Estratto da:
Rend. Ist. di Matem. Univ. di Trieste
Vol. VII fasc. II (1975).

METRIC SPACES CONSISTING OF CLASSES OF CONVEX BODIES (*)

by Tudor Zamfirescu (in Dortmund) (**)

Sommario. - In questa Nota si mostra come in due spazi di classi di corpi convessi si può introdurre una metrica derivata dalla « difference body metric » di G. C. Shephard. Inoltre la famiglia di tutti i corpi convessi riducibili viene considerata come semigruppo topologico.

Summary. - In this Note it is shown how spaces of classes of convex bodies can be equipped with a certain metric, derived from the « difference body metric » of G. C. Shephard. Also, the family of all reducible convex bodies is organized as topological semigroup.

1. Introduction.

Let E^n denote the Euclidean n-dimensional space and \mathcal{K}^n the family of all convex bodies (n-dimensional compact convex sets) in E^n . The aim of this Note is to show how two natural factorizations of \mathcal{K}^n introduced by using Hammer associated bodies, displacements or affine transformations of E^n , may be equipped with a metric structure, derived each time from the difference body metric of \mathcal{K}^n .

Let us recall the definition of the *Hammer associated bodies* [2] of the convex body $C \in \mathcal{K}^n$:

$$C(r) = \begin{cases} \bigcap_{b \in \partial C} (b + r(C - b)) & \text{for } r \in (0, 1) \\ \bigcup_{b \in \partial C} (b + r(C - b)) & \text{for } r \in [1, \infty) \end{cases}$$

(∂C means the boundary of C).

(*) Pervenuto in Redazione il 31 gennaio 1974.

^(**) Indirizzo dell'Autore: Abteilung Mathematik, Universität Dortmund — 46 Dortmund (Deutschland).

Following D. Voiculescu [4], if $r \ge 1$, then the Hammer associated body C(r) can be written in the form:

$$C(r) = rC + (1-r)C = (r-1)C + C + (1-r)C$$

i. e.

$$C(r) = C + (r-1)D$$
,

where D=C-C (D is called difference body or vector domain of C). It is easily seen that the difference body metric ρ^D introduced by G. C. Shephard in [3] can be expressed as follows:

$$\rho^{D}(C_{1}, C_{2}) = ln(2q-1),$$

where

$$q = \min \{r: C_1 \subset C_2(r) \text{ and } C_2 \subset C_1(r) \}.$$

We observe that, if \mathcal{A} is the family of all affine transformations in E^n ,

$$\rho^{D}(C_{1}, C_{2}) = \rho^{D}(aC_{1}, aC_{2}) = \rho^{D}(C_{1}(r), C_{2}(r))$$

for all $a \in \mathcal{A}$ and $r \ge 1$.

P. C. Hammer has proved in [2] that for every convex body $C \in \mathcal{K}^n$, there exists a number $r_c \leq 1$, called reducibility number of C, so that

$$C(r)(r/(2r-1)) = C$$

for each $r > r_c$. If $r_c < 1$, then C is said to be reducible [2].

2. First factorization.

Now, let us define an equivalence relation in the space % by

$$C_1 \sim C_2 \Leftrightarrow C_1 = aC_2(r)$$
,

with $r \ge r_{\mathcal{O}_{\mathbf{i}}}$, and $a \in \mathcal{B}$, where $\mathcal{B} \subset \mathcal{A}$ is the family of displacements of E^n . By the continuity argument it is clear that

$$C(r)(r/(2r-1)) = C$$

for each $r \ge r_C$, if r_C does not equal the critical ratio of C, i. e. if C is not a centrally symmetric convex body [5]. But in the case of a centrally symmetric body C_2 ,

$$r > r_{0_0} = 1/2$$

because C_1 is n-dimensional. Therefore the equivalence relation introduced above can also be written as follows:

$$C_1 \sim C_2 \Leftrightarrow C_1 = aC_2(r)$$
 or $C_2 = aC_1(r)$,

where $r \ge 1$ and $a \in \%$.

If [C] denotes the family of all reducible Hammer associated bodies of C, then an element $[C]_{\mathfrak{P}}$ of \mathfrak{K}^n/\sim has the form

$$[C]_{\mathcal{B}} = \{a(K): a \in \mathcal{B}, K \in [C] \cap \mathcal{K}^n\}.$$

Let us introduce a metric structure in \mathcal{K}^n/\sim . Choose the elements C_1 , C_2 in the classes $[C_1]_{\mathcal{B}}$, $[C_2]_{\mathcal{B}}$ so that

$$C_1' \subset C_2' \subset aC_1'(r),$$

with $a \in \mathcal{B}$, and define

$$\rho_{\mathcal{B}}([C_1]_{\mathcal{B}}, [C_2]_{\mathcal{B}}) = \ln(2q-1),$$

where q is the infimum (necessarily attained by Blaschke's theorem) of the set of r's which can appear in the proceding relations.

