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Fix Point Theorems in Metric Spaces

By

TUuDOR ZAMFIRESCU

In this paper results similar to the well-known contraction theorems of BANACH
are obtained*). These classical theorems, our mentioned similar results and theorems
of Kanwvan, EpELSTEIN and SINGH are all, in fact, corollaries of a few more general
theorems, as we shall see.

Theorem 1. Let M be a complete metric space, o, 3, v real numbers witho. << 1, § < %,
y < Land f: M — M a function such that for each couple of different points x, ye M,
at least one of the following conditions is satisfied:

1) d(f(x), {(y)) S ad(x,y) **),

2) d(f(x), f(y)) = Bd (=, f(x)) + d(y, [ (),

3) d(f (), 1) = y(d = () + d(y, [ (@))) .

Then f has a unique fized point.

Proof. Consider the number

5:max{oc, 15/3’ 11:/}'

Obviously, 6 < 1.

Now, choose xg € M arbitrarily and fix an integer number » = 0. Take z = f7(z()
and y == f#+1(zp). Suppose x + y; otherwise x is a fixed point of f. If for these two
points condition 1} is satisfied, then

d(fm+1(zo), fr+2 (20)) = Od (f* (wo), [+ (o)) -
If for z, y, condition 2) is verified, then
d(fr1(zo), 72 (wo)) = B(A (™ (o), [+ (o)) + d(fn+2 (zo), f7F2 (o)) ,
which implies
a(f*+1(xo), fr2(x0)) = E g A" (x0), 71 (x0)) = od (f* (o), [*** (o)) -

In case condition 3) is satisfied,
d(fr+1 (o), n+2 (x0)) = y d(f" (wo), f*+2(w0)) =
< p(d(f (o), 21 (xo)) + d(f7*2 (o), 742 (20))) .

*) For example, Corollaries 3,4.
*¥) Throughout all the paper, d denotes the distance function.
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which analogously implies
d(fr+1 (xo), f7*2(20)) = d(f™ (o), f*+* (o)) -

This inequality, true for every n, clearly implies that {f*(zg)}n—, is a Cauchy sequence
and therefore converges to some point z € M.
We now prove that z is a fixed point of f. Suppose f(z) +z and consider the ball

={reM:d(z2) = }d(f(z)}.

Observe that d (z, f(2)) = £ d(z, f( z)) for every point « € B. There exists a number V
such that f2(xo) € B for each » = N. Taking now z = f¥(x¢) and y = z, we must
have again one of the next three sfcua’mons

1) A(fN* (o), f(2)) = o d (N (%0), 2) 5
which, however, contradicts
wd(fN (xo), 2) < A(f¥ (z0),2) = (2, [ (2)) <d({f¥*1 (o), [(2)) 5
2) d(N*1(zo), [ (2)) = B(A (N (o), N+ {x0)) + d (2, f(2)))
contradicting
) B (N (xo), N+ (w0)) + d (2, f(2)) <

< 3 (@(N (w0), 2) + d(z, ¥ (o)) + d(2, [ (2))) =

< d(z 1) = d(P¥ 1 (20), 1 (2)) 5
3) d (vt (xo),f(z)) = y (@ (¥ (o), [ (2)) + A (FV+1 (o), 2)) »
respectively contradicting

(@(f¥ (o), [ (2)) + A(f¥+1 (m0), 2) <

< 3@ (o), 2) + d(z [ (2)) + d(F¥*1 (o), 2)) =

= 3d(z,{(2)) = d(f¥* (x0), [ (2)) -
Thus, f(z) =z.

Now we show that this fixed point z is unique. Suppose this is not true: f(2') = z

for some point 2z’ € M different from z. Then

d(f(Z), f(Z')) = d(z’ Z') >
d(f(2), f(z) > d(z,{(2)) + d(2', [ ('),
a(f(=), (=) =2 Az [() + A, f(2),
so that none of the three conditions of the theorem is satisfied at the points z and 2'.
Corollary 1 (BawacH). Let M be a complete metric space, o < 1, and f: M — M

a function such that for each couple of different points in M condition 1) of Theorem 1
1s verified. Then f has a unique fizxed point.

