TUDOR ZAMFIRESCU

A CHARACTERIZATION OF HAMILTONIAN GRAPHS

Estratto dagli

Atti della Accademia delle Scienze dell'Istituto di Bologna

Classe di Scienze Fisiche

Anno 262°

RENDICONTI SERIE XIII - TOMO I

TIPOGRAFIA COMPOSITORI - BOLOGNA

A CHARACTERIZATION OF HAMILTONIAN GRAPHS

Nota di TUDOR ZAMFIRESCU

presentata (*) dall'Accademico Corrispondente residente Giuseppe Scorza Dragoni

In this Note we present a characterization of the hamiltonian graphs, using families of smaller circuits. The research is motivated by the almost perfect lack of theorems simultaneously providing necessary and sufficient conditions for a graph to be hamiltonian.

Let G be a graph without loops or multiple edges. We say that \mathscr{F} is a covering family of circuits if \mathscr{F} is a set of circuits the union of which spans G, i.e. \mathscr{F} is so that the point-sets of G and $\cup \mathscr{F}$ are equal and the line-set of G includes that of $\cup \mathscr{F}$. Now, let E and F be two circuits in G. We shall write E & F if E and F have a line in common and their point-sets have just the end-points of that line in common. Now we can organize each covering family of circuits \mathscr{F} as a graph \mathscr{F}^* by establishing that the circuits E and F of \mathscr{F} become points of \mathscr{F}^* and determine a line in \mathscr{F}^* if and only if E & F. On the other hand, we can also organize \mathscr{F} as a graph \mathscr{F}^{**} by saying that the circuits E and F of \mathscr{F} which become again points in \mathscr{F}^{**} , determine a line in \mathscr{F}^{**} if and only if they (their point-sets) are not disjoint.

THEOREM. – The graph G is hamiltonian if and only if it admits a covering family of circuits \mathcal{F} such that \mathcal{F}^* and \mathcal{F}^{**} are trees (**).

Proof. – If G is hamiltonian, then the hamiltonian circuit alone furnishes a covering family of circuits \mathscr{F} , \mathscr{F}^* and \mathscr{F}^{**} being degenerate trees.

Conversely, suppose \mathscr{F}^* and \mathscr{F}^{**} are trees for some covering family of circuits \mathscr{F} of G. We have to prove that G is hamiltonian. We do this by induction on the number of circuits in \mathscr{F} (or cardinality of the point-sets of \mathscr{F}^* or \mathscr{F}^{**}). Let \mathscr{F} have n circuits and suppose the theorem true if \mathscr{F} would have n-1 circuits. Moreover suppose that if \mathscr{F} has n-1 circuits then the hamiltonian circuit of G contains every line of G which does not appear in the definition of the adjacency

^(*) Nella seduta del 25 novembre 1973.

^(**) A point, a line (with its end-points), a path are all (degenerate) trees.

of points in F*. (Now, in order to use the induction correctly, we have to prove, in the case \mathcal{F} has n circuits, not only that G is hamiltonian, but also this supplementary property of the hamiltonian circuit of G.) Let K be a circuit which, in \mathscr{F}^* , is a point k of degree one (*). Following the induction hypothesis, the graph \cup ($\mathscr{F}-\{K\}$) has a hamiltonian circuit C. Let K' be the circuit of \mathscr{F} which, in \mathscr{F}^* , is the point k' adjacent with k. K and K' have exactly two points a, b and the line (a, b) in common. Following again the induction hypothesis, (a, b) belongs to C if there exists no circuit K'' in $\mathscr{F} - \{K\}$ such that K' and K'' have exactly the points a, b and the line (a, b)in common. Suppose (a, b) does not belong to C. Then there exists a circuit K'' in $\mathscr{F} - \{K\}$ which, in \mathscr{F}^{**} , is a point k'' adjacent to both k and k'. Now k and k' are themselves adjacent in \mathscr{F}^{**} since they are so in \mathscr{F}^* . This implies \mathscr{F}^{**} has the circuit $k \ k' \ k'' \ k$, which contradicts the assumption that \mathcal{F}^{**} is a tree. Therefore (a, b) belongs to C. Suppose K and $\cup (\mathscr{F} - \{K\})$ have, besides a and b, a third point c (at least) in common. Then there exists a circuit K''' in \mathscr{F} , distinct from K', containing the point e. This circuit is, in \mathscr{F}^* , a point k''' which is not adjacent with k, since k has degree one and is adjacent to k'. But, since \mathscr{F}^* is a tree, there exists a path P (of length more than 1) in \mathscr{F}^* joining k with k''. The points k and k'''are joint by P in \mathscr{F}^{**} too, because the line-set of \mathscr{F}^{**} obviously includes that of \mathcal{F}^* . On the other hand, since c belongs to both K and K''', k and k''' are adjacent in \mathscr{F}^{**} . This line and P provide a circuit in \mathscr{F}^{**} , which contradicts the hypothesis. Therefore K and \cup $(\mathscr{F} - \{K\})$ have only a, b and (a, b) in common, and $C \cup K$ minus the line (a, b) is a hamiltonian circuit H in G. Moreover, H contains all lines which do not appear in the definition of the adjacency of points in \mathcal{F}^* (since it contains the lines of K, except (a,b)). Thus, the theorem is proved.

I have the feeling that this theorem (wich admits several variations) may open the interest for a more general study of the graph-structure of families of subgraphs of a given graph G, in connection with pro-

perties of G itself.

^(*) The circuits K, K', K'', K''' of $\mathcal F$ become the points k, k', k'', k''' (respectively) in both $\mathcal F^*$ and $\mathcal F^{**}$.