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Fix Point Theorems in Metric Spaces 

By 

TUDOR ZA_~IFIRESCU 

I n  this paper results similar to the well-known contract ion theorems of  BA~ACH 
are obtained*). These classical theorems, our mentioned similar results and theorems 
of  K ~ N . ~ ,  EDELSTE~ and Sr~GH are all, in fact, corollaries of a few more general 
theorems, as we shall see. 

Theorem 1. Let M be a co~plete metric space, ~., 8, 7 real numbers with ~. < 1, ~ < ~ ~-, 

7 < ~,~ and / : M --+ M a function such that for each couple of different points x, y e M, 
at least one of the following conditions is satisfied: 

1) d(f(x), f(y)) ~ ~.d(x, y) **), 
2) d(f(x), /(y)) g fl(d(x, /(x)) + d(y, /(y))) , 

3) d(/(x),](y)) ~ 7(d(x, / (y))  § d(y , / (x))) .  

Then f has a unique fixed point. 

P r o o f .  Consider the number  

6 = m a x  a , - 1 - f l ,  1 ?, " 
Obviously, d < 1. 

Now, choose x0 e M arbitrari ly and fix an integer number  n >= O. Take x = fn (x0) 
and y = ]n+l (xo). Suppose x .  y; otherwise x is a fixed point  o f / .  I f  for these two 
points condition 1) is satisfied, then 

d (1~+1 (xo), f~+2 (xo)) =< ~d (f~ (xo), 1~+1 (xo)). 

I f  for x, y, condition 2) is verified, then 

d (fn-,1 (xo), fn+2 (xo)) ~ fl (d (fn (xo), fn+l (xo)) q- d (fn+l (xo), fn+2 (xo))), 

which implies 

(/n+l (xo),/n+2 (xo)) ~ ~ d (fn (xo),/n+~ (xo)) ~ 5d (/n (xo),/n+1 (xo)) �9 d 

In  case condition 3) is satisfied, 

d (/'+~ (xo),/,~+2 (xo)) =< ~ d (/~ (xo),/~+" (xo)) =< 
< y (d (fn (xo), fn+: (x0)) -4- d (]n+: (xo),/n+2 (x0))), 

�9 ) For example, Corollaries 3,4. 
�9 *) Throughout all the paper, d denotes the distance function. 
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which analogously implies 

d (l n+l (xo), I ~+2 (xo)) =< ~d (1 n (x0), I n+l (xo)). 

This inequal i ty ,  t rue  for  every  n, clearly implies t h a t  {I n (xo)}~=o ~s a Cauchy sequence 
and therefore converges to some point  z e M.  

We now prove  t h a t  z is a fixed point  of 1. Suppose l (z) ~= z and  consider the  ball 

B =  {x e.~Z : d(x , z )  <= ;, d(z, /(z))} . 

Observe t h a t  d(x, ](z)) > ~ d(z, l(z)) for every  point  x e B. There  exists a number  N 
such t h a t  ] n (xo) e B for each n =>- 2V. Taking now x ~ fly (xo) and y -~ z, we mus t  
have again one of  the nex t  three  si tuations : 

1) d (p'+l (xo),/(z)) < r (xo), z) , 

which, however,  contradicts  

~d(fiV (xo), z) _~ d(p" (xo), z) < ~ d(z, / (z)) < d(fi v+l (xo), /(z)) , 

d (p'+~ (xo), I (z)) < fl (d ( p  (xo), p + l  (x0)) + d (z, 1 (z))), 2) 
contradict ing 

fl (d (fly (xo), p + l  (xo)) + d (z, l (z))) < 

< �89 (d(flV(xo), z) + d(~-, I z~+l (xo)) + d(z, [(z))) < 

<= -~d(z,l(z)) <= d(lN+l(xo), l (z)), 
3) d (]N+I (xo), ] (z)) < y (d (1~r (xo), / (z)) A- d (l ~r (x0), z)),  

respect ively contradict ing 

~/(d (p '  (xo), / (z)) -4- d (l N+I (xo), z)) < 
< -~ (d (l ~v (xo), z) -4- d (z, l (z)) -F d (]N+I (xo), z)) < 

< ~ d(z , / (z ) )  <= d(l  •+1 (xo), l ( z ) ) .  

