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ON THE FUNDAMENTAL LEMMAS OF THE CALCULUS
OF VARIATIONS
BY

TUDOR ZAMFIRESCU

If the hypothesis of a theorem contains a class of arbitrary elements, then
the restriction of this class is, in fact, a generalization of the theorem.

The following discussion will lead to such extensions of the well-known
lemmas espeeially used in the Caleulus of Variations and in the Theory of Distri-
butions.

First, we shall notice that the word “domain” will be used for an
open and connected set together with part of its boundary.

Let 70 be a domain of the Euclidian n-dimensional space R". We
shall recall that a real function f of n variables is said to be of class O™
(0 <m <L oo0) on D, if f possesses all its partial derivatives up to and
including those of the m-th order, which are continuous on @. We also
add that a funetion f: 7 — R will be said to be of class D™ (0 < m < oo)

if ) can be divided into a finite set of subdomains 2, [ A D=0, & 0, __-,7;]
on each of which f is of class O™ and if, for and only for m = 0, f is
continuous on 7).

1. Let M(x) be a real continuous function of one real variable on
the closed interval [a, b]. We can easily establish the following result :
It

1]
\ 3 (@) 7 (2) a2 =0
for every continuous function 4: [a, b]— R, then M (z) = 0 on [a,b].
A stronger proposition will be obtained if we restrict the set of the

functions 7 to include only the functions satisfying several conditions
especially required by the necessities of its applications.
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We give the more general
THEOREM 1. Let the functions M, (z): [a, b] =R (i =1,..., p)
be of class DY, 1f*)

1

R M, (2) n, () de = 0 =10
Jor all functions n;: [a, b] - R of class (> vanishing respectively on the
given non-dense sets S, C [a, b] together with all their derivatives, then
M, (x) =0 on [a, b].

Proof. Suppose on the contrary that M; ()=~ 0 for a j < p and
£ [a, b], say for definiteness M ; (£) > 0. Then we can, on account of the
continuity of M; on a subinterval*®) of [a, b] containing &, assign another
subinterval I such that M. (x)> 0 throughout I. We shall find, owing
to the definition of §,, the interval («, B) C I, such that (z, Pym 8, = 0.
Now, choose 7, (#) = 0 for every % == 4§ and

1 1
Je?_‘? e for wxe(o,p)
| o for aela,a] U [8,b],

which satisfy all the requirements of the theorem, as we can easily
prove. But

M=

1 1

13 f
R M, (z) 9 () d oz = g M;(z)-e* = P-*de,

where the improper integral exists and is strictly positive. This fact gives
a contradiction, thus the hypothesis M, (%) == 0 is untenable and the
theorem is proved.

On the basis of the theorem 1 we can immediately prove the pre-
ceding result. The fundamental lemma used by Hadamard ***)is another
simple consequence of this theorem. We now recall the following lemma
due to Lagrange.

LAGRANGE'S LEMMA. If M : [a, b]—>R is a continuous function and if

SbM(m)-q{m}dmzo

Jor every function <= C' which vanishes at a and b, then M (z) = 0 on
[a, b].

But one easily sees that this lemma results from the theorem 1
taking p=1 and §; = {a, b} and observing that C°C D° and 01 D (= ****)

Remarking "5 0 for 0 < m < oo, we can change Lagrange’s
lemma by a more useful proposition for the requirements of the Caleulus
of Variations, by taking m = 2.
7"}’.—‘\‘]:{:@[8(] subseript i indicales a summalion wilh respect Lo i

**) We understand by an interval (subinterval) a scgment togelher with some of

ils extremities.

"**) See Hadamard’s work [3].

****) For other proofs see [2], [5].
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2. We now intend to give an extension of the same problem, concern-
ing the multiple integrals, which can consequently be also regarded
as an extension of the theorem 1.

THEOREM 2. Let the functions M, (ay,...,a,): @ — B (i =1,...,p)
be of class DO on the domain D C R" containing the given non-dense sels
S df

(3

S\ : g M oy ) By ey ) =10
. [/) o

Jor all functions 1;: D — R of class C=, vawishing vespectively on S,
together with all their partial derivatives, them M, (#y,...,x,) = 00on 0
for every i < p.

Proof. Suppose M; (Z,,..., £,)>0 for a j<p in (&,..., E,)eD.
From the continuity of M; on subdomains of 70 it follows that M, (x,,. ..
«..y&,)>0ina domain £ containing (&,,...,£,). Let S. be an open sphere
of centre (af,...,a)) and radius e, contained in £ and satisfying :
-Ss mn r)’-j = 0.

