Sonderdruck aus

ABHANDLUNGEN

AUS DEM

MATHEMATISCHEN SEMINAR

DER

UNIVERSITÄT HAMBURG

Herausgegeben von

R. Ansorge · H. Braun · W. Burau · S. S. Chern · L. Collatz
R. Halin · H. Hasse · K. Hinderer · E. Kähler
B. Schoeneberg · E. Sperner · E. Witt

 $\begin{array}{c} \textbf{Schriftleitung} \\ \textbf{D. Biallas} \, \cdot \, \textbf{E. Sperner} \end{array}$

September 1973

VANDENHOECK & RUPRECHT IN GÖTTINGEN

Two Characterizations of the Reducible Convex Bodies

By Tudor Zamfirescu

Introduction

In this note we give two algebraic characterizations of those convex bodies in \mathbb{R}^n that are reducible in the sense of P.C. HAMMER [3], and discuss some related types of convex bodies.

Let K and L be convex sets in \mathbb{R}^n , and $r \in \mathbb{R}$. We use the notations:

$$\begin{split} K+L&=\{k+l:k\in K,\,l\in L\} &\quad\text{(Minkowski addition),}\\ K-L&=\{k-l:k\in K,\,l\in L\},\\ rK&=\{rk:k\in K\}. \end{split}$$

Let \Re be the set of all convex bodies (i. e. *n*-dimensional compact convex sets) in \mathbb{R}^n .

Definition 1. Two convex sets K, $L \subset \mathbb{R}^n$ are called *homothetic* (respectively I-homothetic) if there exist $x \in \mathbb{R}^n$ (centre) and $r \in (0, \infty)$ (respectively $r \in (-\infty, 0)$) (ratio) such that *)

$$K = x + r(L - x)$$
.

Definition 2. The convex set $K \subset \mathbb{R}^n$ is said to be *symmetric* if there exists $x \in \mathbb{R}^n$ such that

$$K=x-K$$
 . The state of the sta

Definition 3. The convex body K is called a *summand* of $L \in \Re$ if there exists a set $K' \in \Re$ such that

$$L=K+K'$$
.

Characterization Theorems

Lemmas. Let $C \in \Re$ and $r \geq \frac{1}{2}$. We define

$$C(r) = \begin{cases} \bigcap_{b \in \partial C} C_b(r) & \text{if } r \in [\frac{1}{2}, 1], \\ \bigcup_{b \in \partial C} C_b(r) & \text{if } r \in (1, \infty), \end{cases}$$

^{*)} Throughout the paper, we identify $x \in \mathbb{R}^n$ with the convex set $\{x\}$.

where ∂C is the boundary of C and $C_b(r)$ is a convex set homothetic with C, centre and ratio being b and r, respectively.

Lemma 1. (P.C. Hammer [3]) For $r \geq 1$,

$$C = C(r)(r/(2r-1)).$$

Lemma 2. (D. Voiculescu [6]) For $r \geq 1$,

$$C(r) = rC + (1-r)C.$$

Definition 4. ([3], [7])

$$r_C = \inf\{r : C = C(r)(r/(2r-1))\}$$

is called the reducibility number of C.

Clearly, $r_C \in [\frac{1}{2}, 1]$.

Definition 5. ([3]) If $r_C < 1$, then C is called *reducible*. If $r_C = 1$, then C is called *irreducible*.

For example, all symmetric convex bodies are reducible, and have reducibility number $\frac{1}{2}$.

Lemma 3. If $K \in \Re$ is the sum of two I-homothetic summands, then there exist a convex set C and a real number r > 1, so that

$$K = rC + (1 - r)C.$$

Proof. Let

$$K = L + x - rL,$$

with $L \in \Re$, $x \in \mathbb{R}^n$, and r > 0. If r = 1, then

$$K = 2 \cdot \frac{1}{3}(L-L) + x + (1-2) \cdot \frac{1}{3}(L-L).$$

If $r \neq 1$, then we may suppose r < 1, because if r > 1, then

$$K = M + x - (1/r)M,$$

where M = -rL and 1/r < 1.

Define N=(1-r)L and s=1/(1-r). Then L=sN, -rL=(1-s)N, and

$$K = s(N + x) + (1 - s)(N + x).$$

Theorems. This subsection contains two characterization theorems, which constitute the main results of the paper.

Theorem 1. A convex body is reducible if and only if it is the sum of two I-homothetic summands.

Proof. Let $C \in \Re$.

