

i a finite-dimensional vector space.
Proof. Prove that
{k; SH(M) = K}

contains at most one number, for arbitrary M. Suppose that
& (M) = S{(M) = K,
where
J oy —=mins{h S8 M) =K
Then
M () C &M () < S{(M)
implies (M) = K. Now, if §?(M) = K for a number p>k,, then
SPH(M) = 8, (SP(H)) = & (K) = S, (™ (M) = 3,7 (M) = K,
whence 87 (M) = K, for all p > k;,. By theorem 3,
[log,n] + 1 > ky,
where » is the dimension of the space, whence
i+ (i) = K.

By theorem 1,
&(M) = &),
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hence & (M) = K and K is convex. This contradiction shows that either

{k; SEH(M) =K} = @
or
{k; St(M) = K} = {ky},
hence
sup {k; S (M) = K} = SUp ky = o, (K),

which proves the theorem.

Theorem 6. The l-order of a non-conver l-stmplicial convex set
in an n-dimensional vector space is at most [log, n].

Proof. Let K be the given set. By theorem 3, u,(K) < [log;n] -+ 1.
Suppose that o, (K) = [log,n] + 1. Then there exists a set M such that

ST (M) = K.
By theorem 1,
S () = & (an),
hence K = & (M) is convex, absurd. It follows that
o, (K) < [log; n].

§ 3. The degree and projections of simplicial eonvex sets

The notion of simplicial convexity is more general than that of
convexity, because every convex set is I-simplicial convex for arbitrary L
being its [-simplicial convex cover, but there are simplicial convex sets
which are not convex, like, for instance, the frontier of a non-degenerate
tetrahedron. This example and several other use frontiers of convex sets.
We will point out that in general a simplicial convex set is neither included
in the frontier of its convex cover, nor includes it. For example, the
union of the segments joining the vertices and the centroid of a nonde-
generate tetrahedron satisfies these demands.

Obviously, a convex set is simplicial convex of degree 2, the least
possible degree. One can think that 3(K) = 2 for every simplicial convex
set K. This is disproved by the following example :

Let us consider a simplex with 5 vertices Zyy..., Tz in a 4-dimen-
sional vector space. Obviously, K = &, (x,,. .., ;) is 3-simplicial convex.
Prove that K is not 2-simplicial convex. Suppose, on the contrary, that
there is M such that o, (M) = K. Because

S5 (M) = S8y(S, (M) = 8y (K) = & (4. .., @)
and according to a result of the first part of the proof of theorem 4,
Digns o x5EE(’,’(.231, = M.
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But {#,,..., @;}5=M, because Sy(w,,..., x;) is the union of edges of the
simplex. Let y e M — {,,..., #5}. If y is an interior point of a triangle
of K, say &(xy, ,, @,), then &(y, x,) ¢ K, absurd. If y belongs to a seg-
ment of K, say & (x,, x,), then

M N E(xs x4, @5) = {23, 24, s}

For, suppose that there is a point
zeM N\ &(wy, @4y 5) — {23, 3y, 2.

We have established that # does not belong to the interior of & (x5, z,, @;).
Ii z lies on its frontier, say 2e & (#,, x,), then & (y, 2) meets the interior
of & (xy,...,x,), absurd again.

The equality that we have proved shows that §, (M) does not con-
tain the interior of & (@, @y, ;); this contradiction disproves the exis-
tence of M such that S, (M) = K. Hence K is not 2-simplicial convex
and o (K) = 3.

Euclidean spaces will be considered in theorems 7 and 8.

Theorem 7. The projection of an l-simplicial convex set on a
linear manifold is also l-simplicial convez.

Proof. Let K be the given set, V a linear manifold and M a
set such that &, (M) = K. Prove that the projections K’ and M’ of K
and M on V satisfy &, (M) = K'.

Let #'ed,(M’'); a' belongs to a simplex & (z,..., x;), where
#ieM' (1 <i<h) and h 1. Then 2’ belongs to the projection of a
simplex & (#y,..., #,) with 2,€ M (1 <4< k), therefore it belongs to
the projection of §, (M) on V. Hence =’ K'.

Let 4’ € K'. This point & is the projection of a point z e K = $,(M).
Then x belongs to a simplex & (z,..., @), where z,e M (1 < i < h)
and b <!l. Thus &’ belongs to the polytope & (xf,..., z,), whose ver-
tices are the projections of those of & (zy,..., «,). Since & (=] )
is a union of simplexes with at most & vertices, then z’ belongs to a simplex
&,y @, ), where n,<<m; for i<j and m, <h, whence k< h.
Because reM (1<i<k), v'ed, (M)TS, (M).

Hence K’ = &, (M’') and the proof of the theorem is complete.

