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ON SPANNING AND EXPANDING STARS

Nota di TUDOR ZAMFIRESCU
presentata (*) dall’Aceademico eorrispondente residente Gruserpr Scorza DRAGONI

1. — P. H. Dovie [1] classified topologically the monotone unions
of 1-cells. S. F. KAroor [2] extended the study to monotone unions
of n-stars, ealled by him expanding n-stars, giving in particular a com-
plete classification for » = 3. In his graph-theoretical terminology,
vertices appear not only where the set is not locally euclidean, but
also elsewhere, in order to avoid loops and multiple lines. Here, though
we keep the graph-theoretical form, we shall prefer to consider points
of the set as vertices of the graph if and only if the set is not locally
euclidean there (as in an earlier version of [2]). Thus our graphs will
not have vertices of degree 2, but possibly loops and multiple edges.

The graphs are understood here as sets in the plane or in the
3-dimensional euclidean space (**); hence we distinguish between poinis
and vertices of a graph (a line of which has two vertices, but infinitely
many points).

A point p of a graph ¢ is a vertex of degree m (n + 2) if @ is in p
loeally homeomorphic with an n-star of centre p. Let ¥ (G)c & be
the set of verbices of ¢. ¥7(@) is supposed to be finite. The line-
degree of a wertex p is the number of lines adjacent with p. Let V(p)
and W(p) be the degree and the line-degree of p, respectively. Obvi-
ously V(p) — W(p) equals the number of loops at p.

Left

W(@) = max W(p) .

PEY (@)
As defined by KAroor (2], G is an expanding n-star if

G=\U8n),

i=1

(*) Nella seduta del 25 novembre 1973.
(**) The expanding n-stars are planar sets (Theorem 8 in [2]) and each graph
is embadable in R®.
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where S,(n) are n-star graphs (with the same point p as vertex of
degree n) and S(n)c S, (n) (i=1,2,3,..). The point p is then called
n-sowrce of G. Since & may be written in more than one way as mono-
tone union of n-star graphs, G possibly has more than one n-source.
The set of all n-sources is the n-centre € (@) of G.

The following two parts of this Note are independent.

2. — We present here a few results on the n-centres of expanding
n-stars.

THEOREM 1. — The point p is an n-sowrce of the expanding n-star G
if and only if either V{p)=n and W(p)= W(G), or W(p)=n.

Proof. — First, suppose p € C,(G). Then, obviously, V(p) =n. Sup-
pose now W(p) < n. It follows that p has at least one loop. Let
g€ 7°(G) be different from p. We have to show W(g) <W(p).

We have

where 8,(n) are n-star graphs with fhe same n-source p, and S,(n)c
c¥;an) (6=1,2,38,..). Let ¢, .., e be the lines of Syn), so that
ecet, (k=1,..,n). Evidently, ¢ belongs to one line e; of 8,(n) for
all i >N, where N is a natural number. Also, ge U, ef is possible
for each ke{l,..,n}. But because p has at least one loop, at most
W(p) — 1 values are possible for k (i.e. at most W(p) — 1 lines from p
are free to join g). Since ¢e ¢} does not need to be an end-point of ef,
g may have one more adjacent line (possibly a loop), therefore W(g) <
Wi(p) (and V(g) may attain W(p)+1).

Conversely, suppose W(p)=n. Let ge C,(G). If g= p, nothing
more has to be proved. If g == p, then p lies in a union of n-star
graphs with centre g, and again p belongs to one line e; of the n-star
graph S*(n) with ¢ as n-source, for all i's greater than some natural
number. Is interesting only the case when p lies in the interior of
the €’s, because otherwise @ clearly reduces to the two points p and ¢,
joined by exactly w lines, and p € €, (G). Consider therefore this case.
Let ¢, = Uy, ¢, where e are the lines of S7(n)(k=1,...,n). Then e,
consists of a line m joining p with ¢ and another line f;. Since e;
covers two lines (one of whieh is possibly a loop) adjacent with p,
and W(p) >n, it follows that for at most one index le{l, ..., n},
péi;: Lot ff=é nj,. Also, let {f&7., be a sequence of arcs, all orig-



EEE S B T

inating at p, so that ficff  and U, fi=e,, for ke{l,..,n}—{, i}
Finally, define f,=m U e, where I is either the index precised above,
or, if ¢ =@, for each ke{l, ..., n}, another arbitrary index different
from j. Now, we can construct the n-star graphs

Sin)= Ui,
k=1

which have their n-sources at p and satisfy

Hence pe € (G).

Finally, suppose V(p)=n and W(p)= W(G). The proof follows
exactly the same way as above until the point where we explicitely
motivated the existence of at most one index [ such that p # &, by
recording W(p) =n. Suppose row W(p)<n. Since p obviously has af
most one loop (contained in ¢;), and V(p) =n, it follows

Vip) =n; Wip)=n—1.