Thus,  l(z) ~-- z. 
Now we show t h a t  this fixed point  z is unique.  Suppose this is not  t rue :  ](z') = z" 

for some poin t  z' e M different f rom z. Then 

d( l  (z), l(z')) = d(z, z') , 

d(lCz), t(z ')) > d(z, l(z)) + d(z' ,  {(z')) , 
t d(/(~), / (z)) = ~ (•(z, l(z'}) + d(z ' , / ( z ) ) ) ,  

so t h a t  none of the  three  conditions of  the theorem is satisfied a t  the points  z and z'. 

Corollary 1 (BA2cACH). Let M be a complete metric space, ~ ~ 1, and ] : M --> M 
a lunction such that ]or each couple o I di]lerent points in M condition 1) o] Theorem 1 
is verilied. Then ] has a unique lixed point. 

Corollary 2 (KA_w~A_w [2]). Let .M be a complete metric space~, fl ~ ',.,1 and ] : M -+ M 
a ]unction such that ]or each couple o I dillerent points in M condition 2) o] Theorem 1 
is veri]ied. Then ] has a unique lixed point. 
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We believe the following analogous result is new. 

Corollary 3. Let M be a complete metric space, ~ < �89 and f : M ---> M a function 
such that for each couple of different points in M condition 3) of Theorem 1 is verified. 
Then f has a unique fixed point. 

We give here an example of a space M and a function / such that  Corollary 3 
applies, but  both Corollaries 1 and 2 fail to apply (even by taking suitable subsets 
of M and the corresponding restrictions of /) .  

Consider the complex plane C, the half-plane C+ of all complex numbers with 

nonnegative coefficients of i, and the sequence S ---- n=o on the real axis. To 

each couple of points 2g,~ , 22•+1 c S (m integer), add two points Z~m, z2m+l ~ C+ 
1 1 

with real parts  22 ~ , 2~m§ 1 , respectively, such tha t  all four points are the vertices 

of a square. Define 

~I  = s u (~n}r~0 u {0} 
and f : M --> M such tha t  

f . ~ -  - -  2n§ 

] (z~) = z ~ + : ,  

f (0) = 0 .  

The space M is equipped with the distance induced from C and one easily verifies 
tha t  it is complete and tha t  f satisfies on all couples of different points in M the 
condition 3) of Theorem 1, but for each subset M'  c M with finite complement in M, 
a t  no couple of different points in M '  condition 1) or condition 2) is satisfied. 

Corollary 4. Let M be a complete metric space, 5 < 1, and [ : M --> M a function such 
that for each couple of different points x, y e M,  

d(f(x),  f(y)) < (3g(x, y) , 

where g (x, y) is the mean value of the first three, the last four, the first one and the ~st  
two or all five (the choice may  depend on x, y) o/the following numbers: 

d(x, y), d(x, f(x)), d(y,  ](y)), d(x, f(y)), d(y, ](x)).  

Then f ha~ a unique fixed point in M .  

The p r o o f  is obvious: Let  us say tha t  for some x, y ~ M,  g(x, y) is, for instance, 
the mean value of the first three numbers in the statement.  Then g (x, y) < d (x, y) 
or g (x, y) ~ �89 (d (x, f (x)) ~- d (y, f (y))) (or both), so tha t  at  least one of the conditions 
1) and 2) of Theorem 1 is satisfied at  x, y. 

The following statement  slightly generalizes Theorem 1. 

