THE SIMPLICIAL CONVEXITY OF CONVEX SURFACES

BY

TUDOR ZAMFIRESCU

The aim of this note is to find the class of all (complete) convex surfaces which
are simplicially convex. This problem will be completely solved here only for the
2_dimensional surfaces. However, one will probably find in this treatment some
useful suggestions for attacking the n-dimensional case.

Let E, be the n-dimensional Euclidean space. 4 set A C B, is said to
be l-simplicially convex if there exists a subset BC A such that

A = 8,(B),

where §,(B) denotes the union of all simplexes of dimension at most
1—1, with vertices in B . A set which is I-simplicially convex for some
1> 2 is called simplicially convex ([blor [6]).

By Carathéodory’s theorem ([2] or [3], p. 15), usual convexity
and (n -+ 1)-simplicial convexity are equivalent notions in E,. (In gene-
ral, usual convexity implies I-simplicial convexity for each [). Therefore
we shall only speak about the 2- and the 3-simplicial convexity of convex
surfaces, i.e. the frontiers of convex bodies *) in H, [1].

LeMMA 1. If A is a simplicially convex set, and

4 = CgI(B)!

then
ext conv A C B**),

We leave the (simple) proof of this lemma to the reader, remarking
that a useful comment could eventually be found at the beginning of the
proof of Theorem 4 in [5].

*) By convex body we mean a convex set with interior points, different from the

intersection of two half-spaces with parallel frontiers.
**) We use the (rather universal) notations of [3].
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LEMMA 2. If K C By is a bounded convex body and
S, (ext K) C bd K,

then K s either a bounded cone (based on a planar convex body) or is
combinatorially equivalent with a bounded triangular prism.

Proof. Let @, ,....,x,eext K be the vertices of a tetrahedron T
not degenerate.

1
ext K = {wy ..oy iy,

then K = T and nothing more needs a proof.
It

wgeext K — {®,..., @ ,}%),
then
L & OOV ({@y5eany@e} — 4@} (8= Lyuiayb)

By Radon’s theorem ([4] or [3], p. 16), it follows that {#; ..., @} can
be decomposed in two disjoint subsets P and @ such that

card P =2, card ¢ = 3, and conv P ) conv @ 5= @.

Now it is easily seen that either ; lies on the plane of a face of 7, or
cony P (int T =% &.
But the last relation is contradicted by
bd K Nint 7 =@
together with
conv P C &, (ext K)

and with the inclusion in the statément. Therefore there is a face F of
T whose plane = contains ;. Because x,eext K (i =1,...,5), G =

- » o.
= conv (F U {u;}) is a quadrilater.
1f
extitk = {misteny gl
then
K = conv (T U @)
*) Because no confusion can appear, we shall write ¢ —*" (instead of “~" [3]) for
seél-theorelic difference as well as for usual difference belween numbers. Sums or differences

of veclors will not be used.
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is a bounded quadrilateral pyramid (therefore a special kind of bounded
cone).
If
ext K — {@,..., %} 5+ &,
then either
ext K — T C =,
or there is a point

zgsext K — (T U =).

In the first case, K is a cone with apex ext K — = and based on conv
(ext K ) =), and the proof does not need to be continued. In the second
case, 2, must belong to some face of each of the four tetrahedra not dege-
nerate and with vertices in {, ,..., #;}. This is possible only if the point
i, lies on the segment s, joining the intersection of two opposite sides of
G with ext T—G@G (intersection at infinity is here permitted).

1t
ext H = (& ;504 Tehs
then
K = conv (T UG U {xg})

is combinatorially equivalent with a triangular prism, which verifies the
lemma.
Suppose there would exist another point z; =+ @, with

z,eext K — (T U =).

By the preceding discussion, @, either belongs to s, or to an analoguous
segment s, joining the intersection of the other two opposite sides of G
with ext T—@. Since the extreme points ext 7'—G and x; are already
on s,, it follows @, s, Let ¢ be the triangular face of conv. (TUGU {x})
which contains x; and S be the tetrahedron having g another vertex
of 1, and the two points of ext @—t as vertices. Then @, does not belong
to the plane of any face of S, and a contradiction is obtained.

The proof of Lemma 2 is complete.

LEMMA 3. Let K be a bouded convex cone. Then

a) bd K is 2-simplicially convex,

b) bd K is 3-simplicially convex if and only if K is a tetrahedron.
Proof. a) Let a be the apex of K, and

M, = relbd conv (ext K — {a}) U {a}.