In this case e, covers precisely one line and one loop adjacent with p,
and since W(g) <n—1, it follows that for one index 1e{l, ..., un},
P ¢ g, (more preecisely e, is a loop of ¢), and the proof continues as
for the case W(p)>n (or better ends immediately by observing the
symmetry of &, which implies p e C, (@) too).

THEOREM 2. — If G is an expanding n-star, then

W(&) >[(n + 1)/2].

If C,(G) has move than one point, then W(G) =n— 1.

Proof. — Since the minimal value of W(p), where p e (' (G), is taken
when G consists only of the vertex p together with #/2 loops for
even » and «nly of the vertices p and ¢, where possibly p = ¢, to-
gether with (n— 1)/2 loops of p and a line joining p and g for odd =,
it follows W(&) =[(n -+ 1)/2]. From the second part of the proof of
Theorem 1 it also results that if ¢, (@) hag at least two points, then
W(G) =>n— 1.

THEOREM 3. — If W(p) <n— 1 for some point p in the n-centre of
an ewpanding n-star G, then @ is also an expanding (n— 1)-star.
Proof. — Since V(p)=n, p necessarily has some loops Ly, ..., L,.
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Let G = U7, 8,(n), where the S§,(n)’s are n-stars with rays &y .oy €y and
with p as n-sources. Suppose

{U1_u

ey Lg) N 8y(n)
is an m-star; since

((G e R {p}) N 8i(n)
is at most an (n— m — 1)-star, clearly S,(n) is at most an (» — 1)-star,
which isabsurd. Therefore (Uj_, I,) N §,(n) must be at least an (m + 1)-
star, which means that for at least one index le {1, ..., m}, there exist
two indices r, s € {1, ..., n} 80 that

L, 8 n)=¢ Ve

If {e!}, is an increasing sequence of arcs originating in p, such that
u%, e, = L,, then

Sin—1) = (8,(n)— (e; U e)) Ve

is an (n — 1)-star for each 4, and

USin—1)=6G.

=1
THEOREM 4. — If G is an expanding 3-siar, then
card O,(G) <4 .
If @ is an expanding 4-star, then
card C,(G) <3.
If G an expanding n-star, with n =5, then
card O (G) <2.
Proof. — Since p e C,(@) implies V(p) =n, it follows
card (,(G) <D(n) ,

where D(k) is the number of vertices of &, the degrees of which are greater



than or equal to % (see[2]). Following Theorem 1 of [2], D(n) <1 +
+[n/(nn— 2)], which implies our theorem.

A . B

TFig. 1.

We verify now that the given bounds are attained. For n = 3, the
graph A of fig. 1 appearing in the classification of [2] has all its ver-
tices in its 3-centre. For n — 4, the graph B has its three vertices in
C,(B). Finally, for » =5, an example is provided by the graph C.

3. — Let @ be a (finite) graph without loops or multiple edges and
n <max deg p a natural number. Does there always exist an expanding

PEF (@)
ﬂ—stgr spanning G? Here, a graph H spans a graph G if v (G)c Hc @,
It is eagily seen that if a graph has no multiple edges and admits a
spanning expanding n-star, then it also admits a spanning n-star, and
conversely (¥*). For n =2, the problem is: Does always G possess a
hamiltonian path? The answer is known to be in the negative, even
for planar @. We investigate now the case n = 3.

THEOREM 5. — There exists a simple polytopal graph (**) without any
spanning 3-star.

Proof. — Let T be the graph of W. T. Turrk [4] shown in fig. 2.
Two copies of T are placed as indicated in fig. 3 to form a graph 7.

Fig. 2.
(*) In this section vertices of degree 2 will be tolerated.
(**) A simple polytopal graph means a planar 3-connected graph, each vertex of
which has degree 3.
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Now, five copies of the graph 7" are placed as indicated in fig. 4
to form the graph @G. Since 7' is the well-known non-hamiltonian
graph of Lederberg-Bosak-Barnette (the smallest known at present)

-

Fig. 3.

minus a vertex, it is obvious that no path joins any two of the points
«, B, y, passing through all the vertices of 7'. The theorem now fol-
lows. @ has 186 vertices.

Fig. 4.

Let 8!= oo (8)= oo) if each j-connected graph (planar graph) &

with max deg p >i has a spanning i-star (j =1, 7>2). If 8j+# oo
3 VLG xs
(8§ 5= o0), let §; (5 denote the minimum number of vertices that

a j-connected graph (planar graph) G (with max deg p >i) without
¥ (6

any spanning i-star may have. =

Let 8 and S} be the corresponding numbers if we restrict our-
selves to the case ¢ <j and to graphs the degree of each vertex of
which is § (i =2, like before).

We ask for the determination of 8%, 8!, 8§, 8i. In particular, the
question whether S2 < 14 or 8% < 112 is part of G. C. Shephard’s
Problem X in [3],
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It is known that S} <14 [3] and ,S?<88; it is trivial that 87—
=St=n-+2 and S} =8} =n + 4. The proof of Theorem 5 yields
5% <186. Also, 8¢ =8 and 82 28. Nothing more on these numbers
seems to be known at present.
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