Corollary 2 (KaNNAN [2]). Let M be a complete metric space, § < %, and f: M — M
a function such that for each couple of different points tn M condition 2) of Theorem 1
is verified. Then f has a unique fixed point.
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We believe the following analogous result is new.

Corollary 3. Let M be a complete metric space, y < %, and f: M — M a function
such that for each couple of different points in M condition 3) of Theorem 1 is verified.
Then f has a unique fixed point.

We give here an example of a space M and a function f such that Corollary 3
applies, but both Corollaries 1 and 2 fail to apply (even by taking suitable subsets
of M and the corresponding restrictions of f).

Consider the complex plane C, the half-plane €. of all complex numbers with

. . . 1 .
nonnegative coefficients of ¢, and the sequence § = {@7}”_0 on the real axis. To
. 1 1 . .
each couple of points {W , -22—,,;1—} ¢ 8 (m integer), add two points 2z, zam+1 € C1
. 1 1 . . .
with real parts 5z, 5571 , respectively, such that all four points are the vertices

of a square. Define
M =8V {zalneoV {0}
and f: M — M such that
1 1
f{zw) = o
f(zn) = zn41,
f(0)=0.
The space M is equipped with the distance induced from € and one easily verifies
that it is complete and that f satisfies on all couples of different points in M the

condition 3) of Theorem 1, but for each subset M’ c M with finite complement in M,
at no couple of different points in M’ condition 1) or condition 2) is satisfied.

Corollary 4. Let M be a complete metric space, 6 < 1, and f: M — M a function such
that for each couple of different points x, y € M,

d(f(x). () = 09 (x, ),

where g(x, y) is the mean value of the first three, the last four, the first one and the last
two or all five (the choice may depend on x, y) of the following numbers:

d(z, y), d(z, [ (2)), d(y. (). d (=, [ (¥)), d(y. [ ().
Then | has a unique fixed point in M.

The proof is obvious: Let us say that for some z, y € M, g(2, y) is, for instance,
the mean value of the first three numbers in the statement. Then ¢(z, ) < d(z, ¥)
or g{z,y) = $(d(x, f(x)) + d(y, f (%)) (or both), so that at least one of the conditions
1) and 2) of Theorem 1 is satisfied at z, .

The following statement slightly generalizes Theorem 1.

Theorem 2. Let M be a metric space, ., §, y real numbers with o < 1, f§ < %,y < 4,
and f: M — M a function such that for each couple of different points x,y e M, at
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least one of the conditions 1), 2), 8) of Theorem 1 is satisfied. If for some zo € M, the
sequence {f7(x0)}oeg has a limit point z in M, then z is a unique fized point of f.

To prove Theorem 2, one shows like in the proof of Theorem 1 that {f#(z¢)}52,
is a Cauchy sequence, whence f#(xg) — z; further one follows again the proof of
Theorem 1. That Theorem 2 generalizes Theorem 1 is clear since under the hypotheses
of Theorem 1, {f*(x0)};~ is convergent for every zo e M.

Theorem 2 has, of course, corollaries analogous to Corollaries 1—4 of Theorem 1,
but we omit writing them down explicitly. We just remark that the analogue of
Corollary 2 is exactly Theorem 1 of Kannaw [3] if one drops from the last the condi-
tion (i), which thus appears superfluous.

. Theorem 3. Let M be a set in a complete metric space X, o, B, v real numbers with
o<1, f<}y<%)and f: M — M a function such that for each couple of different
points in M, at least one of the three conditions of Theorem 1 is satisfied. Then, for
xo € M, the sequence {f7 (o)} converges to a point in X, independent on the choice of xo.

Proof. First, one finds like in the proof of Theorem 1 that there exists a point
ze X such that
lim f7 (zp) = z.
n—-oo
Choose now yg arbitrarily in M. Analogously, f*(yo) — 2, where 2z’ € X, and we
want to show z = 2’. Suppose d (2, z’) > 0 and choose the number ¢ such that

ji—a 1 1-—2y
I Tta’2 T+2y]"

1 .
0<e<45d(z?2) min

There is a natural number N such that d(f*(xo),2) = ¢ and d(f?(yo), 2"} < & for
every n = N.

