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Introduction

Let C be a convex bounded body in the n-dimensional Euclidean space
B, and let B be its boundary. We use Busemann’s notations: E(a,b)
for the segment {(1—p)a+pb: 0 < p < 1} from @ to b, and S(z, p) for the
sphere {z:|z—x| = p}. We now recall the definition of Hammer’s
associated bodies C(r). Let Cy(r) be the set obtained from C' by a simili-
tude transformation with a ratio r about centre b in B. The sets C(r)
are defined as follows:

NG if r<l,

C(?") — beB .
UCyr) if r>1.
beB

Denote by B(r) the boundary of C(r).
For every chord ¢ = E(a,b) and point  belonging to the line through
a and b, let
max{|a—=|, [|b—|}
la—b] :

r(x,c) =
r(x) = maxr(z,¢), and r* = minr().

The number r* is called (4) the critical ratio of C.

P. Hammer showed (4) that if r > 1 then €' = (C(r))(r/(2r—1)), and
that if » < 7* then C(r) = @. He also proved that there exists a number
r; (r* < r; < 1) such that

C=(C)(r/(2r—1)) for r>r,;
but
C = (C(r))r/(2r—1))7 for r<r;

We call 7, the reducibility number, and C(r;) the reducibility body of C.
If #* < r; < 1 then C is said to be reducible to C(r;); if r;=r* then C
is said to be completely reducible; if r; = 1, then C is said to be irreducible.

Evidently, all the convex bodies C(r) with » > r; have the same
reducibility body, C(r;).

+ We use — and o for strict inclusions, € and 2 for inclusions including the
equality case, and \ for relative complement.
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The reducibility number and the reducibility body are invariant under
affine transformations (see ( (4) Theorem 5, property 12)).

For E?, P. Hammer proved that if r, =7* then 7* = }; hence C is
completely reducible if and only if B is a central curve.

By a diameter we mean a chord such that two parallel supporting planes
pass through its end-points.

Associated hypersurfaces
We consider the set 2 of all the diameters of C' together with the real
number » > . We put

y(r) ={w: r(x,d)=r,dec D).

We give now simple properties of the y(r), which we call the associated
hypersurfaces of C.

Turorem 1. The associated hypersurface y(r) includes the boundary
of C(r).

Proof. This assertion is trivial for 7 > 1 (y(r) bounds C(r), see (4)),
and is obviously true for » < 1 because in this case B(r) is the set
{x:r@x)=r} (4) and if r(z) =r then a lies on a diameter of C
((4) Theorem 4) and divides it in the ratio r, hence x € y(r).

CororLARY. If y(r) contains mo convexr hypersurfaces (with more than
one point) then r < r¥*,

TarorEM 2. The associated hypersurface y(r) contains no interior points
of C(r). :
Proof. The theorem is again trivial for » > 1, since y(r) = B(r); let
r <1, let @, in y(r), be an interior point of C(r), d the diameter (or one
of the diameters) through x given by the definition of y(r), and
B(a,b) = dnCO(r). It is clear that either r(a,d) or r(b,d) is greater than r.
It follows that either -
r(a) = r(a,d) > r
or
r(b) = r(b,d) > r.
Every inequality leads to a contradiction, because if a, b € B(r) then
r(a) =rd) = r.

Reducibility of projections

It is known that for » > 1, C(r) is the set of all the points lying on
diameters of C' extended about their mid-points by the ratio 2r—1. It
follows that for r < 1, (C(r))(#/(2r—1)) can be obtained in the same
manner from C(r), the ratio being 1/(2r—1).
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Let V be an (n—s—1)-flat in B", and C} the convex body obtained
by intersecting the supporting half-spaces of the n-dimensional convex
body € which are bounded by hyperplanes parallel to V. The inter-
section of €, with an (s+ 1)-flat orthogonal to V is C)* (s = 1,...,n—2).

TurorEM 3. If C is reducible then Cpt and Cp® are reducible for every
(x—s—1)-flat V. The converse is false.

