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METRIO SPACES CONSISTING OF CLASSES
OF OONVEX BODIES (%)

by Tupor ZAMFIRESCU (in Dortmund) (**)

SommARI0. - i questa “Nota si mostra come in due spazi di classi di corpi
convessi si pud introdurre una meirica derivata dalla « difference body
metric» di G. C. Shephard. Inolire la famiglia di tuiti i corpi convessi
riducibili viene considerata come semigruppo topologico.

SUMMARY. - In this Note it is shown how spaces of classes of convex bodies
ean be equipped with a certain metric, derived from the «difference body
melric» of G. C. Shephard. Also, the family of all reducible convex
bodies is organized as topological semigroup.

1. Introduetion.

Let E" denote the Euclidean n-dimensional space and K" the
family of all convex bodies (n-dimensional compact convex sets) in
E". The aim of this Note is to show how two natural factorizations of
" introduced by using Hammer associated bodies, displacements or
affine transformations of E”, may be equipped with a metric structure,
derived each time from the difference body metric of K"

Let us recall the definition of the Hammer associated bodies [2]
of the convex body Ce °K":

N (b+r(C—>b)) for re(0,1)
byl

€=
U (b+r(C—>b)) for rel, oo)
bepC

(8 C means the boundary of C).

(*) Pervenuto in Redazione il 31 gennaio 1974.
(**¥) Indirizzo dell’Autore: Abteilung Mathematik, Universitit Dortmund —
46 Dortmund (Deutschland).
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Following D. Voiculescu [4], if r=1, then the Hammer associated
body C (r) can be written in the form:

CH=rC+{1-nC=r—1CH+CH+(1—=rC
C(r)=C+(r—1)D,

where D=C—C (D is called difference body or vector domain of C).
It is easily seen that the difference body metric p® introduced by
G. C. Shephard in [3] can be expressed as follows:

PD {cij C2)=In (2'5]_ 1)!
where
g=min {r: CicC:(r) and C:cCi(r)}.

We observe that, if ¢ is the family of all affine transformations
in Eu’

pP (C1, C2)=p® (aCy, aCs) =p" (Cy (r), C; (1))

for all ae el and r=1.
P. C. Hammer has proved in [2] that for every convex body
Ce K", there exists a number re=1, called reducibility number of
C, so that
C@)(r/2r—1)=C

for each r>re. If re<<1, then C is said to be reducible [2].

2. First factorization,

Now, let us define an equivalence relation in the space N* by
Ci~C e Ci=aC; (}‘),

with 7=rg,, and a€B, where B < o is the family of displacements
of E". By the continuity argument it is clear that

C(n (r/@r—1)=C

for each r=re, if rc does not equal the critical ratio of C, i. e. if C
is not a centrally symmetric convex body [5]. But in the case of a
centrally symmetric body C,

r>ro, =1/2
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because C; is n-dimensional. Therefore the equivalence relation
introduced above can also be written as follows:

Ci~C & Ci=aC; (r) or Co=aC, (1),

where r=1 and aeP.
If [C] denotes the family of all reducible Hammer associated
bodies of C, then an element [C] o3 of "/~ has the form

[Clgg={a (K): aeWB, Ke [C] NK" }.

Let us introduce a metric structure in “X"/~. Choose the ele-
ments Cy, (3’ in the classes [C]qg, [C:]1q so that

C/'cClcaCy (1),
with a € B, and define

pag ([Cilag, [Colag)=In (2g—1),

where ¢ is the infimum (necessarily attained by Blaschke’s theorem) of
the set of #’s which can appear in the proceding relations.

THEOREM 1.
pp: K/~ X K/~ = [0, o)

is a metric in Y/ ~.

Proor. If
pp ([Cilgg, [Ciloy) =0,
then g=1 and
C/'cClcal(C)),

for a certain displacement a and two bodies Ci'€ [Cilo3 and Cy€ [Ca]os ;
therefore Ci"=C>"; conversely, [Ci]os = [C2]1q3 obviously implies

paz ([Cilag, [C3]a3)=0.
If
In 2r—1)=pag ([Cilgg, [Calys),
then we can find C'€ [Cilog, C€[Cslqs, and aePB so that

C'cClcacy ().
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It follows that

CcaCy (r)caCy (n),
hence

pap ([Calog, [Cilgg) =ln (2r—1)=py3 ([C1]3, [Co]3).

Similarly one finds the converse inequality; therefore

pos (LCilas , [C2lag) =pos ([Calag, [Cilgg).

Let
pas ([Cilag, [Caloy)=In (2r—1)
and
pag([Calgg, [Cslog)=In (2s—1);
show that
p3 ([Cileg, [Csleg) =In 2r—1)+1In (25s—1).
One has
Cl'cClcaCy ()
and
C'c Gl by (s),

for some displacements a, b€ and bodies Ci'€[Cilqs, C, C7€[Caly
and Cs’e [Csly; . Either

C/=cCy” (1),
or

G'=cly (1),

with c€;%8 and t=1. Consider, for instance, the first case; the proof
of the other being similar, will be omitted. We can write

C/'cC=cC)" (t)cceCy' (f)

and
cCy’ (1Y ebCy” (s) (1) =cbc™' ¢Cy” (1) (s)=
=cbe™ Cy (s)ccbe' aCy’ (1) (s)
Since
C/ () (8)=C/ (1 —r—s+2rs),
we have

Py ([Cilas, [Cslg)<In (1 —2.;'~2s+4rs):fn ((2r—1) (2s—1)).
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3. Second factorization.

