## TUDOR ZAMFIRESCU

## On k-Path Hamiltonian Graphs

Estratto da:
Bollettino della Unione Matematica Italiana
(4) 6 (1972), 61-66



NICOLA ZANICHELLI EDITORE BOLOGNA

## On k-Path Hamiltonian Graphs.

TUDOR ZAMFIRESCU (Dortmund)

Résumé. – Dans cette Note on établit un résultat analogue à un théorème de C. Berge dans la théorie des graphes.

An undirected graph G, without loops and multiple edges, is said to be:

- k-path hamiltonian if every path in G of length at most k can be extended to a hamiltonian circuit of G (1),
- k-line hamiltonian if every set of at most k lines constituting disjoint paths in G is included in a hamiltonian circuit of G.

Recently, C. Berge proved the following theorem, which generalizes previous results of O. Ore [6], [7], [8], P. Erdös and T. Gallai [3], L. Pósa [9], J. A. Bondy [2], H. V. Kronk [4], [5]:

THEOREM 1 [1]. – Let G be a (simple) graph on n points  $x_1, ..., x_n$ , such that

$$d_{\sigma}(x_1) \leqslant \ldots \leqslant d_{\sigma}(x_n)$$
.

Let k be an integer,  $0 \le k \le n-2$ . If

$$\left. egin{aligned} rac{i < j}{d_{\sigma}(x_i) \leqslant i + k} \\ d_{\sigma}(x_j) \leqslant j + k - 1 \end{aligned} 
ight\} \Rightarrow d_{\sigma}(x_i) + d_{\sigma}(x_j) \geqslant n + k \; ,$$

then G is k-line hamiltonian.

(1) The terminology and the notations used here are those of C. Berge [1], except: for «chaine élémentaire» we use the word «path», P(G) and E(G) respectively denote the point- and the edge-set of G, and «circuit» is used for «cycle».

From Theorem 1 one can immediately derive

COROLLARY 1. - Under the hypotheses of Theorem 1, the graph G is k-path hamiltonian.

We prove now the following wery simple

Theorem 2. – If for each connected subgraph G' of G, with at most k-1 vertices, the subgraph G'' of G with P(G'') = P(G) - P(G') is hamiltonian-connected, then G is k-path hamiltonian.

PROOF. – Let K be a path of length at most k in G. Consider the subgraph G' of G with  $P(G') = P(K) - \{a, b\}$ , where a and b are the end-points of K. Since G' is connected and has at most k-1 vertices, the subgraph G'' of G with P(G'') = P(G) - P(G') is hamiltonian-connected, whence a and b are joined by a hamiltonian path H in G''. Then  $K \cup H$  is a hamiltonian circuit of G.

COROLLARY 2 [10]. – Let G be a graph on n points. If each subgraph of G on at least n-k+1 vertices is hamiltonian-connected, then G is k-path hamiltonian  $(1 \le k \le n-2)$ .

The main aim of this Note is to establish the exact relation ship between Corollaries 1 and 2.

First we prove that Corollary 2 is not weaker than Corollary 1. Suppose the hypotheses of Theorem 1 are satisfied for a graph G on n points and let G' be a subgraph of G on at least n-k+1 points. Choose  $a, b \in P(G')$  arbitrarily. Consider the set

$$\{c_{\scriptscriptstyle 1},\,\ldots,\,c_{\scriptscriptstyle l}\} = P(G) - P(G') \qquad \qquad (l \leqslant k-1).$$

Construct the graph H such that P(H) = P(G) and  $E(H) = E(G) \cup V$ , where

$$V = \{[a, c_1], [c_1, c_2], \dots, [c_{l-1}, c_l], [c_l, b]\}.$$

It is easily seen that H also satisfies the hypotheses of Theorem 1. Then, following Corollary 1, the path  $\Pi$  with  $E(\Pi) = V$  may be extended to a hamiltonian circuit  $\Theta$  of H. Thus, one obtains the subgraph  $\Pi^*$  of  $\Theta$  with  $P(\Pi^*) = (P(\Theta) - P(\Pi)) \cup \{a, b\}$ , which is a hamiltonian path in G', joining a with b.

Now, we show by an example that the domain of application of Corollary 2 is larger than that of Corollary 1, which proves that Corollary 2 is strictly stronger than Corollary 1 (2).

<sup>(2)</sup> This fact has been stated (without proof) in a footnote of [10].

