TUDOR ZAMFIRESCU

On k-path hamiltonian line-graphs

Estratto da «Rend. Ist. di Matem. Univ. Trieste»

Vol. IV, fasc. II (1972)

Estratto da: Rend. Ist. di Matem. Univ. di Trieste Vol. II, fasc. IV (1972).

ON k-PATH HAMILTONIAN LINE-GRAPHS (*)

by Tudor Zamfirescu (in Dortmund) (**)

SOMMARIO. - La nota riguarda principalmente i grafi di linee k-path hamiltoniani. Si indicano delle proprietà del grafo di linee di un grafo k-path hamiltoniano e si assegnano delle condizioni sufficienti affinchè il grafo di linee di un grafo sia k-path hamiltoniano.

SUMMARY. - The paper mainly concerns the k-path hamiltonian line-graphs. It presents properties of the line-graph of a k-path hamiltonian graph and sufficient conditions for a graph such that its line graph is k-path hamiltonian.

Let G be an undirected graph, without loops or multiple edges, and L(G) its line graph. Our intentions in this note are: 1) to give necessary conditions for L(G) such that G is k-path hamiltonian [1] (Chapters 3 and 4); 2) to give sufficient conditions for G such that L(G) is k-path hamiltonian (Chapter 5). Also, sufficient conditions for a line-graph to be hamiltonian, expressed in terms of covering circuits, are presented in Chapter 2.

1. P(G) and E(G) respectively denote the point-set and the edge set of the graph G.

We say that the graph G' is included in the graph G and write $G' \subset G$ if $P(G') \subset P(G)$ and $E(G') \subset E(G)$. In particular, G' is a subgraph of G if $G' \subset G$ and for each $G'' \subset G$ with P(G'') = P(G'), one has $E(G'') \subset E(G')$.

^(*) Pervenuto in Redazione il 3 marzo 1972.

^(**) Indirizzo dell'Autore: Mathematisches Institut der Universität-Dertmund (Germany).

If $A, B \subset G$, we write $N_A(B)$ for the set of points in P(A) - P(B) adjacent to some point in P(B). If B has only the point x, we will write $N_A(x)$ for $N_A(B)$.

In [2] we defined $G' \subset G$ to be: 1) of type T_1 in G if it has at least three lines in common with every complete subgraph of G on 4 points from P(G'); 2) of type T_2 in G if it is of type T_4 in G and card $N_{G'}(x) \leq 1$ for every point $x \in P(G) \longrightarrow P(G')$.

Now, we define G' to be of type T_3 in G if G' is of type T_4 in G and there exist: a) a partition $\{P_i\}_{i=1}^n$ of all points in P(G)— P(G'), each of which is adjacent to the end-points of two non-adjacent edges of G', both together belonging to no complete subgraph of G; b) the distinct points $\{p_i\}_{i=1}^{2n}$ in P(G) - P(G'), with $p_i \notin P_j$ $(j = 1, \ldots, n)$ and $N_{G'}(p_{2i-1}) \neq N_{G'}(p_{2i})$ $(i = 1, \ldots, n)$, such that each $P_i \cup \{p_{2i-1}, p_{2i}\}$ is the point-set of a circuit in G, in which p_{2i-1} and p_{2i} are adjacent.

A path of length k is called a k-path.

A k-clique in a graph is a clique (maximal complete subgraph) with k points.

If the edges of the graph G corresponding to the vertices of the graph Π_0 included in L(G) determine a circuit, then Π_0 will be called a strong circuit in L(G).

2. Let Γ be a line-graph, Π_0 a strong circuit in Γ and $\Pi_1,...,\Pi_k$ other circuits in Γ .

THEOREM 1. If $P(\Gamma) = \bigcup_{i=0}^{k} P(\Pi_i)$, $P(\Pi_i) - P(\Pi_0)$ are disjoint, and card $(P(\Pi_i) \cap P(\Pi_0)) = 1$ $(i = 1, \dots, k)$, then Γ is hamiltonian.