Theorem 2. Let M be a .metric space, :(, fl, ~ real numbers with ~ < 1, fl < �89 7 < �89 
and f : M ---> M a function such that for each couple of different points x, y e M,  at 
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least one o] the conditions 1), 2), 3) o/ Theorem 1 is satisfied. I / / o r  some xo G M,  the 
sequence {in (x0)}~=o has a limit point z in M,  then z is a unique/ ixed point o/ /. 

To prove  Theorem 2, one shows like in the proof  of  Theorem 1 t h a t  {/n(x0)}n=o 
is a Cauchy sequence, whence /n(xo)-->z; fur ther  one follows again the p roof  of  
Theorem 1. T h a t  Theorem 2 generalizes Theorem i is clear since under  the  hypotheses  
of  Theorem 1, {/n (xo)}~=0 is convergent  for every x0 G M. 

Theorem 2 has, of  course, corollaries analogous to Corollaries 1 - -4  of  Theorem 1, 
bu t  we omi t  writ ing t h e m  down explicit ly.  We jus t  r emark  t h a t  the  analogue of 
Corollary 2 is exac t ly  Theorem 1 of KAN~A~ [3] ff one drops f rom the last  the condi- 
t ion (ii), which thus  appears  superfluous. 

�9 Theorem 3. Let M be a set in a complete metric space X ,  o~, fl, y real numbers with 
< 1, fl < �89 y ~ �89 and / : M -~ M a /unc t ion  such that /or  each couple o/di/ /erent  

points in M ,  at least one o/ the three conditions o/ Theorem I is satis/ied. Then, /or 
xo ~ M,  the sequence {]n (xo)}n-o converges to a point in X ,  independent on the choice o/ xo. 

P r o o f .  First ,  one finds like in the  proof  of  Theorem 1 t h a t  there exists a point  
z G X such t h a t  

lira / n (x0) = z .  

Choose now Yo arbi t rar i ly  in M. Analogously,  /n (Y0) --> z', where z' e X ,  and we 
wan t  to show z = z'. Suppose d(z, z') > 0 and  choose the  n u m b e r  s such t h a t  

1 j l - ~  1 1 - 2 ~ }  
O ' ~ 8 < - ' 2 d ( z ' z ' ) ' m i n [ l + ~ '  2 '  1 + 2  " 

There  is a na tura l  number  N such t h a t  d(/n(xo),z)  ~ s and  d(]n(yo), z') ~ e for 
every  n ~ ~ .  

Suppose first t h a t  for x -~/n(xo),  y = /n ( yo ) ,  where n ~ 2V, condit ion 1) is verified 
(clearly, x =~ y). Then,  

d (/n+l (xo) ' / n+ l  (Y0)) ~ ~ d (]n (x0), ] n (Y0)) �9 

B u t  
d (1" (x0), ] n (Y0)) ~ ~ (d (1 n (x0), z) q- d (z, z') q- d (z', / n (Y0))) 

=< ~ (d (z, z') + 2 e).  

Now, since 
1 1 - - ~  

e < - ~ d ( z , z ' )  1 + ~  ' 

we have  fur ther  

~(d(z, z') + 2 s) ~ d(z, z') - -  2 s  

~= d(z, z') - -  d(/n+l (xo), z) - -  d (/n+: (yo), z') 

d (fn+: (x0),/n+: (Y0)), 

which provides  a contradict ion.  
Suppose now for these x, y condit ion 2) is satisfied. Then  

d(/n+: (xo),/n+: (Y0)) ~ fl(d(/n (xo), ] n+: (xo)) q- d(] n (Yo), /n+: (Yo))) . 
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But 
fl (d (/n (xo),/~+1 (xo)) + d (/" (yo),/n+l (yo))) 

fl (d (/a (xo), z) ~- d (z,/~+1 (xo)) + d (In (Yo), z') + d (z',/n+l (Yo))) ~ 4 fl 

and since 

we have further 

1 1 l d ( z , z , ) .  1 
s < ~ d ( z , z ' ) ' ~  < 2 l + 2 f l '  