One obviously obtains
bd K = &, (M,).

11 — ¢. 8321
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b) If K is a tetrahedron, then
bd K = &, (M,)
for M, = ext K.
Let now bd K be 3-simplicially convex :
bd K = &, (M,).

If K is a bounded cone (with apex a), but a tetrahedron, then its base
B has a pair of extreme points b, ¢ such that the segment joining them
intersects int B. Then
53({4, b, c})ﬂint— K = @&,
Ss({ay b, ¢}) C S, (ext K) C 85 (My),
whence
$3(My) & bd K,

which provides a contradiction.

LEMMA 4. If K s combinatorially equivalent with a bounded trian-
gular prism, then bd K is not simplicially convez.

Proof. We have only to show that bd K is not 2- or 3-simplicially
convex. Suppose this is not true; then i

$,(M,) =bd K,
for some je {2, 3}. By Lemma 1,

ext K — ext conv bd K C M’.

Clearly
M, ext K,

because

Sa(ext K ) Hbd K; S,(ext K) & bd K.
Also j = 2, for

Sslext K) C $4(M,),
whence
S3(Mz) & bd K.
Let K have vertices a,,...,x,, such that cony {mi’b%, Tyds
@5

conv {x,, x5, xg be faces and conv 12y, @}, conv {z,, e edges
of K. There exists a point ¢ ¢ M, — ext K .
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Suppose that
¢ € conv {x;, Z,}.
Then

conv {e, a5} N int K = @,

conv {e, xg} C &y (M,),
whence
8, (M,) ¢ bd K,
which is a contradiction.
Similarly,

¢ & conv {x,, @} U conv {a;, z}.
Also, if

¢ € relint conv {»y, x,, s},
then

conv {e, x¢} N int K == @&,

and the same contradiction as before is obtained.
Therefore

M, () conv {z;, @y, @3} = {@y, &y, &3},
whence
S (M,) ) conv. {@y, @5, Tz} = Sal{@y, @3, @3}) =

= relbd conv {z,, z,, v,};
hence
Jz(Mz) 1) bd K’

which is again a contradiction, and Lemma 3 is completely proved.

We are now able to prove our first main result, regarding the closed
convex surfaces (see [1]):

THEOREM 1. a) The class of all closed convex surfaces in Hy which
are simplicially convex is that of frontiers of bounded eonvex eones.

b) All bounded convex cones have 2-simplicially convex frontiers.

¢) The class of all closed convew surfaces in g which are 3-simplicially
convex is that of frontiers of tetrahedra.
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Proof. a) Let K be a bounded convex body in E;, and bd K
be simplicially convex. Then

S, (M,) =bd K
for some je {2, 3}. Following Lemma 1, ext K C M ;- Therefore
sy (ext K) C &, (ext K)C &, (M,) = bd K.

Now, by Lemma 2 combined with Lemma 4, K is a bounded convex
cone.

b) This assertion of the Theorem 1 coincides with Lemma 3, al.

¢) This is a consequence of point a) above and of Lemma 3, b).

Thus the proof of Theorem 1 is completed.

Let us pass now to the case of open and cylindrical surfaces.

LeMMA 5. If the convexr body K has precisely J extreme points
(3 > 1) and all of them are coplanar, then bd K is an open convex surface
and K has at least f(j) unbonded 1-faces *), where

f(j):{j +4=2 _forij=1, 2
J for j > 3.

LeMMA 6. If the convex body K has no extreme points, then bd K
i8 @ eylindrical convexr surface and K has at least 3 (unbounded) 1-faces.

The proof of these lemmas will also be left to the reader.

LemMaA 7. If the convex body K has at least 4 unbounded 1-faces,
then bd K is not simplicially conve.

Proof. Let 8,, 8,, 83 8, be unbounded 1-faces of K . If

S, (M,) = bd K (j =2 or 3),
then each of the preceding 1-faces must contain a sequence of points
{sein}e-1(0=1,2,3,4) of M, Let

8.0, € relint §,.
Then, clearly
conv {s, ;. mys ks, ,,”} N int K =~ 0

for at least one index ke{2, 3, 4}, which provides a contradiction,
since

conv {31. Sy Ste, i n“-} = 8,({31, g Sk, PR }) & J, (Mj') T3 bd K-

*) By a d-face is meant a d-dimensional intersection of el K with a supporting plane
of K. In Lhe case of Lemma 5, the considered 1-faces are semilines.
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Consequently we obtain our second main result, concerning the
open and the ecylindrical convex surfaces (see [1]).