PROOF. Let $\{a_i\}_{i=1}^n$ be the points of Π_0 , written consecutively. Then a_i , a_{i+1} $(i=1,\ldots,n-1)$ and a_n , a_1 are adjacent, but a_i , a_{i+2} $(i=1,\ldots,n-2)$, a_{n-1} , a_1 and a_n , a_2 are not adjacent (if n>3). Consider the point a_j of Π_0 . The set $N_{\Gamma}(a_j)$ may be divided into two subsets A and B such that each of them determines a complete subgraph of Γ . Let $\Pi_{a_m}(m=1,\ldots,\overline{a_j})$ be the circuits containing a_j and no point in B, $\Pi_{\beta_m}(m=1,\ldots,\overline{\beta_j})$ be those containing a_j and no point in A, and $\Pi_{\gamma_m}(m=1,\ldots,\overline{\gamma_j})$ those containing a_j , and at least one point from each A and B. Replace now a_j by the path whose set of (consecutive) points is:

$$\begin{split} & (P\left(\Pi_{a_{1}}\right) - \{a_{j}\}) \cup \ldots \cup (P\left(\Pi_{a_{\overline{a_{j}}}}\right) - \{a_{j}\}) \cup (P\left(\Pi_{\gamma_{1}}\right) - \{a_{j}\}) \cup \ldots \\ & \ldots \cup (P\left(\Pi_{\gamma_{\overline{\gamma_{j}}}}\right) - \{a_{j}\}) \cup \{a_{j}\} \cup (P\left(\Pi_{\beta_{1}}\right) - \{a_{j}\}) \cup \ldots \cup (P\left(\Pi_{\beta_{\overline{\beta_{j}}}}\right) - \{a_{j}\}). \end{split}$$

Doing this in all the points of Π_0 , we get the desired hamiltonian circuit of Γ .

Using a proof technique not different from the preceding one, we are able to establish the following stronger result too.

THEOREM 2. Let Γ be a line graph, Π_0 a strong circuit in Γ including the path Π and Π_1 , ..., Π_k other circuits in Γ such that: $P(\Gamma) = \bigcup_{i=0}^k P(\Pi_i)$, the sets $P(\Pi_i) - P(\Pi_0)$ are disjoint, card $(P(\Pi_i) \cap P(\Pi_0)) = 1$, and $P(\Pi_i) \cap P(\Pi) = \emptyset$ (i = 1, ..., k). Then Γ has a hamiltonian circuit including Π .

Even stronger:

Theorem 3. Suppose the hypotheses of Theorem 2 are satisfied. Moreover, consider the path $\overline{\Pi} \subset \Pi_0$ with $P(\overline{\Pi}) = P(\Pi) \cup N_{\Pi_0}(\Pi)$, the end-points x_1 , x_2 of $\overline{\Pi}$ and the points y_1 , $y_2 \notin P(\overline{\Pi})$ respectively adjacent in Π_0 with x_1 , x_2 . Suppose there exists at most one circuit $\Pi_{j_s}(1 \leq j_s \leq k)$ such that $x_s \in P(\Pi_{j_s})$ (s=1,2) and, in the existence case, suppose that a point $z_s \in P(\Pi_{j_s}) - \{x_s\}$ may be found such that the subgraph of Γ with point set $\{x_s, y_s, z_s\}$ is complete. Then Γ has a hamiltonian circuit including $\overline{\Pi}$.

3. Theorem 4. If G is k-path hamiltonian, then each (k+1)-path of type T_3 in L(G) is extendable to a hamiltonian circuit of L(G).

PROOF. Let Π be a (k+1)-path of type T_3 in L(G). Then the set of edges $\{e_1, \ldots, e_{k+2}\} \subset E(G)$ corresponding to the vertices of Π is such that e_i and e_{i+1} are adjacent $(i=1,\ldots,k+1)$. We consider the minimal set of natural numbers $\{n_i\}_{i=1}^l$ $(l \leq k+2)$ such that

$$1 = n_1 < \dots < n_l = k + 2$$

and such that the edges e_{n_j} , e_{n_j+1} , ..., $e_{n_{j+1}}$ have a common endpoint $(j=1,\ldots,l-1)$. Clearly, e_{n_j} and $e_{n_{j+1}}$ are adjacent $(j=1,\ldots,l-1)$ and no three consecutive edges in $\{e_{n_j}\}_{j=1}^l$ form a star.