If C is reducible, then

$$C = C(r)(r/(2r-1))$$

for some r < 1. Following Lemma 2,

$$C = (r/(2r-1))C(r) + ((r-1)/(2r-1))C(r),$$

where the two summands are I-homothetic.

Now conversely, if C is the sum of two I-homothetic summands, then we may apply Lemma 3, and obtain

$$C = rC' + (1 - r)C'$$

for some convex set $C' \subset \mathbb{R}^n$ and some real number r > 1. Since C is n-dimensional and compact, C' must also be n-dimensional and compact. Then it follows from Lemma 2 that C = C'(r) and from Lemma 1 the second equality in

$$C(r/(2r-1)) = C'(r)(r/(2r-1)) = C'.$$

Further,

$$C(r/(2r-1))(r) = C'(r) = C;$$

hence $r_C \le r/(2r-1) < 1$.

The proof is complete.

Theorem 2. A convex body is reducible if and only if it possesses an I-homothetic summand.

Proof. Let $K \in \Re$ be reducible; following Theorem 1,

$$K = L + x - rL$$

for some $L \in \Re$, $x \in \mathbb{R}^n$ and r > 0; as in the proof of Lemma 3 we may suppose $r \leq 1$. Then

$$K = (1 - r^2)L + r^2L + x - rL = r(rL - L) + (1 - r^2)L + x,$$

whence

$$K = -rK + (1 - r^2)L + (1 + r)x$$

where K and -rK are I-homothetic.

Conversely, let $K \in \Re$ equal L - rK, where r > 0. Then

$$\begin{split} K &= L - (r/2)K - (r/2)K \\ &= L - (r/2)K - (r/2)(L - rK) \\ &= L - (r/2)K - (r/2)(L - (r/2)K) + (r^2/4)K. \end{split}$$

Consequently,

$$(1-(r^2/4))K = L - (r/2)K - (r/2)(L - (r/2)K).$$

Applying again Theorem 1, it follows now that K is reducible.

Remarks. Let $\mathfrak{C}(\mathfrak{R})$ denote the set of all symmetric (reducible) convex bodies in \mathbb{R}^n , and $\mathfrak{F} = \mathfrak{R} \backslash \mathfrak{R}$. Then:

I. \Re is a semigroup under Minkowski addition (this follows from Theorem 2).

II. 3 doesn't form a semigroup.

III. $(\Im + \Im) \cap \Im \neq \emptyset$.

IV. R is not an ideal of R (see Figure 1).

V. $(\Re + \Im) \cap \Re \neq \emptyset$ (see Figure 2).

VI. Using Theorem 1 one can produce an immediate proof to Theorem 3 of [7].

Related Types of Sets

S-reducible sets. In another subsection we shall be concerned with some special symmetric convex sets (the A-reducible sets), for which G.C. Shephard has given an equivalent definition in [5] (see further Theorem 7). By analogy to this definition, we introduce the S-reducible sets as those convex sets which possess symmetric summands. It is clear that the class $\mathfrak S$ of all S-reducible sets forms an ideal of $\mathfrak R$. Evidently, $\mathfrak S \subset \mathfrak S$.

Theorem 3. $\Re \subset \mathfrak{S}$.

Proof. Following Lemma 3 and Theorem 1, the reducible set K can be written as

$$K = rC + (1 - r)C \qquad (r > 1, C \text{ convex})$$

and rewritten as follows:

$$K = C + (r-1)C + (1-r)C = (r-1)(C-C) + C.$$

Since $K \in \Re$ implies $C \in \Re$ and $C - C \in \mathfrak{C}$, we have $K \in \mathfrak{S}$. Figure 1 illustrates that the inclusion $\Re \subset \mathfrak{S}$ is strict.

Theorem 4. $\mathfrak{S} = \mathfrak{R} + \mathfrak{R}$.

Proof. Since $\mathfrak{S} = \mathfrak{C} + \mathfrak{R}$ and $\mathfrak{C} \subset \mathfrak{R}$, we have $\mathfrak{S} \subset \mathfrak{R} + \mathfrak{R}$. Conversely, Theorem 3 and the fact that \mathfrak{S} is an ideal of \mathfrak{R} yield

$$\Re + \Re \subset \Im + \Re \subset \Im$$

and the theorem is proved.

Decomposable sets. A convex set is said to be *decomposable* if it possesses a nonhomothetic summand [4]. We shall see that the decomposable sets generalize almost all the other types of convex bodies met throughout this paper. Let \mathfrak{D} be the class of all decomposable sets in \mathbb{R}^n .

Theorem 5. \mathfrak{D} is an ideal of \Re .

