SERIE II - TOMO XVIII

ANNO 1969

RENDICONTI

DEL

CIRCOLO MATEMATICO

DI PALERMO

DIRETTORE: B. PETTINEO

TUDOR ZAMFIRESCU

On a theorem of Chartrand, Kapoor and Kronk

Estratto

DIREZIONE E REDAZIONE: VIA ARCHIRAFI, 34 - PALERMO (ITALIA)

ON A THEOREM OF CHARTRAND, KAPOOR AND KRONK

by Tudor Zamfirescu (Bucarest, Romania)

The following theorem of L. Pósa [3] can be regarded as a sufficient condition for the graph G (with p points $(2 \le p < \infty)$, undirected, and without loops or multiple lines) to be 2-connected, since every hamiltonian graph is obviously 2-connected. We denote by $M_m(G)$ the number of all points of degree at most m in G.

Pósa's theorem. Let G satisfy the following conditions:

(i) for every k such that $1 \le k < (p-1)/2$,

$$M_k(G) \leq k-1$$
;

(ii)

$$M_{[(p-1)/2]}(G) \leq [(p-1)/2].$$

Then G is hamiltonian.

Obviously, in Pósa's theorem, condition (ii) is implied by (i) in case p is even; therefore it is meaningfull only for odd p.

As a sufficient condition for G to be 2-connected, the above result can be improved replacing condition (ii) by the following:

$$M_{[(p-1)/2]}(G) \leq p-2,$$

which, of course, is also implied by (i) in case p is even. This fact follows from the more general

Theorem of Chartrand, Kapoor and Kronk. Let $1 \le n < p$ and let G satisfy the following conditions:

(i) for every k such that $n-1 \le k < (p+n-3)/2$,

$$M_{k}(G) \leq k - n + 1;$$

(ii)

$$M_{[(p+n-3)/2]}(G) \leq p-n.$$

Then G is n-connected.

This theorem, proved in [2], cannot be improved by changing the upper bounds k - n + 1 and p - n appearing in conditions (i) and (ii), respectively, as shown at the end of [2]. However, the following theorem contains the one above as a particular case, by offering an alternative within condition (i):

Theorem. Let $1 \le n < p$ and let G satisfy the following conditions:

(i) for every k such that $n-1 \le k < (p+n-3)/2$,

$$M_k(G) \leq k-n+1$$

or

$$M_{p-k+n-3}(G) \leq p-k-2;$$

(ii)

$$M_{[(p+n-3)/2]}(G) \leq p-n.$$

Then G is n-connected.

Proof. We shall follow a way similar to that used in [2]. The case n=p-1 can be treated like there. Now, let G satisfy (i) and (ii), and suppose it is not n-connected ($n \le p-2$). Then there are n-1 points whose removal from G gives a disconnected graph G'. The graph G' contains at least one component G_1 having r points, where $r \le [p-n+1]/2$. The removal of the points of G_1 from G' gives another graph G_2 (connected or not), with p-n-1 points.

Three cases are to be considered:

Case 1.
$$r = (p - n + 1)/2$$
.

The proof in this case is identical with that of Case 1 of the proof of the Theorem in [2], the contradiction being obtained only from condition (ii).

Case 2. r < (p - n + 1)/2, and suppose that the variant

$$M_k(G) \leqq k-n+1$$
 . The state of the description of the state of the s

is satisfied for k = r + n - 2. Then, again, the contradiction may be found as in [2].

Case 3. r < (p - n + 1)/2, and suppose that the other variant

$$M_{p-k+n-3}(G) \leq p-k-2$$

is satisfied for k = r + n - 2. Here we must give some proof.

Indeed, each of the p-n-r+1 points of G_2 evidently has a degree not exceeding (p-n-r+1)+(n-1)-1=p-r-1. Therefore,

$$M_{p-r-1}(G) > p-n-r,$$

i. e., expressing in terms of p, k, and n,

$$M_{p-k+n-3}(G) > p-k-2,$$

which provides a contradiction.

That this theorem really improves that of [2], it may be seen from the example given by the graph Γ shown in the figure.

 Γ is 2-connected. The sufficient condition of [2], demanding that

$$M_1(\Gamma) \leq 0, \qquad M_2(\Gamma) \leq 1$$

does not apply, since $M_2(\Gamma)=2$. But the Theorem above, demanding only that

$$M_1(\Gamma) \leq 0$$
 or $M_4(\Gamma) \leq 3$,

and

$$M_2(\Gamma) \leq 1$$
 or $M_3(\Gamma) \leq 2$

does apply, because $M_1(\Gamma) = 0$ and $M_3(\Gamma) = 2$.

Remarks. 1°) Like in the Theorem of Chartrand, Kapoor and Kronk, condition (ii) is relevant only when p and n are of opposite parity.

2°) Since the relation "improves" is transitive, the Theorem proved here also improves a result of G. Chartrand and F. Harary [1] (see [2], p. 51).

Bochum (Germania), December 1969.

REFERENCES

- [1] G. Chartrand and F. Harary, *Graphs with prescribed connectivities*, 1966, Symp. on Graph Theory, Tihany, Acad. Sci. Hung. (1967), 61-63.
- [2] G. Chartrand, S. F. Kapoor and H. V. Kronk, A sufficient condition for n-connectedness of graphs, Mathematika, 15 (1968), 51-52.
- [3] L. Pósa, A theorem concerning hamiltonian lines, Magyar Tud. Acad. Mat. Kutató Int. Közl., 7 (1962), 225-226.

s satisfied for k = r + n - 2. Here we must give some proof.

The massed, exists of the property + 1 points of -1, evidently has a degree not exceeding -1, in the property -1, -1, -1. Therefore, some one and among managers consequence and according to -1.

That this theorem really improves that of [2], it may be seen from the xample given by the graph I shown in the figure.

is 2-connected. The shifteight condition of \$25," demanding that

oes not apply, since $M_2(\Gamma) = 2$. But the Tire $M_2(\Gamma) = 2$. But the Tire $M_2(\Gamma) = 2$.

is a substitute of the state of

Pelico (III) is relevant only when a and a are of enough neutral and the first of the college of

27 Since the relation "improves" is transiffer theorem proved here to improves a result of Chartrand and P. Harary III (see [2]; p.151102)

The proof in this case is identical with the see Case I of the proof of Theorem in [2] the contradiction name as a Set address(I (singuist)) minimals