Proof Since C' is reducible, there is a numl:er r <1 such that
= (C(r))(r/(2r—1)). It is very. simple to prove that C(r), = Cy(r).
Indeed if By, is the boundary of €, and By (r) that of C,(r), then

r»—(nob(r)) CNGMrE A GEy= N Gy =Cplr):
heB be BN By beBy

Since the points of B are the end-points of the extensions of the
diameters of C(r) about their mid-points in the ratio 1/(2r—1), the
points of Bn B, can be obtained from those diameters of C(r) which
have their extremities on B(r) N By(r). Consequently, the diameters of
0 can also be obtained from those of Cy(r), the ratio being 1/(2r— 1) too.
The reducibility of C}* follows immediately.

The converse proposition is not true. For example, in the plane a
triangle is not reducible, while its projection on every line is a segment,
obviously completely reducible.

For further developments see (9).

CoroLLARY. If there exists an (n—a—'l)—ﬁat“ V such that Cp or Cp® is
irreducible, then C is irreducible.

Necessary conditions for reducibility

Let us consider the point p of B (the set L = B) and denote by »(p)
(respectively v(L)) the spherical image of p (resp. L) in Busemann’s sense
((2) 25). Let also '

H@) = (peB: qevpll M) = Uu,

«(N)={peS1l): p, o &lltlpods = p' € N},

where {g}, M, N < Sz, 1).

Given a set M < S(z,1) let M be the interior of M relative to the
topology of the smallest sphere containing M.

We define the following properties which € may have:

(1) If ¢, and g, are two arbitrary antipodal points on S(z,1), then at
least one of the sets p{ql) and p(q,) contams but one point.

t We obaerve that unbounded bodies whose frontiers are so- called cylindrieal

hypersurfaces ( (2) 3) may be included in our considerations, using for them the
same definition of reducibility.



656 TUDOR I. ZAMFIRESCU

(2) If Tv(p,) and Fv(p,) contain two antipodal points, then
«(v(py)) = v(p,), for every pair of points p,, p, in B.

Denote by P, the set of the convex bodies which have the property (j),
j=1lor2.

TreorEM 4. If O is reducible then C € P,.

Proof. Suppose that, on the contrary, there exist points P1s Py in B
such that 7 a(v(p;)) N T v(p,) # O but a(v(p,)) # v(p,), say for definite-
ness o(v(p,))\¥(p,y) # 9. First we investigate the plane case, n = 2.

Let B = p(7a(v(p,)) and 7, < r < 1. The only diameters of C with
end-points p in the interior of 8 relative to the topology of B are E(p,p,);
hence {z: r(z, E(p, p,)) = r, p € B} < B(r), which is impossible if B is not a
segment, because in this case the left-hand member is the union of two
arcs which cannot belong to any convex curve. If 8 is a segment and p,
one of its extremities, distinet from p,, then B is necessarily non-
differentiable in p,. Since T a(v(p)NTv(py) # D, p, € B. The only
diameters with end-points on B are E(p,p,), where p e B. Let ¢ be an
extremity of o(v(p,))\v(p,) that does not belong to v(p,). The supporting
line L through p, and orthogonal to E(z, ¢) does not contain the segment f.
The lines parallel to L through the points that divide Z( P1.P3) In the
ratio r are supporting lines of C(r), according to ((4) Theorem 5,
property 7). We find the absurdity that one of these supporting lines
separates points of the two segments {a: there exists p in E(p,, p,) such
that r(z, E(p,p,)) = r} < B(r). Thus B = {p,}, and the theorem for n = 2
is proved.

Now we pass to the case n > 3. Let p, be an interior point of both
a(v(p,)) and v(p,), let V; and ¥, be neighbourhoods of p, in a(v(py))
and v(p,), let p € a(v(p,))\¥(p,), and let I' be the great circle passing
through p, and p. Using the notations of the preceding paragraph, we
consider the convex planar body Cj!, obtained for an (n—2)-flat V
orthogonal to the plane of I'. From Theorem 3, (! is reducible, together
with C.