Let A, B, C, D be four pair-wise disjoint sets of points, each of cardinality k+1, and a,b,c,d four points not in  $A \cup B \cup C \cup D$ . Let G be a graph such that

$$P(G) = \{a, b, c, d\} \cup A \cup B \cup C \cup D ;$$

and

$$\begin{split} E(G) &= \{[a,b],\ [b,c],\ [c,d]\} \cup \\ &\cup \{[a,x]\colon x\in A\} \cup \{[b,x]\colon x\in B\} \cup \\ &\cup \{[c,x]\colon x\in C\{\cup\{[d,x]\colon x\in D\} \cup \\ &\cup \{[x,y]\colon x,y\in A\cup B\cup C\cup D,x\neq y\} \;. \end{split}$$

We prove first that the hypothesis of Corollary 2 is fullfiled. Clearly, n=4k+8; n-k+1=3k+9. Let G' be a subgraph of G on at least 3k+9 vertices,

$$\{a_1, ..., a_p\} = P(G') \cap A ,$$
  
 $\{b_1, ..., b_q\} = P(G') \cap B ,$   
 $\{c_1, ..., c_r\} = P(G') \cap C ,$   
 $\{d_1, ..., d_s\} = P(G') \cap D ,$ 

and

$$E = P(G') - (A \cup B \cup C \cup D) .$$

We have to distinguish between 10 essentially different Cases: I:  $E = \emptyset$ , II:  $E = \{a\}$ , III:  $E = \{b\}$ , IV:  $E = \{a,b\}$ , V:  $E = \{a,c\}$ , VI:  $E = \{a,d\}$ , VII:  $E = \{a,b,c\}$ , VIII:  $E = \{a,b,c\}$ , IX:  $E = \{a,b,d\}$ , X:  $E = \{a,b,c,d\}$ . For all Cases I—IX,  $p,q,r,s \geqslant 3$ . (Suppose, on the contrary,  $p \leqslant 2$ . Then  $q,r,s \leqslant k+1$  and

card 
$$P(G') \le p + q + r + s + 3 \le 2 + 3(k+1) + 3 = 3k + 8$$
,

wich is absurd.) Analogously, for the Case X, p, q, r,  $s \ge 2$ . In Case I, G' is complete and therefore hamiltonian-connected. For Cases II — X, one proves that for each couple of vertices x,  $y \in P(G')$ , there is a hamiltonian path in G' with end-points x, y. The next table gives hamiltonian paths connecting essentially different pairs of vertices in G', for the Case II. Analogously, one may complete similar tables for Cases III — X.

| $\boldsymbol{x}$ | y     | li los signog mor a Path                                                                 |
|------------------|-------|------------------------------------------------------------------------------------------|
| а                | $a_1$ | $[a, a_2,, a_p, b_1,, b_q, c_1,, c_r, d_1,, d_s, a_1]$                                   |
| a                | $b_1$ | $[a, a_1,, a_p, b_2,, b_q, c_1,, c_r, d_1,, d_s, b_1]$                                   |
| a                | $c_1$ | $[a, a_1,, a_p, b_1,, b_q, c_2,, c_r, d_1,, d_s, c_1]$                                   |
| a                | $d_1$ | $[a, a_1,, a_p, b_1,, b_q, c_1,, c_r, d_2,, d_s, d_1]$                                   |
| $a_1$            | $a_2$ | $[a_1, a, a_3,, a_p, b_1,, b_q, c_1,, c_r, d_1,, d_s, a_2]$                              |
| $a_1$            | $b_1$ | $[a_1, a, a_2,, a_p, b_2,, b_q, c_1,, c_r, d_1,, d_s, b_1]$                              |
| $a_1$            | $c_1$ | $[a_1, a, a_2,, a_p, b_1,, b_q, c_2,, c_r, d_1,, d_s, c_1]$                              |
| $a_1$            | $d_1$ | $[a_1, a, a_2,, a_p, b_1,, b_q, c_1,, c_r, d_2,, d_s, d_1]$                              |
| $b_1$            | $b_2$ | $[b_1, a_1, a, a_2, \dots, a_p, b_3, \dots, b_q, c_1, \dots, c_r, d_1, \dots, d_s, b_2]$ |
| $b_1$            | $c_1$ | $[b_1, a_1, a, a_2,, a_p, b_2,, b_q, c_2,, c_r, d_1,, d_s, c_1]$                         |