THEOREM 1.

$$\rho_{\mathfrak{R}}: \mathcal{R}^n/\sim \times \mathcal{R}^n/\sim \to [0, \infty)$$

is a metric in \Re^n/\sim .

PROOF. If

$$\rho_{\mathcal{B}}([C_1]_{\mathcal{B}}, [C_2]_{\mathcal{B}})=0,$$

then q=1 and

$$C_1' \subset C_2' \subset a(C_1')$$
,

for a certain displacement a and two bodies $C_1' \in [C_1]_{\gamma_\beta}$ and $C_2' \in [C_2]_{\gamma_\beta}$; therefore $C_1' = C_2'$; conversely, $[C_1]_{\gamma_\beta} = [C_2]_{\gamma_\beta}$ obviously implies

$$-\rho_{\gamma\beta}([C_1]_{\gamma\beta}, [C_2]_{\gamma\beta})=0.$$

If

$$ln(2r-1) = \rho_{\gamma\beta}([C_1]_{\gamma\beta}, [C_2]_{\gamma\beta}),$$

then we can find $C_1' \in [C_1]_{\mathfrak{P}}$, $C_2' \in [C_2]_{\mathfrak{P}}$, and $a \in \mathfrak{P}$ so that

$$C_1' \subset C_2' \subset aC_1'(r)$$
.

It follows that

$$C_2' \subset aC_1'(r) \subset aC_2'(r)$$
,

hence

$$\rho_{\mathcal{B}}([C_2]_{\mathcal{B}}, [C_1]_{\mathcal{B}}) \leq \ln(2r-1) = \rho_{\mathcal{B}}([C_1]_{\mathcal{B}}, [C_2]_{\mathcal{B}}).$$

Similarly one finds the converse inequality; therefore

$$\rho_{\mathcal{B}}([C_1]_{\mathcal{B}}, [C_2]_{\mathcal{B}}) = \rho_{\mathcal{B}}([C_2]_{\mathcal{B}}, [C_1]_{\mathcal{B}}).$$

Let

$$\rho \gamma_{\beta}([C_1]\gamma_{\beta}, [C_2]\gamma_{\beta}) = ln(2r-1)$$

and

$$\rho_{\mathcal{B}}([C_2]_{\mathcal{B}}, [C_3]_{\mathcal{B}}) = ln(2s-1);$$

show that

$$\rho_{\mathcal{B}}([C_1]_{\mathcal{B}}, [C_3]_{\mathcal{B}}) \leq \ln(2r-1) + \ln(2s-1).$$

One has

$$C_1' \subset C_2' \subset aC_1'(r)$$

and

$$C_2^{\prime\prime}\subset C_3^{\prime}\subset bC_2^{\prime\prime}$$
 (s),

for some displacements $a,b\in \mathcal{B}$ and bodies $C_1'\in [C_1]_{\mathcal{B}},\ C_2',\ C_2''\in [C_2]_{\mathcal{B}}$ and $C_3'\in [C_3]_{\mathcal{B}}$. Either

$$C_2'=cC_2''(t),$$

01

$$C_2^{\prime\prime}=cC_2^{\prime}(t),$$

with $c \in \mathcal{B}$ and $t \ge 1$. Consider, for instance, the first case; the proof of the other being similar, will be omitted. We can write

$$C_1' \subset C_2' = cC_2''(t) \subset cC_3'(t)$$

and

$$cC_3'(t) \subset cbC_2''(s)(t) = cbc^{-1}cC_2''(t)(s) =$$

$$=cbc^{-1}C_2'(s)\subset cbc^{-1}aC_1'(r)(s)$$

Since

$$C_1'(r)(s) = C_1'(1-r-s+2rs),$$

we have

$$\rho_{\mathcal{P}_{3}}([C_{1}]_{\mathcal{P}_{3}}, [C_{3}]_{\mathcal{P}_{3}}) \leq \ln(1-2r-2s+4rs) = \ln((2r-1)(2s-1)).$$

3. Second factorization.

Now we shall consider another equivalence relation in \mathcal{K}^n , namely

$$C_1 \approx C_2 \Leftrightarrow C_1' = aC_2',$$

with $C_1' \in [C_1]_{\mathfrak{P}}$, $C_2' \in [C_2]_{\mathfrak{P}}$ and $a \in \mathcal{A}$. In other words, an element of the space \mathcal{H}^n/\approx can be written as follows:

$$[C]_{\mathcal{A}} = \{a(K): a \in \mathcal{A}, K \in [C]\} \cap \mathcal{K}^n.$$

A metric structure of \mathfrak{N}^n/\approx will be obtained by introducing the distance

$$\rho_{\mathcal{A}}([C_1]_{\mathcal{A}}, [C_2]_{\mathcal{A}}) = ln(2q-1),$$

where q is the infimum (necessarily attained) of the set of r's which satisfy simultaneously

$$\begin{cases} C_1' \subset aC_2'(r) \\ aC_2' \subset fC_1'(r), \end{cases}$$

for certain $C_1' \in [C_1]_{\mathcal{A}}$, $C_2' \in [C_2]_{\mathcal{A}}$, $a \in \mathcal{A}$ and $f \in \mathcal{I}$, where $\mathcal{I} \subset \mathcal{A}$ is the family of translations in E^n .