Consider, for every « in BnC), the projection ¢(z) of x on the plane
of Cpl. Let i(x) be the circular image on I' of the point x belonging
to the boundary of Cpl. Tt is clear that i(y) = Cnv(eg~(y)). Also,
We(p1)) =nv(p) and  #g(p,) = CNv(p,); hence if g, = #(p1),
Py =¢(ps), =Tn¥, and % =InV, then nnv, = LnWin¥; s p,
and a7 (By)\H(Be) = (CNa((p))\T N¥(py) = Tn (& p)\v(po) 5 P,
which is impossible because C! is reducible and we have found above
that all planar reducible convex bodies belong to F,. Thus the theorem
is completely proved.
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Let D be a convex set on B. Let F;, < B be the maximal convex set
uch that B possesses two parallel different supporting planes containing
respectively D and Fj,. For a given D, we define

G, = {x: there exist @ in D, b in Fj, such that r(x, E(a,b)) = r}.
If G, and G,? are the connected components of Gy, let

o(r) = U Gp

t=1,2
DCEB
GpinBir)#£0

We have, obviously, B(r) < 8(r) < y().

TugoreM 5. If the inequality r > r; holds then y(r) = 8(r).

Proof. If r =1, the result is obvious. Following ((4) Theorem 5,
property 8), for r > 1, y(r) = B(r); hence y(r) = 8(r). Ifr < 1thenr; <1,
hence C is reducible. Now we consider this case.

Suppose that y(r) possesses a point & belonging neither to B(r) nor to
8(r)\B(r). Let E(a,b) be a diameter through given by the definition
of y(r). According to Theorem 4, and to ((7) Theorem 7), three cases are
possible:

1° 3(a) = a(v(b)) and w(v(a)) = {a} or p(v(b)) = {b};

2° w((b) 2 D > {b} and Fy, > {a};

3° Tv(a)NT «(v(b)) = 9.

Case 1°. Suppose for instance that u(v(b)) = {b}. The diameter E(a, b)
through @ is unique. On this diameter lie no diameters of C(r) which,
extended, give H(a,b), because one of the two extremities of the segment
which, extended about its mid-point in the ratio 1/(2r—1), gives H(a,b)
is @, and this point cannot be the end-point of any chord of C(r). Thus
we find that C > (C(r))(r/(2r—1)), hence r < r;, which is absurd.

Case 2°. We have x € @,1UG,?%; let, for instance, v € ¢p'. By our
assumption, x ¢ 8(r); hence G, nB(r) = . But there is a diameter of
C(r) which, extended about its mid-point, gives E(a,b’) (b’ € Fp), because
O is reducible; then one of its extremities, say y, lies on Gp'. We have
obtained y € Gp! N B(r), which is absurd too.

Case 3°. Let Vy(b') intersect 7 a(v(a)). For a and b only case 1° is
possible. Then the point ' of E(a,b’) satisfying

2" =al/l&'=b|| = |z —al/lz—b]

belongs to B(r). Since B(r) is closed, and b’ — b implies &' - z, x € B(r),
which is absurd again. The theorem is proved.
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Necessary and sufficient conditions for reducibility |
A necessary and sufficient condition for the reducibility of C in thé
particular case that C' € P, can be derived from the following theorem.

TaROREM 6. We have C € Py and v > r;if and only if y(r) = B(r). |

Proof. Since C € P,, case 2° of the proof of Theorem 5 is not possible,
From the examination of the other cases it follows y(r) < B(r), and since
B(r) < y(r) obviously, we obtain y(r) = B(z).

Conversely, first we prove that if y(r) = B(r) then C € P,. Suppose
that C ¢ P,; then there exists a convex set D, at least one-dimensional,
such that Fj, is at least one-dimensional too. Let II, and Il, be the
connected components of

{x: there exist p’ in D, p” in F, such that r(z, B(p',p")) = r}
(IT; between D and Il,). Let d, in D, be a boundary point of B\ D, and
let b, in Fj,, be such that the supporting half-space of the convex closure
D of Du{b}, bounded by a hyperplane passing through b and d, does not
contain a point ¢ of Fj,. It follows that E(c,d)nD = {d}. Since DnII,
is the part of the boundary of Cy(r) which lies on II,, and
E(,d)ynDnlIl, = @,

the point {p} = H(c,d)nII, is exterior to C,(r) and, consequently, to
C(r). Hence p € II, < y(r) but p ¢ B(r), which is false.

Now we prove that if y(r) = B(r) then » > »,. Suppose that r < 1.
Let E(a,b) be a diameter of C. Consider also x;, x, in H(a,b) such
that r(zy, B(a,b)) = r(xy, E(a,b)) = r. Since y(r) = B(r), it follows that
2y, &, € B(r). The segment F(x,,x,) is a diameter of C(r) because twa
parallel supporting planes of C(r) can be traced through z,, 2, both
parallel to two parallel supporting planes of C' through «, b, as we have
seen above. The diameter H(z,,x,), extended about (z;+,)/2 in the
ratio 1/(2r—1), gives E(a,b). Thus (C(r))(r/(2r—1)) =C and r > r;.