We choose =; (#7,...,@,) = 0 for i =£j and

e Al L
0 = fed@.....on—2 for (2,,...,3,)e S,
el for (@, ..y 2,) =D —8.

where & (#,...,a,) = | (2; — % (w, — 2°). These functions satisfy all
the reguirements of the theorem. But

Sg . .Sﬂfi (@gyeoey B M lSpyee oy 2,)do =
7
2 P e
= RS aiisia gﬂf“ (xl! ey ;I,',N) € E—8(mg,. ... dew = 0.
g s, J

The contradiction obtained shows that the hypothesis M, (&,,...,2,) > 0
is untenable, as well as M, (Z,. .., £,) <0, consequently M, (»,,...,z,)=0

The usual fundamental lemma *) of the Caleulus of Variations for
multiple integrals is implied by the theorem 2, making the same remarks
as above, especially that € D C=.

*) See, for instance, [7].
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3. If we suppose M (z): [a,b]— R; 7n(x): [a, b]— R; M, ne(?
and 7 (a) = 7 (b) = 0, we shall obtain, integrating by parts,

(227 (0) 1 () do = — (" 2 (@) ' (0) da.

Thus, if
]
E M ()4’ () da = 0

for all possible functions =, then M () is constant on [a, b]*).

After giving an idea about this point, we prove

THEOREM 3. Let the functions M, (x): [a, b] — R (i = 1,...,p) be
of class D.If

(22, (@) 1, (2) do= 0

a

Jor all functions «,: [a, b]— R of class C=, satisfying
b
\ (@) de =0

and vawishing respectively on the given non-dense sets S.Cla, b], then M (x)
are constant on [a, b].

Proof. Suppose M, is not constant for a certain index j. Then we
can find in [a, b] the intervals I and J such that M (&) > M;(¥) for
every £l and Ze.J. We consider the intervals (o, 8)el — S; and
(v, 8)ed — 8;, of the same length. We choose the functions 7, () = 0
for ¢ =+ j and

it 1
[ er=® B=et for we (o, H)

(@) = e S =t il
() =gt 32 foriwe(v; )
0 for we [a, «]U[8, y]U 3, b].
These functions obviously satisfy
]
\ n(@)de =0 (i = 1.0y p),

are of class O and vanish on §,. We obtain

b ' 1 S &) ars ol
g M(x)n, () de = \ M, (w)e** B~%dg —K M, (@) ey="= =% gp—
« i . X

ot w

& eI Sl
—R [(M; () — M;(x — « +vy)]e** B-2dp> 0.

*) This facl resulls immedialely from the preceding relation and from the Theorem 1.
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Hence, M, is necessarily constant on [a, b] for every i < p.

This theorem directly generalizes Du Bois-Reymond’s lemma,
which can be obtained for p = 1, §;, = 0 and €° instead of both D" and
O=. A more useful, but equivalent to Du Bois-Reymond’s lemma is the
following proposition :

If M(x) is continuous on [a, b], and if

\.h M () 7' (z) de=0

ot

for all functions v €' which vanish at ¢ and b, then M(z) is constant
on [a, b].

In proving the equivalency it is sufficient to consider the function
v(x) = 0/ (x), which satisfies

a(e) = v at

=
and to use the theorem 3.

If we want to follow Du Bois-Reymond’s manner of proof "), the
assumption M e D will lead us only to the lemma used by Marston
Morse [6] under Du Bois-Reymond’s name, which ¢an be obtained from
the preceding propoesition by taking D° instead of (° and /1 instead of
', consequently enlarging the eclass of the functions » instead of
restricting it.

THEOREM 4. Let the functions M, (..., 2,): D—= R (i =1,...,p)
be of class D on the domain DCR" containing the given mnon-dense
sets §,. If

L
e e,

KS e \ M (B e ey @) M@y gee o9 ) A =10
Sy
for all functions =,: @D — R of class 0=, which satisfy
g\ e S N (@ 0oy ,) do =0
o

and vawish respectively on S, , then M, (xy,...,x,) are constant on 7).

We let the proof be a reader’s task.

Finally, we shall notice that the Euclidian spaces used above can
be changed by other more general spaces, following the ideas of other
articles written on this subject. On the other hand many other extensions
can be reconsidered under our point of view.

Received June 4, 1964 Facully of Malthemalies and Mechanies.
Bucharest University

*) See Bolza's discussions, [1].
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