4fl~ < d(z, z') - -  2~ ~ d(/n+l(xo),/n+l(yo)),  

which gives a contradiction. 
If, finally, for this couple x, y, condition 3) is fulfilled, then analogously 

d (/n+l (xo),/n+l (Yo)) g y (d (/n (xo),/,+1 (Yo)) + d (/n (yo),/n+l (xo))), 

but 
y (d (/n (xo),/n+l (yo)) ~- d (/n (Yo),/n+l (xo))) 

y(d (1 n (xo), z) + d(z, z') + d(z',/~+1 (y0)) -~ 
+ d (/n (Yo), z') + d (z', z) + d (z,/n+l (x0))) 

<= 2y(d ( z , z ' )  + 2e) < d(z,z ')  - -  2~ ~ d(/n+l(xo),/n+l(yo)),  

and again a contradiction is obtained. 
I t  follows d(z, z') ~- 0 and Theorem 3 is proved. 
Surely, Theorem 3 has also corollaries (that can easily be reproduced by the reader) 

analogous to Corollaries 1--4. The one corresponding to Corollary 1 is the well-known 
Picard-Banach contraction principle. 

Theorem 4. Let M be a metric space and / : M --> M a continuous/unction such that 
/or each couple o/di / /erent  points x, y e M,  at least one o / the /o / lowing  con~litions is 
satis/ied: 

1 ~ d ( / ( x ) , / ( y ) ) < d ( x , y ) ,  

2 ~ d( / (x) , / (y ) )  < -~ (d(x , / (x))  + d (y , / ( y ) ) ) ,  

3 ~ d( / (x ) , / (y ) )  < l ( d ( x , / ( y ) )  + g ( y , / ( x ) ) ) .  

I / / o r  some xo �9 M,  the sequence {/n (x0)}~=o has a limit point z in M,  then z is a unique 
/ixed point o / / .  

Proof .  Let {/n'(x0)}~ o be a subsequence of {/n(xo)}~=o such that  

lim/n, (xo) -~ z . 
i-->oo 

Then 
lim/"'~1 (xo) =- / (z), l im/"+2 (x0) ----/2 (z) 
i--~r i--~or 

because / is continuous. We want to show now that  for each nonnegative integer n 
ei ther/n (xo) -~ /n+l (xo) or 

d (/n+l (xo) , /n+2 (xo)) < d (/n (x0) , /n§ (x0)) �9 
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Suppose, on the contrary, tha t  for some m >= O, fm (xo) and/m+l (xo) are distinct and 

d (/u (x0),/~+1 (x0)) =< d (/m+l (x0), [~+2 (xo)) . 

Then, taking x -~ /m  (xo), y = [~+1 (xo), the preceding inequality contradicts each of 
the following three relations, respectively expressing the conditions 1 ~ 2 ~ 3 ~ 

d (/~+1 (xo),/~+2 (xo)) 

d (/~+t (x0),/~§ (x0)) 

d (/~+1 (x0),/~§ (x0)) 

< d (/'~ (xo),/m+l (xo)), 

< -.~ (d (/~ (xo),/~+1 (xo)) + d (/~+1 (x0),/~+2 (z0))), 

< ~ (d (/~ (x0),/~+2 (xo)) --<_ 
--< ~ (d (/~ (z0),/~+~ (z0)) + d (/~+1 (xo),/~§ (zo))) �9 

Thus {d (/n (x0), fn+l (xo)))r162 0 is convergent and 

d (z, / (z)) ----- lim d (/~' (xo), fn,+l (x0)) ~-- l im d (/n (xo), fn+l (xo)), 

---- lim d ([n,+l (x0), fn,+2 (x0)) =- d (] (z),/2 (z)). 

Now, analogously, the above equality proves that  [ (z) = z. Finally, suppose z' :~ z 
and f (z') = z'. Then, like in the proof of Theorem 1, none of the three conditions 
which are to be satisfied at  x = z, y = z' is fulfilled. The proof is finished. 