Proof. Let $D \in \mathfrak{D}$ and $K \in \mathfrak{R}$. Further, let C, $L \in \mathfrak{R}$ be such that D = C + L, where C and D are not homothetic. Then

$$D + K = C + L + K,$$

where either C+L and C+L+K are homothetic, and then C is a nonhomothetic summand of D+K, or C+L itself is a nonhomothetic summand of D+K.

A-reducible sets and AS-reducible sets. The term of "reducible set" is used in [2] for a symmetric set K which is the difference set of another set, nonhomothetic to K. In order to avoid confusion, we shall call it A-reducible. Using results of D. GALE [2], we note that parallelepipeds, octahedra, and other classes of sets are not A-reducible.

Theorem 6. The set $\mathfrak A$ of all A-reducible convex bodies in $\mathbb R^n$ is an ideal of $\mathfrak C$.

Proof. Following the theorem of [5], $K \in \mathfrak{C}$ is A-reducible if and only if it possesses an asymmetric summand. Further, the proof is obvious.

Let us define AS-reducible sets as S-reducible sets with A-reducible summands, and denote by $\mathfrak{A} \mathfrak{S}$ the class of all AS-reducible sets. The following theorem is immediate.

Theorem 7. AS is an ideal of R.

Remarks.

I. Every A-reducible convex body K has the A-reducible summand $\frac{1}{2}K$, and is therefore AS-reducible.

II. Every reducible asymmetric set can be expressed in the form

$$K = (r-1)(C-C) + C$$

(see the proof of Theorem 3). Here C cannot be symmetric, K itself being asymmetric; therefore $(r-1)(C-C) \in \mathfrak{A}$, whence K is AS-reducible.

III. Every S-reducible asymmetric set is decomposable (because it is not homothetic with its symmetric summand).

IV. Every AS-reducible set K is of the form

$$K = H + L + M$$
,

with $H \in \Re \setminus \mathfrak{C}$, $H + L \in \mathfrak{C}$, $M \in \Re$. Obviously, either H or H + L is not homothetic with K, whence K is decomposable.

The four remarks above, and an inclusion derived from Theorem 3 are illustrated by the following diagram:

V. Let \mathfrak{B} be one of the ideals \mathfrak{S} , $\mathfrak{A}\mathfrak{S}$, \mathfrak{D} of \mathfrak{K} . If $L \in \mathfrak{B}$, and $K \in \mathfrak{K}$, then all the elements of the linear array determined by L and K, except perhaps K, belong to \mathfrak{B} .

VI. The family $\mathfrak N$ of all neighbourhoods of convex bodies in Eggleston's sense [1], i.e. of the form $K+B(K\in\mathfrak R,B)$ a ball), is another ideal of $\mathfrak R$; obviously $\mathfrak N\subset\mathfrak S$.

We habe observed that $\mathfrak{S} \setminus \mathfrak{R} \neq \emptyset$. It is also true that $\mathfrak{R} \setminus \mathfrak{R} \neq \emptyset$. However, $\mathfrak{R} + \mathfrak{C} \subset \mathfrak{R}$, which means that if $K \in \mathfrak{S} \setminus \mathfrak{R}$, then $K \in \mathfrak{F} + \mathfrak{C}$. The interesting fact that the inverse implication is not true, even for $K \in \mathfrak{R}$, has lead to the geometrical research contained in § 8 of [8] and in [9].

References

[1] H. G. EGGLESTON, Convexity, Cambridge University Press, 1958.

[2] D. Gale, Irreducible convex sets, Proc. I. C. M., Amsterdam 1954, II, 217— 218.

[3] P. C. Hammer, Convex bodies associated with a convex body, Proc. Amer. Math. Soc. 2 (1951) 781—793.

- [4] G. C. Shephard, Decomposable convex polyhedra, Mathematika 10 (1963) 89—95.
- [5] G. C. Shephard, Reducible convex sets, Mathematika 13 (1966) 49-50.
- [6] D. Voiculescu, O ecuatie privind corpurile convexe si aplicatii la corpurile asociate unui corp convex, Stud. Cerc. Mat. 18 (1966) 741—745.
- [7] T. Zamfirescu, Reduciblity of convex bodies, Proc. London Math. Soc. 17 (1967) 653—668.
- [8] T. Zamfirescu, Sur la réductibilité des corps convexes, Math. Zeitschr. 95 (1967) 20—33.
- [9] T. Zamfirescu, Conditions nécessaires et suffisantes pour la réductibilité des voisinages des corps convexes, Rev. Roum. Math. Pures et Appl. 12 (1967) 1523—1527.

Eingegangen am 26.2.1971