Necessary and sufficient conditions for reducibility in the planar case

We now restrict our discussions to the plane case, n = 2. i
We use the family & of all the essential diameters of €, which are
defined in (4). Let

gr) ={z: r(x,d)=r,d e}
Evidently, B(r) < &(r) < y(r).
TaroreM 7. For a planar body, r > v, if and only if &(r) = B(r).

Proof. If r > r; then (C(r))(r/(2r—1)) =C and, according to ((4)
Theorem 5, property 11), C(r) is obtained from C by extending or shrinking
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the essential diameters of C' about their mid-points in the ratio 2r—1;
shence e(r) = B(r).

Conversely, let @ € B, and let E(a,b) be the essential diameter of €
through a. The two points @, @, which divide E(a,b) in the ratio r < 1
belong to &(r). From ay, @, € B(r) and ((4) Theorem 5, property 7), it
follows that B(w;,,) is a diameter of B(r), which extended about
(@, +5)/2 by the ratio 1/(2r— 1) gives E(a,b); hence a € (C(r))(r/(2r—1)).
{Therefore, for » < 1 and obviously for > 1 too, the inequality » > 7,
holds.

Lemma. Let B be a bounded differentiable convex curve, let E(a,b) be
‘an essential diameter of the convex body C bounded by B, and let ¢ be a
|point such that r(c, E(a,b)) = r. Then the tangents at a to B and at ¢ to &(r)
lare parallel.

Proof. Let x be a point such that the triangle abz remains similar to
litself when @ and b vary on B, and let y be the point of contact of E(a,b)
with its envelope. The normals of B at @ and b intersect the line through y
orthogonal to H(a,b) in the points a’ and b’, respectively. The lines
through a’ and b’ orthogonal to E(a,z) and E(b,x) respectively have z
as a common point. It is known ((1) 37) that the normal at z to the
curve described by this point passes through z. Since abx and a'b'z are two
similar triangles, @ — ¢ implies z — ¢’, where

I’ —a'||/lle"—b"|| = l[e—all/lle—bll.

Hence the normal at ¢ on &(r) is the line through ¢ and ¢, which is parallel
to H(a,a’). Therefore we can conclude that the tangent at ¢ to e(r) is
parallel to that at a to B.

Remark. By an approximation argument, the result of the preceding
lemma may be used for a convex curve differentiable at « and b and not
necessarily everywhere differentiable.

The curve &(r) will be said to have a direct sense if for every two essential
diameters E(a,b) and d of C, with a ¢ d, the point = of E(a,b) satisfying
la—b|/la—b| = r either lies on the same side of the line containing
d as a, or belongs to d.

TrEOREM 8. For a planar body, r > r; if and only if the curve &(r) has
a direct sense.

Proof. If r > r; then e(r) = B(r), by Theorem 7. Let d; and d, be
two essential diameters of €. Since C' = (C(r))(r/(2r—1)), the segments
8; = d;nC(r) and 8§, = d,n C(r) are essential diameters of O(r), following
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((4) Theorem 5, property 11). According to ((4) Theorem 5, property 3),
8,N 8, # O, and then d; nd, € O(r). Therefore &(r) has a direct sense.