Now, let us show that the hypothesis of Corollary 1 is not satisfied. Indeed, if

$$\{y_1, ..., y_{4k+4}\} = A \cup B \cup C \cup D$$
,

then, by putting  $a=x_1$ ,  $d=x_2$ ,  $b=x_3$ ,  $c=x_4$  and  $y_i=x_{i+4}$   $(i=1,\ldots,4k+4)$ , we have

$$d_{\scriptscriptstyle G}(x_1) \leqslant \ldots \leqslant d_{\scriptscriptstyle G}(x_{4k+8})$$

and, contrarily to the hypothesis of Corollary 1, in this sequence there are indices  $i_0$ ,  $j_0$  such that  $i_0 < j_0$ ,  $d_g(x_{i_0}) \leqslant i_0 + k$  and  $d_g(x_{i_0}) \leqslant j_0 + k - 1$ , but  $d_g(x_{i_0}) + d_g(x_{i_0}) < n + k$ ; take, for instance,  $i_0 = 3$  and  $j_0 = 4$ : then

$$d_{G}(x_{3}) = d_{G}(b) = 3 + k$$
,  
 $d_{G}(x_{4}) = d_{G}(c) = 4 + k - 1$ ,

but

$$d_{\sigma}(x_3) + d_{\sigma}(x_4) = 2k + 6 < 5k + 8$$
.

D. Römer proved that for  $n-4 \le k \le n-2$  Corollaries 1 and 2 are equivalent (private communication).

Thus, the relationship between Corollaries 1 and 2 is completely established. In other words, we proved the following strengthening of Corollary 1:

Theorem 3. – Under the hypoteses of Theorem 1, each subgraph of G on at least n-k+1 vertices is hamiltonian-connected.

That Corollary 2 is strictly weaker than Theorem 2, it may be seen from the following example.

Consider the set

$$M = \{(x_1, \ldots, x_d) \in \mathbb{R}^d : x_j \in \mathbb{N}, \ x_j \leq m, \ j = 1, \ldots, d\}$$

and the graph G with P(G) = M and

$$E(G) = \{[a, b]: a = (x_1, ..., x_{c-1}, x_c, x_{c+1}, ..., x_d),$$

$$b = (x_1, ..., x_{c-1}, x_c + 1, x_{c+1}, ..., x_d),$$

$$a, b \in M, c \in \{1, ..., d\}\}.$$

Then, for m large enough and

$$d-1 \leqslant k \leqslant 2d-8 \qquad (d \geqslant 7),$$

Theorem 2 applies, but Corollary 2 not.

## REFERENCES

- [1] C. Berge, Graphes et hypergraphes, Dunod, Paris, 1970.
- [2] J. A. Bondy, Properties of graphs with constraints on degrees, Studia Sc. Math. Hung., 4 (1969), pp. 473-475.
- [3] P. Erdős T. Gallai, On maximal paths and circuits of graphs, Acta Math. Ac. Sc. Hung., 10 (1959), pp. 337-356.
- [4] H. V. Kronk, Variations on a theorem of Pósa, in The many facets of Graph Theory (G. Chartrand, S. F. Kapoor, ed.), Springer-Verlag, 1969, pp. 193-197.
- [5] H. V. Kronk, A note on k-path hamiltonian graphs, J. Comb. Theory 7 (1969), pp. 104-106.
- [6] O. Ore, Note on Hamilton circuits, Amer. Math. Monthly, 67 (1960),p. 55.

- [7] O. Ore, Arc coverings of graphs, Ann. Mat. pura Appl., 55 (1961), pp. 315-322.
- [8] O. Ore, Hamilton connected graphs, J. Math. Pures Appl., 42 (1963), pp. 21-27.
- [9] L. Pósa, A theorem concerning Hamilton lines, Magyar Tud. Kutato Int. Közl., 7 (1962), pp. 225-226.
- [10] T. Zamfirescu, On k-path hamiltonian graphs and line-graphs, Rend. Sem. Mat. Univ. Padova, 46 (1971), pp. 385-389.

Pervenuta alla Segreteria dell' U. M. I. il 27 dicembre 1971

7 (1968), pp. 104-104. [6] O. Orz, Note on Edmidon circuits, Amer. Math. Monthly, 67 (1960).

"Monograf" - Bologna, via Collamarini 5