THEOREM 2. a) The class of all open convew surfaces that are simpli-
cially convew is that of frontiers of (unbounded) triangular pyramids.

b) The class of all cylindrical convex surfaces that are simplicially
convex is that of frontiers of (unbounded) triangular prisms.

¢) The surface in both classes are 2-simplicially convew. No open or
eylindrical convex surface is 3-simplicially convew.

Proof. a) and ¢) Let K be a convex body whose boundary is an
open convex surface. By Lemma 6, K has at least one extreme point.

Suppose now that K has precisely one extreme point e; then,
by Lemma 5, it has at least 3 unbounded 3-faces. If bd K is simplicially
convex, then, by Lemma 7, K is an unbounded triangular pyramid.
If, conversely, K is an unbounded triangular pyramid, then it has the
(unbounded) 1-faces 8, 8, 8; Since

Ss (’S1 U Sa U Sa) = bd K’
bd K is 2-simplicially convex. If
Sy (M) = bd K,
then ee M4 and
M;NS, —{e} <D =12, 3),
whence
Sy (Mp)Nint K + @
and a contradiction is obtained.

If K has precisely 2 extreme points, then, by Lemma 5, it has at
least 4 unbounded 1-faces ; therefore, by Lemma 7, bd K is not simpli-
cially convex.

If K has precisely 3 extreme points e, €,, €3, then it has at
least 3 semilines S, S,, S, originating respectively in e;, €, €, as 1-faces.
Suppose bd K is simplicially convex. Then

S, (M,) =bd K (j =2 or 3).
Since
Mjnsr_{ek}#g (j:2335k=152:3}s

we can find the points

x:.kEM: n Sk_ {ex}°
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But
Ss (My) D S5({ @1, e €s}); S5 ({ 03,1y €y e; }) Nint K==,

which provides a contradiction. Therefore J = 2. Now, like in the proot
of Lemma 4, it can be shown that

M;Nconv {e, e, e} = {ey, €5 €5}

and the same contradiction like there is obtained.

If there are 4 points in ext K, not all in one plane, then K also
possesses at least 3 semilineas as 1-faces, one of which, say S , has the
Property that there exists a point ez ext K such that

conv {z, e}Nint K == @

for every werelint 8, and therefore bd K is not simplicially convex.

If ext K contains at least 4 points, but all lie on a plane, then,
by Lemma 5, K has at least 4 unbounded 1-faces ; following Lemma 7,
bd K is not simplicially convex.

b) and ¢) Let now K bhe a convex body with eylindrical boundary.
Then it has no extreme points and, by Lemma 6 , Possesses at least 3
(unbounded) 1-faces. If K has exactly 3 1-faces, then it is an (unbounded)
triangular prism. All triangular prisms have obviously 2-simplicially convex
boundaries since each such boundary is the 2-simplicially convex cover
[6] of the union of the 3 1-faces. But these boundaries are not 3-sim-
plicially convex. If K has at least 4 1-faces, bd K is not simplicially
convex, following Lemma 7.

Theorem 1 together with Theorem 2 show :

The classes of all (complete, 2-dimensional) conver surfaces which are
simplicially convez are those o f frontiers of bounded cones, frontiers of unboun-
ded triangular pyramids, and frontiers of unbounded triangular prisms.
All of them are 2-simplicially convex. The class of all convex surfaces which
are 3-simplicially conver is that of frontiers of tetrahedra.

We ask for characterizations of those convex which are I-simplicially
convex, with (out) prescribed !, in more than 3 dimensions, A first step
of special interest, and probably the most important, would be to find all
the polyhedral simplicially convex surfaces, because our problem seems
to look more natural when such surfaces are considered. Furthermore,
the study of the simplicial convexity of boundary complexes of convex
polytopes would be of a certain interest. Finally, let us remark that,
even in the plane, the most general problem of charcterizing the arbitrary
simplicially convex sets is not yet solved, and any significant combina-
torial, topological, or geometrical properties (for some algebraic proper-
ties see [5] and [6]) have not yet been discovered.
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