Conversely, let &(r) have a direct sense. If 7, =r* then r>r; =},
trivially. If r, > r*, suppose that »* <r <r;; then &)= B(r). Let
@, in B(r), be a boundary point of (#)\B(r). According to ( (4) Theorem 4),
there exists an essential diameter d of C which is divided by @ in the
ratio r(a) = r. The diameter d is not a supporting line of C(r) and inter-
sects it, i.e. d cuts O(r) ((3) 17). From the continuity argument, there
exists a neighbourhood of a such that for every point of its intersection
with e(r)\B(r), the essential diameter given by the definition of &(r) cuts
C(r). Let b be such a point, and let g be the corresponding diameter.
Let %, in &, be the diameter passing through ¢ = gn B(r) and given by
the definition of &(r). If A is not unique, let 2 < & be the set of all such
diameters. Since the point ¢ does not coincide with b, g # k (or g ¢ #).
Let E(c,¢’) be a chord of C(r) which lies, entirely without the extremity c,
on the same side of % (or, respectively, of every k in ) as b. Let Y be
a neighbourhood of an extremity of % (or of one of the two connected
components of the set of the extremities of all » in #’) that does not
intersect the line through ¢ and ¢’. Again from the continuity argument,
for every neighbourhood V of ¢ there is another neighbourhood W, of ¢
such that through every point « of W, nB(r) can be traced an essen-
tial diameter E(y,z) (|x—y| <|x—z]]) of C such that y e ¥ and
B(y,z)ng < V. Let us consider the neighbourhood U of ¢ which does
not contain b, and choose the point x, in Wy N B(r) on the same side of
both E(c,¢’) and k (or every h in ) as b. For this particular case we
obtain E(y,z,). Hence it is clear that E(yy,z,) N E(b,c) = {v} # {c}.
Therefore the points x, and y, are separated by g, which is impossible
because &(r) has a direct sense. Now, supposing ¢ < ¥, let @, be the
point of E(y,,2,) such that |ag—w,ll/|2—2[=r" Since r'<r, it
follows that @} and 7, are also separated by g, which is impossible by
the same argument. We have obtained &(r) = B(r), which concludes
the proof.

Necessary conditions for reducibility in the planar case
In this section we shall give two properties of the reducible planar
bodies relative to their essential diameters.

TraroreM 9. For a reducible planar convex body, u(p) and u(a(p)) have
the same cardinal, for every point p in S(z, 1).

Proof. Tt is sufficient to prove that if u(p) is a point go, then p(x(p))
is also a point. Suppose that pu(«(p)) = B(qy,q). Let r <1, r >y, let
@y, ¥, be the points that divide E(q,,q;) in the ratio r, and let U, U, be
neighbourhoods of @, #, which do not intersect H(go,¢,). There exists
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an essential diameter B(qh, q3) (g5 ¢ {@o} Y E(g4, g2)) such that
M ={z: rzBlghg) =7} € UU T,

Therefore M and one of the extremities of E(gq,q;) are separated by
B(qy, ¢5), Which is impossible by the inequality > and Theorem 8.

This theorem is generalized and improved in (7) and (9).

Tagorem 10. If m, and m, are the measures of the tangent angles
(analogues in the plane of the tangent hypercones) in the extremities a and b
of an essential diameter of a reducible convex body, then mg, =my. In
particular, if the boundary is differentiable in a, it 1s in b too.

Proof. First we shall prove, using the circular images, that the interiors
of a(v(a)) and »(b) have common points. Suppose this is not true. Then,
for instance, a(v(a)) is not a point and «(v(a)) Nv(b) is an extremity of
a(v(@)). The set B = p(x(v(a))) must be a segment, because if it is not
there would be a point & of f such that »(x) belongs to the interior of
a(v(a)), which is impossible by the reducibility of the given body, and
Theorem 4. If § is a segment E(b,d’), from Theorem 9 it follows that
a € B(a,a’) = B, the lines containing H(a, a') and E(b,b") are parallel,
and E(a,b)n E(¢’,b’) = @, which is impossible too because E(w,b) is an
essential diameter: hence the proof that 7 «(v(a)) N T v(b) # 9 is finished.
Now, according to Theorem 4, a(v(a)) = v(b); hence m, = my,.

Remark. The theorem obtained from Theorem 10 by replacing the
essential diameter by any diameter is not true. To see this, consider a
rhomb which is not a square as the reducible body. The segment joining
two non-opposite vertices is a diameter of the rhomb, whereas the angles
at its extremities are not equal.

The reducibility number

In this section we estimate the reducibility number in the plane case,
using the curvature of the boundary curve B.

Choose arbitrarily two distinct essential diameters d and 8.

TaroreM 11. We have

r; = sup r(dn3é,d).
aseé

Proof. Let 7= supr(dnd,d). We have 7> r(dn8d,d) for every pair
dses

d, 8 € &; hence, by Theorem 8, &(7) has a direct sense. Therefore 7 > r,.