Suppose first that for x = 7 (x0), ¥ = f?(yo), where » = N, condition 1) is verified
(clearly, x =+ y). Then,

d(f*+1 (o), f**1(yo)) = ad(f™ (o), [ (yo)) -

But
ad(f?(@o), f*(yo0)) = a(d(f™(x0), 2) + d(2,2') + d(', ["(y0))) =
Za(d(z,2') + 2¢).
Now, since
1 N 1—a
e<gdes) Te

we have further
a(d(z,2')+26) <d(z,2') — 2 =
= d(z,2) — d(f**(20), 2) — A ("1 (yo), ') =<
= d(fr1(zo), [+ (yo))

which provides a contradiction.
Suppose now for these z, y condition 2) is satisfied. Then

d(f*+1 (zo), f**1(yo)) = B(A(f™ (o), 7 (x0)) + A(f™ (yo), f*+1(0))) -
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But
B(@(f (o), f2+1 (x0)) + d (" (yo), [*1 (o)) =
< B (f* (o), 2) + d (2, fr1 (o)) + d(f(y0),2') + d (&, [P (yo))) = 4P ¢

and since

1 L1 1 ) 1
8<§d(2,2)"§<§d(2,2)'m,

we have further
4fe<d(z2') —2e = d(f**1{xo), [**1(yo)),

which gives a contradiction.
If, finally, for this couple z, ¥, condition 3) is fulfilled, then analogously

A (fr1 (zo), 71 (yo)) < y (A(f* (%o, 7+ (y0)) + d (™ (yo), [ (20))) ,
but
(@ (f7 (o), [*+1 (yo)) + d(f*(yo), [P+ (x0))) =
< y(d(fr(x0), 2) 4+ d(2,2") + d (2, f*+ (yo)) +
+ d(f7(yo), 2') + d(#,2) + d(z, f**1(z0))) =
< 2y(d(z2) + 26) <d(z,2) — 2¢ < d(f*1(x0), [+ (y0)) ,

and again a contradiction is obtained.

It follows d(z, z’) = 0 and Theorem 3 is proved.

Surely, Theorem 3 has also corollaries (that can easily be reproduced by the reader)
analogous to Corollaries 1—4. The one corresponding to Corollary 1 is the well-known
Picard-Banach contraction principle.

Theorem 4. Let M be a metric space and f: M — M a continuous function such that
for each couple of different points x, y € M, at least one of the following conditions is
satisfred:

1° d(f(x), [(y) <d{z,y),

2° d(f(2), f(y) < i@ f(®)+dly.fH)),

3° d(f(2).fy) <i@@, f@) +dy f@).

If jor some xo € M, the sequence {f (o) }np has a limit point z in M, then z is a unique
fixed point of f.

Proof. Let {f*+(x0)}2, be a subsequence of {f?(xo)};2o such that

l_im fri(ze) =z.

1—>00

Then
lim fre<d(z) = (o), lim f1e+2(ag) = f2(2)

—=>00 >0

because f is continuous. We want to show now that for each nonnegative integer »
either f7(xo) = f*+1(xo) or

d (fn+1 (o), {72 (20)) < d(f" (x0), fr+1 (o)) -
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Suppose, on the contrary, that for some m = 0, f™(xp) and f»+1(xp) are distinct and
d(fm(xo), [ (20)) < d(fm+1 (o), fm+2(x0)) -

Then, taking 2 = fm (x0), y = fm+1(a0), the preceding inequality contradicts each of
the following three relations, respectively expressing the conditions 1°, 2°, 3°,

d(fm+1 (2o), f+2 (xo)) < d(f™ (o), ™+ (o)),
d(fm+2 (o), f™+2 (zo)) < § (d (™ (20), [+ (o)) + d (f™*1 (za), f™*2 (o)) »
d(fm*1 (2o), {2 (z0)) < % (d (f™ (o), ™42 (%0)) =

