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ON k-PATH HAMILTONIAN GRAPHS AND LINE-GRAPHS

TUDOR ZAMFIRESCU *)

1. Throughout this paper, the word graph will be used for an
undirected connected graph, without loops or multiple edges.

If G is a graph, P(G) will denote the point-set of G and E(G)
its edge-set.

A graph is called:

the line-graph L(G) of the graph G if P(L(G)) can be put in
one-to-one correspondence with E(G) in such a way that two points of
L(G) are adjacent if and only if the corresponding lines of G are

adjacent,

the subgraph G’ of the graph G if P(G’) c P(G) and each line
in E(G) joining points in P(G’) also belongs to E(G’),
- of type Tl in G if its point-set P and its edge-set B respectively

are subsets of P(G) and E~(G), and it has at least three common lines
with every complete subgraph on 4 points of the subgraph G’ of G
with P( G’) =1 .
- o f type T2 in G if it is of type Tl in G and no point not from

its point-set is adjacent to more than one point in its point-set,
- hamiltonian if it possesses a hamiltonian circuit,

- hamiltonian-connected if every pair of distinct points is con-

necte,d by a hamiltonian path,
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- randomly hamiltonian if every path is contained in a hamilto-

nian circuit,
- k-path hamiltonian (o _ k  p - 2, where p is the number of ver-

tices) if every path of length not exceeding k is contained in a hamilonian
circuit (for it is meant a hamiltonian graph, and for k = p - 2 one
obtains a randomly hamiltonian graph),
- weakly k-path hamiltonian if every path of length not exceeding

k and of type T2 is contained in a hamiltonian circuit.

If M is a subset of the point-set of a graph then the number of all
points not in M each of which is adjacent to some point of M is called
the degree of M. If a is a point of a graph, then p(a) denotes the degree
of ~{ a } .

2. Let G be a graph on p points.
G. Chartrand and H. Kronk [3] gave necessary and sufficient con-

ditions for G to be (p - 2)-p~ath hamiltonian (randomly hamiltonian).
Results of O. ORE ( [ 5 ] , [6], [7]) giving sufficient conditions for

the graph G to be hamiltonian have been extended in the following
ways to provide sufficient conditions for G to be k-path hamiltonian
(okp-3).

PROPOSITION 1 (H. Kronk [4]). G is k-path hamiltonian if for
any pair of non-adjacent vertices a and b,

PROPOSITION 2 (H. Kronk [4]). G is k-path hamiltonian if it

has at edges.

Theorem 1 will give another sufficient condition for a graph to be
k-path hamiltonian.

The next two Propositions contain sufficienti conditions for a graph
such that its (iterated) line-graph is hamiltonian.

PROPOSITION 3 (G. Chartrand [1], [2]). G is sequential if and
only if L(G) is hamiltonian.
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PROPOSITION 4 (G. Chartrand [ 1 ], [2] ). If G is not a path, then
Lp+k-3(G) is hamiltonian for all k &#x3E; o.

Theorems 2 and 2a will give necessary conditions for a graph to
be k-path hamiltonian, and Theorem 3 together with its Corollaries

will complete some results in [2].

3. THEOREM 1. If each subgraph of G on at least p - k + 1 ver-

tices is hamiltonian-connected, then G is k-path hamiltonian *).

PROOF. Let K be a k-path (a path of length at most k) in G,
of endpoints a, b. Since the subgraph G’ of G with P(G’)=(P(G))-
- P(K)) u { a, b I is hamiltonian-connected, a and b are joined by a

hamiltonian path H in G’. Then K U II is a hamiltonian circuit of G.

That Theorem 1 may be used in cases in which Propositions 1 and

2 fail to apply, it can be seen from the following example:
Let G be the graph obtained by joining each point of the edgeless

graph E4 on 4 points with each point of the complete graph K7 on 7
points and also joining another point v with 5 vertices of K7. G does
not satisfy the sufficient conditions of Proposition 1 for being 1-path
hamiltonian, because for some vertex w of E4

while p -I- k =13. Also, G fails to satisfy the sufficient conditions of

Proposition 2 because its number of edges is 54, while 2 (p -1 ~(p- 2 ) -f-
-E- k -~- 2 = 58. By applying Theorem 1, G is even 3-path hamiltonian.
(We note that for Theorem 1, though not false, is uninteresting
since hamiltonian-connectedness directly implies the property of being
1-path hamiltonian).

*) It can be proved that this theorem is stronger than Theorem 8 of C. Berge
in « Graphes et hypergraphes », Dunod 1970, p. 197 (regarded as a sufficient con-
dition for a graph to be k-path hamiltonian), and that both Propositions 1 and 2
are weaker than the mentioned result of C. Berge.
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4. THEOREM 2. If G is k-path hamiltonian, then L(G) is weakly
(k + l)-path hamiltonian.

PROOF. Let A be a (k-E-1)-path of type T2 in L(G). The edges in
E(G) corresponding to the vertices of A form a set

such that vi and vi,i are adjacent (i = 0, ..., k). Let

be a subset of V forming a path of maximal length. Evidently, each edge
Vi (i = 0, ..., k -~-1 ) is adjacent to some edge of the path K generated by

Since l _ k, K may be extended to a hamiltonian circuit C in G. Each
edge of G not in V is adjacent to some edge of E(C) - V. Now, all
the edges in E(G) - V may be arranged in an obvious manner to form
a sequence

such that vni and a, are adjacent, ai and at+1 are adjacent (i= 1, ...,

m -1 ), and am and Vn1 are adjacent. The points in L(G) corresponding
to the cycle of edges

are consecutively adjacent, thus providing a hamiltonian circuit which
includes A.

The proof of Theorem 2 suggests the following improvement of its
statement.

THEOREM 2 a. If G is k-path hamiltonian, then each (k + l)-path
of type Tl in L(G) whose (k- I)-subpath obtained by removing its

endpoints (and ad jacent edges) is of type T2 in L(G), is extendable to a
hamiltonian circuit of L(G).
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Using Theorem 2 a it can be seen that for k = 0, 1, Theorem 2 may
be stated in the following stronger form:

THEOREM 3. If G is k-path hamiltonian, then L(G) is (k-E-1 )-path
hamiltonian (k=O or 1).

COROLLARY 1. If G is hamiltonian, then L(G) is I-path hamilto-
nian and Ln(G) is 2-path hamiltonian for every n &#x3E; 2.

The above corollary improves Corollary 1 B in [2 ] .
Proposition 3 together with Corollary 1 imply:

COROLLARY 2. If G is sequential, then L2(G) is 1-path hamiltonian
and Ln(G) is 2-path hamiltonian for every n &#x3E;_ 3.

Proposition 4 together with Corollary 1 yield the following impro-
vement of Proposition 4.

COROLLARY 3. If G is not a path, then LP+k-3(G) is min { 2, k} -path
hamiltonian (k ? o).
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