For every A > 0, there is a pair of diameters d,, 8, in &, such that

7—\ < r(dyN8,,d,), hence £(F—2A) has not a direct sense. Consequently

#—A\ < r;, hence 7 < r;. Thus 7 = r;, and the theorem is proved.
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Again, let us consider the pair of distinet diameters d, 8 in &.

TaeoreM 12. We have

r; = suplimsupr(dné,d).
ded d—>d

Proof. Let 4, be the acute angle formed by d and 8. We have

r; = supr(dné,d) = sup supr(dns,d)
dbed ke(0on/2] dded
Aas=k
and

sup hmsup r(dnd,d) =suplimsupr(dné,d).
dc& > de& Ag—0

One proves easily enough that

sup limsupr(dnd,d) = limsup sup #(dnd,d).
ded Adgs—0 k=0 dbesf
Agg=k
Thus we must prove only that
sup 7 =lim sup Phs
ke (0,7/2] k>

where r, = sup r(dNé,d). Suppose this is not true; then there exists
asecs

Agg=k

ko in (0,7/2] such that r,, = sup r,, which is a consequence of the
ke (0,m/2]

continuity of 7, as a function of k. Consider d,, 8, in & such that
sup r(dNné,d) = r(dyn8,.d,), that is r;=r(d,ndyd,). Suppose that
fﬁ:kn
r; # 1. Let v, w be the points that divide §, in the ratio r;, and let a,
in 8y, and b be those that divide d, in the same ratio. If a € {v,w}, for
example if @ and » coincide, then every chord ¢ passing through v and
intersecting H(b,w) is an essential diameter. From the convexity of
e(r;,) and the equality =, = sup r(dnd,d) it follows that 7(v,c) =1
hence r; = lim r(2,¢), contrary to our supposition. Pass to the case
e—>dy
a ¢ {v,w}. All the essential diameters intersect F(v,w). According to
((4) Theorem 5, property 7), for every essential diameter which inter-
sects the interior of E(v,w), unique supporting lines parallel to E(v,w)
can be traced through its extremities. It follows that there exists an
essential diameter d’ # §, such that r(»,d’) = r,. Now the proof can be
continued as above. If r,=1, ie. 8§, = E(v,w), then there exist two
parallel supporting lines at v and w. No pair of parallel boundary segments
through v and w exists, because §, € &. It is clear that one can find an
arc w < B such that E(v,w)nw = {w} and E(v,v’) € & for every ' in w.
Thus we obtain the same contradiction as above, and the proof is finished.
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Let € be a reducible planar body. Consider a system of rectangular
coordinates (x; ¥), so that the supporting lines parallel to the y-axis are
regular ((3) 31) and the projection of C on the z-axis is the segment [0,1].
Let f be a convex function and g a concave function such that
{(@; y): z € [0,1] and y = f(&) or y = g()} = B.

Letx € [0,1], 2 +h € [0,1], where f'(x + h) exists, let m be the maximum
(minimum) slope of a supporting line through (x; f(x)) if % is positive
(negative), let m, = f'(z+h), k=f(x+h)—f(z), and let E((x;f(x)),
(#,; 9(y))) be an essential diameter of B. The normal in (x+h; f(x+%))
to B either does not intersect the line through (x; f(x)) with slope —m~1,
or intersects it in a point whose distance from (2; f(@)) equals ((2) 8):

Ryf(x) = (L+m2)| (1 — kb= mp)h(m —my) 7.
We shall always choose h so that f'(x+h) exists and, if possible, is not
equal to f'(¢). In the same manner we define R, ?(y,), where I, is such
that ¢'(y,+1;) equals my, in (z+h; fl@+h)).

Let I/ (L) be the maximal open interval containing x (possibly
void) where f (respectively g) is linear, let

M={x:IL/=0} and N={a:L/> {=}},
and let us denote by ||| the length of an interval I.
TrrorEM 13. We have

b ' max{R,/(z), R0 (¥.)} max{|| L/ |, | 4.°1I3
ry = x| SUp NI SUP =7 oy Ro(ws) men  NZI+ILS }