In Theorem 4 and in its corollaries that  will be mentioned, two of which explicitely, 
the existence of a sequence {fn (x0)}~=o having some limit point in M is automatically 
guaranteed in case M is compact. 

Corollary 5 (EDv.LST~.r~ [1]). Let M be a metric space and f : M ~ M a /unc t ion  
such that for each couple of different points in M ,  condition 1 ~ of Theorem 4 is satisfied. 
I f  for some xo a M,  the sequence {fn (x0)}~=0 has a limit point z in M,  then z is a unique 
[ixed point o /[ .  

Corollary 6 (SING~ [4]). Let M be a metric space and ] : M--> M a continuous 
function such that for each couple of different points in M,  condition 2 ~ of Theorem 4 is 
satisfied. I f  for some xo ~ M ,  the sequence {/n(x0))~r 0 has a limit point z in M ,  then 
z is a unique [ixed point o / f .  

In fact, we observe that  this result of Sr~G~ (his Theorem 1 in [4]) is not  exactly 
an extension of the proposition of KA~AN cited here as Corollary 2, as he claims. 
I t  merely constitutes an improvement of Theorem 2 of KA~N~_~ [3], after remarking 
that  the inequality condition imposed on some everywhere dense suhspace may 
easily be extended to the whole space. (A remark on Theorem 3 of [4] : I f  the printing 
mistake of asking condition (b) to be satisfied by all x, y ~ X (as appeared, the 
condition (b) precisely implies the non-existence of any fixed point i) is eliminated, 
then the result immediately follows from Theorem 1 in [4] since condition (a) implies 
T is continuous !) 

Before presenting the last three theorems of the paper, we only mention that  two 
further corollaries to Theorem 4, analogous with Corollaries 3 and 4, may be formu- 
lated. 

The proof of Theorem 4 suggests the fol]o~ing improvement. 
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Theorem 5. Let M be a metric space and / : M ~ M a /unc t ion  such that /or  each 
couple o /di / /erent  points in M ,  at least one o / the  conditions 1 ~ 2 ~ 3 ~ o/ Theorem 4 
is saris[led. I / / o r  some xo e M,  the sequence {[n(xo)}~= o has a limit point z in M and 
/ is continuous at z and at [(z), then z is a un ique / ixed  point o f / .  

The following theorems avoid in another  way asking / to  be continuous. 

Theorem 6. Let M be a metric space and / : M -.-> M a /unc t ion  such that /or  each 
couple o] di//erent points in M,  at least one o/ the conditions 1 ~ 2 ~ 3 ~ o /Theorem 4 is 
satis/ied. I / / o r  some x o ~ M ,  the sequence {/n(x0)}~= 0 converges to a point z in M ,  
then z is a unique [ixed point o/ /. 

P r o o f .  Since the uniqueness of  the fixed point  easily follows as in the proof  of 
Theorem 1, the only thing to be done is to show /(z) ---- z. But  this, again, m a y  be 
almost  copied f rom the proof  of  Theorem 1, because one doesn ' t  use essentially there 
the existence of  ~, fl, y so t h a t  one of  1 ), 2), 3) is true, but  only the val idi ty  of at  least 
one of  the conditions 1 ~ 2 ~ 3 ~ of  Theorem 4. I t  is moreover  easy to see tha t  in order 
to confirm ](z) = z and the uniqueness of  the fixed point, condition 2) m a y  appear  
~dth fl somewhat  larger than  �89 IXramely, we add the following result, which is less 
symmetr ic  bu t  obviously an improvement  of  Theorem 6. 

Theorem 7..Let M be a metric space, fl < 1, and / : M --> M a /unc t ion  such that /or  
each couple o/di/ /erent points in M at least one o/ the conditions 1 ~ and 3 ~ o /Theorem 4, 
and 2) o/Theorem 1 (with fl < 1) is saris/led. I / / o r  some xo e M ,  the sequence {/n (xo) }n__'~o 
converges to a point z in M ,  then z is a unique [ixed point o f / .  
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