However, nothing can be said about the I-simplicial convexity
order of projections related to that of the given set. Indeed,

1) If we consider an I-simplicial convex set K with w, (K) > 2
that we project on an (I°®-1 _ 1) _dimensional linear manifold,
then the projection K’ has, by theorem 3, the I-simplicial convexity
order o; (') < w, (K).

2) All projections of a non-degenerate tetrahedron, whose 2-sim-
plicial convexity order is 2, on planes are triangles or quadrilaters, both
of 2-order 2.

3) Consider in a ball (solid sphere) of the 3-dimensional Euclidean
space three points a,b,¢c that do not belong to a line. The set of all the points
of the ball whose projéctions on the plane through a,b,c belong to & (a,b,¢)
is a convex set of 2-simplicial convexity order 1. Simultaneously,
its projection on the plane through a,b,c has 2-simplicial convexity order 2.
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Theorem 8. The projection K' of a simplicial convex set K on
a linear mamifold is also simplicial convex and § (K') < § (K).

Proof. The simplicial convexity of K’ and the inequality are
obvious because the k-simplicial convexity of K implies, by theorem 7,
the k-simplicial convexity of K'.

An example proving the possibility of strict inequality between
the degree of a set and that of its projection can be obtained by taking
the set K =S, (@y,..., x;) used above, @,,..., s being the vertices of
a simplex in a 4-dimensional vector space. Since K includes the frontiers
of all the subtetrahedrons, the projection K’ of K on a plane is a convex
polygon with 2, 4 or 5 vertices. Thus § (X') = 2 and § (K) = 3.

Theorems 7 and 8 are also valid for central instead of orthogonal
projections and, more general, for linear operators in vector spaces.

One might expect that a cone € based on an I-simplicial convex set
C' equals or includes an I-simplicial convex set. It is not generally true.
One can only say that, if 8 (C’) = 2, then C includes a simplicial convex
set of degree 2.

Theorem 9. The degree of a simplicial convex set is a prime
number.

Proof. Let us consider k,l,m>2 satisfying %k =ml; k-simplicial
convexity implies l-simplicial convexity, following theorem 10, which
will be established in § 4. Suppose that 3(K)=pq, where p,q are integers

and 2Lp K la(ﬂ)

. Then K is p-simplicial convex, which is absurd,

because p < 8 (K).

§ 4. The simplicial eonvexity order and power

Theorem 10. If k is a multiple of 1, then k-simplicial convewity
implies 1-simplicial convexity and o, < o,.
Proof. Let K be a k-simplicial convex set and M be such that
SO (M) = K. If k = ml, then

S (5 (M) = K,

whence K is I-simplicial convex and o, (K) > o, (K).
Theorem 11. The order of a non-convex simplicial convex sei
K in an n-dimensional vector space is at most [logs ) n].
Proof. Let K be [-simplicial convex. Then, by theorem 6,
o (K)< [log; n]. Since 1> 3(K), log, n<logsy, n, whence o,(K)< [logsx) 7],
for arbitrary 7; hence
Q (K) < [logsr) n]-

Let @ be n-dimensional and K convex ; it results from theorem 3 that
O (K) < [logyn] + 1.
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If K is, in addition, bounded and closed and B x has at most »n com-
poients or is closed and has at most n convexly connected components,
then

Q (K) < [log, (n—1)] + 1,
owing to thecrem 4.

Theorem 12. The power of a simplicial comvex set K of finite
order is a prime number and A (K) > 3 (K).

Proof. Owing to theorem 10, if A(K) = pg, Where p,q > 2 are
integers, then A (XK)-simplicial convexity implies p-simplicial convexity
and oay, (K) < o, (K). Therefore Q(K)< o, (K), which is in fact an
equality, and p > A (K) by the definition of A (K) ; absurd because

'p < {A—é—mJ <A,

Hence A (K) is a prime. Since XK is A(K)-simplicial convex, evi-
dently A (K) > 3 (K).

§ 5. Final remarks

In §0 we have introduced some integer numbers characterizing the
simplicial convex sets. It can be difficult to calculate them, even for
simple sets. This fact points out the importance of each general result about
these integers and the relations between them.

The vector spaces used in this paper can be changed by other spaces.
For instance, all the definitions in §0 can be conveniently modified if
the space in which one works is the hypersurface of a hypersphere. But
no more references to Carathéodory’s theorem can be made and almost
all the results of this paper, especially those concerning dimension do
not remain true. ,

One can conjecture that o, i3 generally a decreasing function of L.
Then Q(K) would equal w5 (&) for non-convex K and the inequality
of theorem 11 would be trivially implied by theorem 6. Then even the
introduction of the simplicial convexity order would be banal, because,
for all K, it would equal the (K)-simplicial convexity order. Also,
power and degree would always coincide.

This conjecture will be disproved in [4].
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