THEOREM 2.

$$\rho_{\mathcal{A}}: \mathcal{K}^n/\approx \times \mathcal{K}^n/\approx \to [0, \infty)$$

is a metric in \mathcal{H}^n/\approx .

PROOF. If

$$\rho_{\mathcal{A}}([C_1]_{\mathcal{A}}, [C_2]_{\mathcal{A}})=0,$$

then q=1 and we can find $C_1' \in [C_1]_{\mathcal{A}}$, $C_2' \in [C_2]_{\mathcal{A}}$, $a \in \mathcal{A}$ and $f \in \mathcal{F}$ so that

$$C_1' \subset aC_2' \subset fC_1'$$
,

hence $C_1'=aC_2'$ and $[C_1]_{\mathscr{A}}=[C_2]_{\mathscr{A}}$. The converse is obvious.

$$ln(2r-1)=\rho_{\mathcal{A}}([C_1]_{\mathcal{A}}, [C_2]_{\mathcal{A}}),$$

then, for certain $C_1' \in [C_1]_{\mathcal{A}}$, $C_2' \in [C_2]_{\mathcal{A}}$, $a \in \mathcal{A}$ and $f \in \mathcal{I}$,

$$\begin{cases} C_1' \subset aC_2'(r) \\ aC_2' \subset fC_1'(r), \end{cases}$$

whence

$$fC_1' \subset faC_2'(r)$$
.

From the second and the third relation, it follows:

$$\rho_{\mathcal{A}}([C_2]_{\mathcal{A}}, [C_1]_{\mathcal{A}}) = \rho_{\mathcal{A}} ([aC_2']_{\mathcal{A}}, [C_1']_{\mathcal{A}}) \leq$$

$$\leq \ln (2r-1) = \rho_{\mathcal{A}} ([C_1]_{\mathcal{A}}, [C_2]_{\mathcal{A}}).$$

The converse inequality can be similarly obtained, therefore equality holds. Show that

$$\rho_{\mathcal{A}}\left([C_1]_{\mathcal{A}}, [C_2]_{\mathcal{A}}\right) + \rho_{\mathcal{A}}\left([C_2]_{\mathcal{A}}, [C_3]_{\mathcal{A}}\right) \ge \rho_{\mathcal{A}}\left([C_1]_{\mathcal{A}}, [C_3]_{\mathcal{A}}\right).$$

If

$$r \! = \! \frac{1}{2} \, e^{\varrho_{\mathcal{A}} \, ([\sigma_1]_{\mathcal{A}} \, , \, [C_2]_{\mathcal{A}})} + \frac{1}{2} \, , \label{eq:resolvent}$$

$$s = \frac{1}{2} e^{\varrho_{\mathcal{A}} ([C_{\theta}]_{\mathcal{A}}, [C_{\theta}]_{\mathcal{A}})} + \frac{1}{2},$$

then, for some $C_1' \in [C_1]_{\mathcal{A}}$, C_2' , $C_2'' \in [C_2]_{\mathcal{A}}$, $C_3' \in [C_3]_{\mathcal{A}}$, $a, b \in \mathcal{A}$, $f, g \in \mathcal{I}$,

 $\begin{cases} C_1' \subset aC_2'(r) \\ aC_2' \subset fC_1'(r) \end{cases}$

and

$$\begin{cases} C_2'' \subset bC_3'(s) \\ bC_3' \subset gC_2''(s). \end{cases}$$

Either $C_2'=cC_2''(t)$, or $C_2''=cC_2'(t)$, with $c\in\mathcal{A}$ and $t\geq 1$. In the first case,

$$C_1' \subset aC_2'(r) = acC_2''(t)(r) \subset acbC_3'(t)(r)(s)$$

and

$$acbC_{3}'(t) \subset acgC_{2}''(s)(t) = acgc^{-1}C_{2}'(s) \subset acgc^{-1}a^{-1}fC_{1}'(r)(s)$$

Since $\mathcal G$ is a normal subgroup of $\mathcal A$, $acgc^{-1}a^{-1}f$ is a translation; therefore

$$\rho_{\mathcal{A}}([C_1]_{\mathcal{A}}, [C_3]_{\mathcal{A}}) \leq \ln(1-2r-2s+4rs),$$

which proves our inequality. In the second case,

$$C_1'(t) \subset aC_2'(r)(t) = ac^{-1}C_2''(r) \subset ac^{-1}bC_3'(r)(s)$$

and

$$ac^{-1}bC_3' \subset ac^{-1}gC_2''(s) = ac^{-1}gcC_2'(t)(s) \subset ac^{-1}gca^{-1}fC_1'(t)(r)(s)$$

and our inequality is again obtained.