= L (d (f™ (20), {1 (o)) + d(f™*1 (o), [™+2 (20))) -

Thus {d (f* (x0), f*+1(20))}52 ¢ is convergent and

d (2, f(2)) = lim d(f*+(xo), f***1 (x0)) = lim d (f* (o), f**1 (o)) ,

(anaed n—>co
= lim d (f*+*1 (zo), f7*2 (w0)) = d(f (2), 2 (2)) -

Now, analogously, the above equality proves that f(z) = 2. Finally, suppose 2z’ +2
and f(z') == z'. Then, like in the proof of Theorem 1, none of the three conditions
which are to be satisfied at z = z, y = 2’ is fulfilled. The proof is finished.

In Theorem 4 and in its corollaries that will be mentioned, two of which explicitely,
the existence of a sequence {f* (xg) }o>( baving some limit point in M is automatically
guaranteed in case M is compact.

Corollary 5 (EpELSTEIN [1]). Let M be a metric space and f: M — M a funciion
such that for each couple of different points in M, condition 1° of Theorem 4 is satisfied.
If for some xo € M, the sequence {f*(x0)}neo has a limit point z in M, then z is a unique
fixed point of f.

Corollary 6 (SiNcH [4]). Let M be a metric space and f: M — M a continuous
function such that for each couple of different points in M, condition 2° of Theorem 4 is
satisfied. If for some xog € M, the sequence {f(x0)}n—o has a limit point z in M, then
z 18 @ unique fired point of f.

In fact, we observe that this result of Swen (his Theorem 1 in [4]) is not exactly
an extension of the proposition of KaNNAXN cited here as Corollary 2, as he claims.
It merely constitutes an improvement of Theorem 2 of Kannax [3], after remarking
that the inequality condition imposed on some everywhere dense subspace may
easily be extended to the whole space. (A remark on Theorem 3 of [4]: If the printing
mistake of asking condition (b) to be satisfied by all z, y € X {as appeared, the
condition (b) precisely implies the non-existence of any fixed point !) is eliminated,
then the result immediately follows from Theorem 1 in {4] since condition (a) implies
T is continuous!)

Before presenting the last three theorems of the paper, we only mention that two
further corollaries to Theorem 4, analogous with Corollaries 3 and 4, may be formu-
lated.

The proof of Theorem 4 suggests the following improvement.
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Theorem 5. Let M be a metric space and f: M — M a function such that for each
couple of different points in M, at least one of the conditions 1°, 2°, 3° of Theorem 4
is satisfied. If for some xg € M, the sequence {f*(xo)}neo has a limit point z in M and
f is continuous at z and at f(z), then z is @ unique fixed point of f.

The following theorems avoid in another way asking f to be continuous.

Theorem 6. Let M be a metric space and f: M —> M a function such that for each
couple of different points in M, ai least one of the conditions 1°, 2°, 3° of Theorem 4 is
satisfied. If for some xg & M, the sequence {f*(x¢)}nv, converges to a point z in M,
then z is a unique fized point of f.

Proof. Since the uniqueness of the fixed point easily follows as in the proof of
Theorem 1, the only thing to be done is to show f(z) = z. But this, again, may be
almost copied from the proof of Theorem 1, because one doesn’t use essentially there
the existence of «, 8, y so that one of 1), 2), 3) is true, but only the validity of at least
one of the conditions 1°, 2°, 3° of Theorem 4. It is moreover easy to see that in order
to confirm f(z) = z and the uniqueness of the fixed point, condition 2) may appear
with § somewhat larger than 1. Namely, we add the following result, which is less
symmetric but obviously an improvement of Theorem 6.

Theorem 7. Let M be a metric space, § < 1, and f: M — M a function such that for
each couple of different points in M at least one of the conditions 1° and 3° of Theorem 4,
and 2) of Theorem 1 (with § < 1) is satisfied. If for some xo € M, the sequence {f ()}, =5
converges to @ point z in M, then z is a unique fized point of f.
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