Proof. Let a=(z;f(z), b= (z+h; fle+h), and let KE(a,a),
E(b,b) e &. Let ¢ = Ea, a')nE(b,b'), and let p(p’) be the intersection
of the normals in @(a’) and b (') to the lines with slopes m and m,.
If @ and b do not belong to the interiors of two segments of B, we have

lim su ——-——" =Gl lim sup |lo=blisin £ ebe
b-mpha'—cli baa |l@’—b'|sin Zcb'a’
e |@a—pl|/sin £ p'b'a’.sin £ cba
= h?—fgp lla’—p’||sin £ pba.sin £ cb'a’

sin(-:r— lim £ sab)

= b—+a lim sup “a'_:p |!
Sin('rr— ]im Vi wrb!) b—=>a " a"'__pf "
b—a
= lim SHPM

b>a ||@ -2’

If @ and b are interior points of two maximal segments E(ay, ay), E(by,by)
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of B, then p and p” do not exist and

. ]Iw el _ lla=c| _ [lay—as]
lim su 15
b @ —el ~ lla™=ell ~ [By=bs
because ¢ is fixed.
In the first case, x € M and

lim sup r(H(a,a’)n 8§, E(a,a’)) = limsup m&x{”a—cﬂ,’ﬂa =Cl;
6—»35‘?,:1'] b—+a ”a_a ”

ey max{|la—p]|, [la’—p'|}
bsa la—p|+I|la"—p'|
. max{R,/(z), B,%(y,)}
=i i
hool R@)+ R,

In the second case, x € N and

ma.x{[| a;—ag, ||b; — b, ||}

limsup r(E(a,a’) N8, B(a,a’)) =

8> Ela,a’) @y — @+ [ b — by |
fe&
_ max{|| /||, | 7|}
[ 2T R
Using Theorem 12 and putting r, = alin;s{sup]r{E(a,a’)na, E(a,a')),
— El(a,a’
sed

ze[0,1] zeM xeN
by the statement is found.

we have r; = sup r, = max{ sup r,, sup 'rr}, and the estimation of r; given

TarorEM 14. If f and g possess finite non-vanishing second right and
left de la Vallée Poussin derivatives (D) and Dj) on M, then

it D;f () Dig(y.) _ Dif()
it {i‘ﬁﬁm"[ 7F(@)+Dig(y,)” Dif @)+ Dig(y,)” Dif @)+ Dig(y,)’
Dy, 1L 1L
Dif (@) + D guz)] s “"“{n LI+1501 1L [+1L2 n]]'

Pr Oqf. We have used the notation
f (f( } f( ) j; )=

where f; is the right derivative of f, and another analogous one for Djf(x).
Considering the second right derivative f/(z) = lim (f'(x+hk)—f;(x))h !
h—>0+

h-»0+h

and the analogous second left derivative f;"(z), and using a theorem of
Jessen (5), one can easily prove that the existence of D;f and the existence
of f! are equivalent, and that these numbers are equal; the same thing
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i is true for D}f and f/. Using the value of R,/(x) given above, one can
deduce that the right and left limits of R,/(x) at h = 0 exist, and one
| ean calculate them (2); for instance,

lim By/(x) _ (1+£2@)? _ (L+/2@)°
i fr (@) Dif(x) -
Continuing, we have
i D@ _ A+ Diglys) Dig(y,)
| =0+ R’!Ag(yzr) D:f(ﬂ?) ) (1 55 G;Q{ym))g D:f(x}

and, similarly,
| . Rhf{x) Dig(y.)
lim = LR
n—o-B2(y.)  Dif (@)

Hence

3 ID&X{R_JJ(QF), R!ha{yz)}
]J-E?—E?p ka(m) ) R!hg(y-'u")

_ max/m2x{Drf @), Dig(y.)} max{Dif(@), Dig(ym)}}.
|\ Dif(@)+Digly,) ~ Dif(x)+Drg(y,)

Now the formula of the statement can be easily established.