Now we shall consider another equivalence relation in X",
namely
CGrRGe = aCy’,

with Ci'e[C]q;, C'e[C]lgs and aed. In other words, an element
of the space K"/~ can be written as follows:

[Cly ={a (K): ae A, Ke [C] ynexe.

A metric structure of U*/x will be obtained by introducing
the distance

Pt ([Cilgy [Cl ) =In (2g—1),

where g is the infimum (necessarily attained) of the set of r’s which
satisfy simultaneously
C|’CHC2' (I)

aCy < fCy (r),

for certain C/'€[Cily, CY€[Coly, acd and feT, where I o
is the family of translations in E”.

THEOREM 2,
Pat A/ Un %[0, co)

is a metric in N/~

Proor. If
P ([Cilg, [Cy)=0,

then ¢=1 and we can find Crel[Cily, C'e[Cily, ae ol and fe I
so that
CI’CaCz’CfCI'_.

hence C/"=aC,’ and [Ci]y =[C;]4. The converse is obvious.
i
In@r—=1)=py4 ([Ci] 4, [C:] ),

then, for certain Cl'el[Cily, C/elCly, ae o and fed,
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Ci'caCy ()

aCy' c {C (1),
whence
1C cfaCy ().

From the second and the third relation, it follows:
P ([Cly, [Cilyg)=py ([aCily , [C]y )=
Sln@r—1)=pgy ([Cilg, [Clyg).

The converse inequality can be similarly obtained, therefore equality
holds. Show that

Pt ([Ci]g( » [Colog ) +p g ([Ca)yg 5 [Caleg)Zper ([C1] o [C:]x).

If

I R IS |
-:_eﬂ "Jﬁ‘f' 9.‘1{ —_—
= + >

L e 00, 160 1
= — o %q %lgg [l oS
=3 oy

then, for some C'€[Cily, CY, C’e[Cily, CelCily, a, be 4,
f! gE 9!'
‘ C[’CQ’CE’ (?’)

f aCy'c {C/ (r)
and
‘ G bCy (s)

?sz’chZ" (s).

Either C'=cCy” (t), or C"=cCy’ (t), with ce A and t=1. In the first
case,
Cl'caCy (ry=acC,” (1) (r)cachCy (t) (r) (s)
and
acbCy’ (t) CacgCy” (s) (t) =acge ' C (s) acge a7 fC) (r) (s)

Since 9 is a normal subgroup of o, acge™a'f is a translation;
therefore

P ([Cileg, [Cilg)=In (1—2r—2s+4rs),
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which proves our inequality. In the second case,

G () caCy (r) ()=ac™' C” (rYcac™' bCY (r) (s)
and
ac™' bCy' cac™! g0, (s)=ac™" geCy' (1) (s)< ac~! gea' fC (¢) () (s)

and our inequality is again obtained.

4. Continuity of canonieal maps.
THEOREM 3. The canonical maps
Ky pP) = (A" [~y pa) and (K™, p?) — (A" /=, 04)
are continuous.

Proor. Let
p? (Cy, C)=In (2r—1).
Then
CicC (r); GG (r),
whence, on one hand,

C]CCg {?‘JCCI (J"') (!’)ZCI (I—-2r-l—2r2},
whence
pp ([Cilag, [Cllgg)Sin (1—4r+4r)=20" (C;, Cs),

which proves the continuity of the first canonical map, and on the
other hand,

Pt ([Cl]_c'{, [CZ]_G{)éfﬁ' (2r— E}ZPD (Cy, Cy),

which proves that the second canonical map is continuous.

5. Structure of the space of reducible convex bhodies.

THEOREM 4. The space K™ and its subspace K, of all n-dimensio-
nal reducible convex bodies in E" are topological abelian semigroups,
with Minkowskian addition and distance .

Proor. If Cy, C:e K, then rg,, ro, <1. Let us choose r such that

max {ro,, ro,} <r<1.



8 TUDOR ZAMFIRESCU

Put
K;':Ci (i) {1=I; 2);

we have KioCil(rg), Kie X" and Ci=Ki(s) with s=r/(2r—1)>1.
Hence
Cj:SK1+(1_S) Ki,

Co=sK>+(1—5) K,
whence
Ci+Cr=s (Ki+K2) + (1 —8) (K1 + K3) = (Ki + K2) (5),
therefore
C1—|—Cz€qc:-".
If C1, Cg,, C;E CK" and

p° (Cy, C)=In(2r—1),
then
CicC (),
whence
Ci+GCcC (N+CcC (4G (=(C+C5) (r)

and similarly
Co+ G (Ci+GCy) (n);
hence
pD (C1+Cs, C2+C3)§,OD (Ch, Ca),

which proves that the abelian semigroup * is topological; )" being
closed for Minkowskian addition is itself a topological abelian semigroup.

It would be very interesting if, using the described spaces K"/~
and 9("/~, an increased algebraic structure will be obtained (though
this doesn’t seem easy), as G. Ewald and G. C. Shephard did in [1],
using other factorizations of K".
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