To prove that $\{e_{n_j}\}_{j=2}^{l-1}$ determines a path in G, we have only to show that no four edges e_{n_α} , $e_{n_{\alpha+1}}$, e_{n_β} , $e_{n_{\beta+1}}$ ($1 \le \alpha \le \beta - 3 \le l-4$) form a star. Indeed, if it were not so then the corresponding points p_α , $p_{\alpha+1}$, p_β , $p_{\beta+1}$ of P(L(G)), which belong to P(H), would be such that: 1) all the six edges determined by them are in E(L(G)), 2) E(H) contains from these six edges at most the edges $(p_\alpha, p_{\alpha+1})$ and $(p_\beta, p_{\beta+1})$ (if $n_{\alpha+1} = n_\alpha + 1$ and $n_{\beta+1} = n_\beta + 1$); this contradicts

the fact that H is of type T_i in L(G). Now, since $\{e_{n_j}\}_{j=2}^{l-1}$ determines a path W of length at most k, we can extend it to a hamiltonian circuit Θ , whose edges, written consecutively, are

$$e_{n_2}, \ldots, e_{n_{l-1}}, f_1, \ldots, f_m$$
.

Since Π is of type T_3 in L(G), there exist: a) a partition $\{P_i\}_{i=1}^n$ of all points in $P(L(G)) - P(\Pi)$, each of which is adjacent to the end-points of two non-adjacent edges of Π , both of them belonging to no complete subgraph of L(G); b) the distinct points $\{p_i\}_{i=1}^{2n}$ in $P(L(G)) - (P(\Pi) \cup \bigcup_{j=1}^n P_j)$ with $N_{\Pi}(p_{2i-1}) \neq N_{\Pi}(p_{2i})$ ($i = 1, \ldots, n$), such that $P_i \cup \{p_{2i-1}, p_{2i}\}$ form circuits H_i , in which p_{2i-1} and p_{2i} are adjacent. Obviously, the set of points of L(G) corresponding to the edges in Θ determines a strong circuit H_0 of L(G).

We construct now a circuit H' in L(G), with $P(H') = \bigcup_{i=0}^{n} P(H_i)$. Consider some $i \in \{1, ..., n\}$. Since for every point $\pi \in P_i$, there are two nonadjacent edges in Π belonging to no complete subgraph of L(G), each of their 4 end-points being adjacent to π , it follows that the edge ε in G corresponding to π is adjacent to four edges e_j , e_{j+1} , e_k , e_{k+1} , where j+1 < k and not every two of these 4 edges are adjacent. It follows that ε joins two points of W (the path determined by $\{e_{n_j}\}_{j=2}^{l-1}$. Because $P_i \cup \{p_{2i-1}, p_{2i}\}$ is the point-set of a circuit, each of the points p_{2i-1} , p_{2i} is adjacent to some point in P_i , hence each of the edges ν_i and ν_2 corresponding in G to p_{2i-1} and p_{2i} has an end-point in P(W). Since p_{2i-1} , $p_{2i} \notin \bigcup_{j=1}^{n} P_{j}$, neither ν_1 nor ν_2 has both end-points in P(W). Because $N_H(p_{2i-1}) =$ + N_{II} (p_{2i}) , the end-points in P(W) of ν_1 and ν_2 are different. But p_{2i-1} and p_{2i} are adjacent; therefore v_1 and v_2 have a common endpoint, not in P(W). Since p_{2i-1} , $p_{2i} \notin P(\Pi)$, the edges v_1 , v_2 do not belong to E(W). Suppose now $v_1, v_2 \in E(\Theta)$. Then $v_1, v_2 \in \{f_1, ..., f_m\}$, but since ν_4 and ν_2 are adjacent, and each of them is adjacent to some edge of W, it results m=2; then $\{f_1,f_2\}=\{e_1,e_{k+2}\}$, whence $\{\nu_4\ ,\ \nu_2\}=\{e_4\ ,e_{k+2}\},$ which contradicts $p_{2i}\notin P(H).$ Therefore $\{\nu_4\ ,\nu_2\}\not\subset$ $\not\subset E(\Theta)$. Since ν_1 and ν_2 have a common end-point ω not in P(W), and since $\{f_1, \ldots, f_m\} \neq \{e_1, e_{k+2}\}$, there exists an edge $f_j \in E(\Theta)$ — $-\{e_1,\ldots,e_{k+2},f_1,f_m\}$, with ω as an end-point. Let φ be the point in L(G) corresponding to f_j . Since each edge corresponding in Gto some point of Pi joins two points of W, but is not itself an edge of W (otherwise P_i would have a point in P(II)), it follows that $P_i \cap P(\Pi_0) = \emptyset$. Let us construct the circuit Π_i° in L(G)

such that card $(P(\Pi_i^{\S}) \cap P(\Pi_0)) = 1$, $P(\Pi_i^{\S}) \cap P(\Pi) = \emptyset$ and also the other hypotheses of Theorem 3 are satisfied (i = 1, ..., n).