For the next discussion, let f and g possess continuous second derivatives
f" and g". Also, let us define

(f'@) i f(@) >0,
f*@) =1 I/ if zel,
ll if f'(@)=0 and z € M, or f'(z) = 0,
and the analogous function g*(x).
TuroreM 15. For a body satisfying the above regularity conditions,

e max{f*(), 9*(¥.)}
" b @)

Proof. Let 0 < f"(x) < o0; then f*(z) = f"(x) = Df (%) = D}f(x), and
we shall prove that g”(y,,) is also finite and strictly positive. If I, 7 = {y,}
then z € N, hence f’(x) = 0, which is absurd. If 1,7 = @ let {g"(y,,)}
be a sequence of strictly positive numbers, where x, — 2. From the
continuity of f” and g” it follows that f”(x,) — f"(x) and 9" (W) = 9" (W)
hence if ¢"(y,) is 0 or oo,

. max{f"(,), §"Wz)} _
Ry TP R ) R
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From Theorem 14, we see that ;= 1, i.e. our body is irreducible,
which is absurd again. Hence ¢”(y,) > 0, ¢*(,) = Djg(y,) = Dig(y,), and

mx{_ﬂ Dif) Dyl  Dif) Digly,)
D7f (@) +D'gly,)’ Dif (@) + Digly,)’ Dif @) +Dig(y.)’ Dif @)+ Djg(ys))
_ max{f*@), ¢*(ya)}

F*(@)+9*(y,)
If x € N then
e 521 )| _ max{f*(z), g*(y.)}
m‘“l:tf;!|+|t1,,f||’uuuﬂuyfn} @)+,

from our notations.

Let @ = {w: f"(x) = 0 or co}n M. If x € @ then y'(y,) = 0 or o, because
if 0<g'(y,) <o then 0<f’(x)<oco. Also, [,9=0 because if
1,9 > {y,} then x € N, which is false. Therefore f*(x) = g*(y,) = 1 and

max{f*(x), g*(¥.)}
F*@)+9*(y.)

(C

< ‘?‘i.

One sees that

max{f*(@), o'} _ 0 max(/*@), 9*(0)

su " " Jni
cate J@+0W)  cenr 1H@)+0* W)
by the continuity of the used second derivatives and by the preceding
inequality. Thus, by Theorem 14,
max{f*(x), g*(¥.)}
r;= SUP —pp
S O R AN

In the last case considered here, let the curve B have continuous
curvature, which can attain 0 and co, let H(a,b,) be an essential diameter
of B, and let I'(a) be (1) the curvature of B at a if @ does not belong to the
interior of a segment of B, or (2) the length of the maximal segment con-
taining @ and included in B in the other case.

TaEOREM 16. For the body described above,

r; = sup ﬂ-—
i sT@+T0,)

B being the subset of B where the quotient has a sense.
Proof. Since f” and g” are continuous at 0 and 1,

& max{f*(), 7*(¥.)}
T e @ Fr )
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by Theorem 15. Now
= max{f*(@), 7*(y.)}
zeM f*(:‘t‘:) +g*(yx)
max{f"(x), 9" (¥.)}
zeM\Q f”(x) +g"(yz)
— sup max{(1—7"2())I((z; f(2)), (1 —92¥)) (Y5 9(¥2))}
care  A—f2@)T((@; f(@))+ 1 —92@) (Y5 9(¥2))

= max{I'((@; f(2))), T((%e3 9¥)))}
sernve  L((@; f(@)+ D% 9(¥2))

]

and

P, 020} _ o max(T (s ). Dy 94)
SN @) aev @ @) (@0

Therefore

r, =
1T ey @)+

e max{I((z; f(®))); D%} 9(52))}
ze(0,1)\Q I'((z; f(x))) + I'((%23 g(yx)))
max{[(a), I'(b,)} T'(a)

= Bl — e
S TT@+I00  aehy D@+T(5)

where B, = {(w; f(2)): « € (0,1\@} and By, = B\{(0; f(0)), (1; f(1))}-
Again by the continuity of the curvature of B, we have
Ne) (@)
[(@)+T6,) ~ pep '@+ 1)

r; = Ssup
xze By

which proves the theorem.

Final remarks
A natural partition of the family H of all Hammer’s associated bodies
can be established: H = H_U H_, where

H ={heH;h<hy, H ={heH;h2hy, and hy=C(r).

Then the body C is irreducible if €' is the minimal element of H, and
the upper bound of H_, relative to the inclusion relation, and C is com-
pletely reducible if H_ = O.

We have established some properties showing qualitative differences
between Hammer’s bodies of H, and those of H_. These results are useful
to characterize the reducibility body.
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Also, we notice that the principal properties established above, togethe)
with all the numerical estimations of r;, are invariants of affine geometry

Developments of some results of this paper and other related resulty
can be found in (6), (7), (8), (9).
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