4. Continuity of canonical maps.

THEOREM 3. The canonical maps

$$(\mathcal{K}^n, \rho^D) \longrightarrow (\mathcal{K}^n/\sim, \rho_{\mathcal{B}})$$
 and $(\mathcal{K}^n, \rho^D) \longrightarrow (\mathcal{K}^n/\approx, \rho_{\mathcal{A}})$

are continuous.

PROOF. Let

$$\rho^{D}(C_{1}, C_{2}) = ln(2r-1).$$

Then

$$C_1 \subset C_2(r)$$
; $C_2 \subset C_1(r)$,

whence, on one hand,

$$C_1 \subset C_2(r) \subset C_1(r)(r) = C_1(1-2r+2r^2)$$

whence

$$\rho \gamma_{\beta} ([C_1]\gamma_{\beta}, [C_2]\gamma_{\beta}) \leq \ln (1-4r+4r^2) = 2\rho^D (C_1, C_2),$$

which proves the continuity of the first canonical map, and on the other hand,

$$\rho_{\mathcal{A}}([C_1]_{\mathcal{A}}, [C_2]_{\mathcal{A}}) \leq \ln(2r-1) = \rho^{D}(C_1, C_2),$$

which proves that the second canonical map is continuous.

5. Structure of the space of reducible convex bodies.

Theorem 4. The space \mathcal{K}^n and its subspace \mathcal{K}_r^n of all n-dimensional reducible convex bodies in E^n are topological abelian semigroups, with Minkowskian addition and distance ρ^D .

PROOF. If C_1 , $C_2 \in \mathcal{K}_r^n$, then $r_{\mathcal{O}_1}$, $r_{\mathcal{O}_2} < 1$. Let us choose r such that

$$\max\{r_{C_1}, r_{C_2}\} < r < 1.$$

Put

$$K_i = C_i(r)$$
 $(i = 1, 2);$

we have $K_i \supset C_i(r_{C_i})$, $K_i \in \mathcal{K}_r^n$ and $C_i = K_i(s)$ with s = r/(2r-1) > 1. Hence

$$C_1 = sK_1 + (1-s)K_1$$

$$C_2 = sK_2 + (1-s)K_2$$

whence

$$C_1+C_2=s(K_1+K_2)+(1-s)(K_1+K_2)=(K_1+K_2)(s),$$

therefore

$$C_1+C_2\in\mathcal{K}_r^n$$
.

If C_1 , C_2 , $C_3 \in \mathcal{K}^n$ and

$$\rho^{D}(C_{1}, C_{2}) = ln(2r-1),$$

then

$$C_1 \subset C_2(r)$$
,

whence

$$C_1+C_3\subset C_2(r)+C_3\subset C_2(r)+C_3(r)=(C_2+C_3)(r)$$

and similarly

$$C_2 + C_3 \subset (C_1 + C_3) (r);$$

hence

$$\rho^{D}(C_{1}+C_{3}, C_{2}+C_{3}) \leq \rho^{D}(C_{1}, C_{2}),$$

which proves that the abelian semigroup \mathcal{K}^n is topological; \mathcal{K}_r^n being closed for Minkowskian addition is itself a topological abelian semigroup.

It would be very interesting if, using the described spaces \mathcal{K}^n/\sim and \mathcal{K}^n/\approx , an increased algebraic structure will be obtained (though this doesn't seem easy), as G. Ewald and G. C. Shephard did in [1], using other factorizations of \mathcal{K}^n .

REFERENCES

- [1] G. EWALD and G. C. SHEPHARD, Normed Vector Spaces Consisting of Classes of Convex Sets, Math. Zeitschr., 91, 1, 1966, 1-19.
- [2] P. C. Hammer, Convex Bodies Associated with a Convex Body, Proc. Amer. Math. Soc., 2, 4, 1951, 781-793.
- [3] G. C. Shephard, Inequalities between Mixed Volumes of Convex Sets, Mathematika, 7, 1960, 125-138.
- [4] D. Voiculescu, O ecuație privind corpurile convexe și aplicații la corpurile asociate unui corp convex, Stud. Cerc. Mat., 18, 1966, 741-745.
- [5] T. Zamfirescu, Sur quelques questions de continuité liées à la réductibilité des corps convexes, Rev. Roum. Math. Pures et Appl., 12, 7, 1967, 989-998.