CASE I. $\{v_1, v_2\} \cap E(\Theta) \neq \emptyset$. From $\{v_1, v_2\} \not\subset E(\Theta)$ and $\{v_1, v_2\} \cap E(\Theta) \neq \emptyset$, it follows that exactly one edge from $\{v_1, v_2\}$ belongs to $E(\Theta)$, hence $\operatorname{card}(P(H_i) \cap P(H_0)) = 1$. On the other hand, $p_{2i-1}, p_{2i} \notin P(H)$, whence $P(H_i) \cap P(H) = \emptyset$. Further, if $v_1 \in E(\Theta)$, then p_{2i-1} is an end-point of the path \overline{H} having as point-set that set of points which correspond in L(G) to the edges of E(W) plus f_1, f_m , and no circuit from $\{P_j\}_{j=1}^n$ except P_i has p_{2i-1} as a point. Moreover, $p_{2i-1}, p_{2i}, \varphi$ are the points of a complete subgraph of L(G). Thus, the hypotheses of Theorem 3 are verified and we may take $H_i^{\S} = H_i$.

CASE II. $\{\mathbf{v}_1,\mathbf{v}_2\} \cap E\left(\Theta\right) = \varnothing$. The points of $P_i \cup \{p_{2i-1},p_{2i}\}$ determine a circuit Π_i^{\S} in $L\left(G\right)$, such that card $(P\left(\Pi_i^{\S}\right) \cap P\left(\Pi_0\right)) = 1$ and $P\left(\Pi_i^{\S}\right) \cap P\left(\overline{\Pi}\right) = \varnothing$, because $P_i \cap P\left(\Pi_0\right) = \varnothing$, $\{\mathbf{v}_1,\mathbf{v}_2\} \cap E\left(\Theta\right) = \varnothing$, and $\varphi \in P\left(\Pi_0\right) - P\left(\overline{\Pi}\right)$.

Now, following Theorem 3, $\bigcup_{j=0}^{n} P(\Pi_{j})$ is the point-set of a circuit \overline{H}' in L(G), including $\overline{\overline{H}}$.

We consider now the edges

$$e_{n_2}\,,\,\ldots\,,\,e_{n_{l-1}}\,,\,f_{\,1}\,,\,g_{\,1}\,,\,\ldots\,,\,g_{\,r}\,,\,f_{\,m}\in E\;(G)$$

corresponding to the points of Π' . Since $\{f_1, \ldots, f_m\} \neq \{e_1, e_{k+2}\}$, we have $r \neq 0$. The circuit Π' of L(G) could (and is supposed to) be constructed so that for each point not in P(W) there are two consecutive edges in $\{f_1, g_1, \ldots, g_r, f_m\}$, both of them having this point as an end point. This fact cannot be derived from Theorem 3 and is a consequence of the fact that in the case II considered before there are two edges in $\{f_1, \ldots, f_m\}$ having ω as an end-point and therefore the points in L(G) corresponding to them, plus p_{2i-1} , p_{2i} , form the point-set of a complete subgraph of L(G). From the construction of Π' , it is also clear that

$$E(G) = \{e_1, \dots, e_{k+2}, f_1, g_1, \dots, g_r, f_m\}$$

may be partioned into the (possibly empty) sets $\{H_j\}_{j=1}^{r+1}$ such that all edges of H_j have a common point, which is not in P(W) and therefore is the common end point of two consecutive edges from

 $\{f_1, g_1, \dots, g_r, f_m\}$, namely of f_1 and g_1 if j=1, of g_{j-1} and g_j if $2 \le j \le r$, and of g_r and f_m if j=r+1. Consequently, if $H_j=\{h_i\}_{i=1}^{\psi_j}$ (where ψ_j is possibly zero, i. e. $H_j=\emptyset$; also possibly $f_1=e_{k+2}$ or $f_m=e_1$), then the points in L(G) corresponding to

$$e_1$$
, ..., e_{k+2} , f_1 , h_1 , ..., h_{ψ_1} , g_1 , h_2 , ..., h_{ψ_2} ,

$$g_2, \ldots, g_{r-1}, h_r, \ldots, h_{\psi_r}, g_r, h_{r+1}, \ldots, h_{\psi_{r+1}}, f_m$$

form the desired hamiltonian circuit of L(G).

4. THEOREM 5. Let G be k-path hamiltonian, and Π a (k+1)-path of type T_1 in L(G), with the property that if a point in P(L(G)) — $P(\Pi)$ is adjacent to the end-points of two nonadjacent edges of Π , then these edges belong to a clique of L(G). Then Π is extendable to a hamiltonian circuit of L(G).

This result is a consequence of Theorem 4, since every path of type T_4 in L(G) with the mentioned property is obviously of type T_3 in L(G). A further simplification of the statement of Theorem 4 (but with smaller degree of generality!) leads to

THEOREM 6. If G is k path hamiltonian, then each (k+1)-path Π of type T_4 in L(G) such that card $N_{\Pi}(x) \leq 3$ for every point $x \in P(L(G)) - P(\Pi)$ is extendable to a hamiltonian circuit of L(G). As an immediate consequence we obtain:

COROLLARY [2]. If G is k path hamiltonian, then each (k+1)-path of type T_4 in L(G) whose (k-1)-subpath obtained by removing its end-points (and adjacent edges) is of type T_2 in L(G), is extendable to a hamiltonian circuit of L(G).

Theorems 5 and 6 are weaker forms of Theorem 4. In order to obtain a stronger (and more natural) form of Theorem 4, we shall use instead of the types $T_{\rm i}$ and $T_{\rm i}$, new types $T_{\rm i}$ and $T_{\rm i}$, defined as follows:

A graph G' included in G is of type T_1' in G if E(G') contains at least k-1 edges of every k-clique of G with points in P(G'). Also, let T_3' be the type we obtain if, in the definition of T_3 , the type T_4 is replaced by T_1' .

By replacing T_4 and T_3 with the new types T_1' and T_3' in the statements of Theorems 4, 5, and 6, we obtain the stronger Theorems 4', 5', and 6' respectively.

5. Theorem 7. If G is k-path hamiltonian and has no circuit of length at most k+1, then L(G) is (k+1)-path hamiltonian.

PROOF. Let Π be a (k+1)-path in L(G) and use further the notations of the proof of Theorem 4. We prove that the hypotheses of Theorem 5' are satisfied. First, suppose Π is not of type T_1' in L(G). Then there exists a k-clique of L(G) on k points in $P(\Pi)$, such that at most only k-2 of its edges are in $E(\Pi)$. It follows that the edges of E(G) corresponding to the points of the clique form a star, but are not consecutive in $\{e_1,\ldots,e_{k+2}\}$. Then they may be divided into sets $\{E_i\}_{i=1}^t$, with $t\geq 2$, such that for each $i\leq t$ there exists $f(i)\leq l-1$ with

$$E_i = \{e_{n_{f(i)}}, e_{n_{f(i)}+1}, \dots, e_{n_{f(i)}+1}\}.$$

But in this case the edges

$$e_{n_f(1)+1}, e_{n_f(1)+2}, \dots, e_{n_f(2)}$$

from $E(\Theta)$ form a circuit of length at most l-2, hence at most k, which contradicts the hypothesis.

Now, suppose there exists a point in $P(L(G)) - P(\Pi)$ which is adjacent to the end-points of two nonadjacent edges of Π , but these edges do not belong to any clique of L(G). Then there are four edges e_{ζ} , $e_{\zeta+1}$, e_{ξ} , $e_{\xi+1}$ which do not form a star, but are all adjacent to some other edge b of E(G). Let $j' < j'' \le l$, with the property that $n_{j'} \le \zeta$, $\zeta + 1 \le n_{j'+1}$, $n_{j''} \le \xi$, $\xi + 1 \le n_{j''+1}$. The edges

$$e_{n_{j'+1}}, e_{n_{j'+2}}, \dots, e_{n_{j''}}, b$$

determine a circuit of length at most k + 1 in G, again contradicting the hypothesis.

Following Theorem 5', Π may be extended to a hamiltonian circuit of L(G).

REFERENCES

- [1] H. Kronk, A Note on k-path Hamiltonian Graphs, J., Combinatorial Theory 7 (1969) 104-106.
- [2] T. Zamfirescu, On k-path Hamiltonian Graphs and Line-graphs, Rend. Sem. Mat. Univ. Padova 46 (1971) 385-389.