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TupOR ZAMFIRESCU

GENERALIZED CONTRACTIONS AND FIXED POINTS
IN METRIC SPACES

Riassunto - Il teorema del punto fisso di Banach e diverse sue generalizza-
zioni sono corollari di risultatt dimostrati in questo lavoro per una
classe di funzioni che é pin ampia di quella costituita dalle a-contrazioni

(a < 1).

The main purpose of this paper is to present in the context of a
melric, sometimes complete metric space new kinds of functions,
which on one hand admit as special cases several previously known
generalized contractions and on the other hand enjoy like these
the same strong fixed point properties.

1. NOTATIONS AND DEFINITIONS.

Let (M, d) be a metric space and & : 2" x 2M— 21 wl he a

map defined by
{} ifA=0 or B=g

0(4,B)= ?

\

d(x, y): (x,y) EAXB)if A= @ and B=@ .

For mEM and A =M we put 8(m,A)=8(A4,m) = 8(4,{m}); for
m,m' €M, 8(m, m')= {d(m, m’)}.

For x€[—o0, ] and U, V[0, *], x < U means x <u for all
u€U, xU means {xu: u€ U}, and U+V means {u+v:(u,v)EU XV }.
i denotes the set {1, 2, 3, ...} of natural numbers and z, = U {0}.

Classificazione per soggetto AMS (MOS) 1970: 47H10.
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Our main attention will be concentrated on a function f:M—M.
Consider also the bounded functions

rar*: Mx M —n
and the functions

S,S*:MxM——)%_;_?

let o €(0, 1], yE€(0,1), = €(0, ©) and t €m. Whenever these
functions and numbers will later appear, their meaning will be as
described here.

Let f* denote f o...o f (¢ times), f°(x) — & and fi(x)={yEM:
:f'(y) =}, where xEM. Let @, b, ¢, d be defined by ("

a (%7, 5) (% y)=8 (f7®V (), f*“ ¥ (y))

b (e 9) (5 )= iy ST (9, 70 ()

G G & e e i ) )

4.6 580 B G e

FO(I (@), D () (et srst),

We say that f is an a-precontraction if for some r > s, r* > s*,
Y =a and ¢, at each pair (x, y) of distinct points from f'(M), d is

smaller than at least one of the folowing eight set-valued functions:

a (7’ -, _7)9 b (?’: —7‘,—.5‘), c (?’a Tl _5): d (79 =T, “r*a _39_3*)
a (a, -1, —1), b (a, -, 0), c (a, —Ty O), d (a, —7, —r¥, —s, 0)
(the choice depends on choice of x and ¥). It is clear that if o < 1,
the comparison with the last four functions becomes superflous.

We say that the a-precontraction f is an a-contraction if there
exists numbers 7 and ¢ and functions r and s >0 (not necessarily

() Exceptionally, in these definitions r, r*, s, s* are considered to be integer-valued.
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the same as those in the definition of an a-precontraction), such that
for each pair of distinct points x€EM, y€ f*(M), the value of d
taken at (f*?(x), f*?(y)) is smaller than that of at least one of
the following three functions:

a(z, 0, 0), rb(a,0,71)+s ¢ (a0, s), (s+r)d (a,0,0,s,7),

taken at (x, 7).
The set {f"(x) :n € 2, } and the sequence {f"(x)}>, will be
called the orbit and the orbital sequence of x.

2. A LEMMA.

LemMA.  Suppose M is a metric space and f an a-precontraction,
with a <1. Then each orbital sequence is Cauchy and for every
couple of points x, y EM, d(f"'(x), {'(y))— 0.

Proof. Let %€ M, x,= "(x) (nE€ M) and a,—= d (%, %n41)
(n€z,). We want to show that {x,},—, is a Cauchy sequence. Let

Q=X {Ay, «vs Gy}

where k=¢ is a common upper bound for r and r*. First, we
.

intend to show that a,éama["] for all I€ z,. This is clear for
[ <k. We shall prove it for arbitrary [ = k supposing it works for
each index smaller than .

If for some n, € Z,, a,,=0, then {x,};_, converges to x,,.
Suppose now that no a, is zero.

The conditions defining an a-precontraction, put on the couple

(%1, %111), say that at least one of the following inequalities holds:

d(xza xl—l—l) <'?’d(xt-rv xl;}—‘hr)

¥
d (x,, xz+1) = pels d (xl—r’ xl—s)

d (xl—r—i-l’ %pg41)

S i LA,
r4+r¥— s—_s*

%
d (2, %44) < .y

d (%, xl—f—l) < (d (xl-ﬂ xl—s+1) +d (xl—s*7 xl—r*+1))’

13
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where (%1, %111), § (%1, %141), 75 (%2 %144), 5% (%2, %141) Were abbrevia-
ted by r, s, 7*, s*. The above inequalities successively imply

@ <Ol
a
a; < (Gt Haench Gig)
r— 3
a
a4y & (az-r+1 +s ok il )
r—s
a
@y < (@t oot @+ @ eyt vt pgey)

r+r*¥—s—s*

(@—rs 41+ . +a_sx 1 means 0 if r* = s*+1). Now, using the in-
duction hypothesis, the first inequality yields

7

- [Bes

| [l
Gsoay, = a0 Fi=ag ph ) =g plkl,

The second inequility yields

a, <

a
2 e ) S0

r

: g
T a,(r—s)d *'=a,a =4

lIA

The third inequality can be treated like the second in the case
s>0.1f s=0,

o
@< — (@ + oo+ @)
implies

B
a < 1 (@pypg + e+ @)

with 8= (r—1)a/(r—a) < a. Further

e g Eri1
L
< a,,,.OLI'H_Ihz-k_Tj = “m‘]‘[%J 2
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The fourth inequality can be handled like the second one if
s > 0 and like above if s = 0.

Since 3,a,0 [ﬂis convergent, X,a, is convergent too, whence
{x,}r—y is a Cauchy sequence.

Now, consider also yo, € M and put y,= f"(y,) (n € ®). Since
{¥.}nzo is Cauchy too and each Cauchy sequence is bounded, the
diameter of the union of the orbits of x, and y, is a real number A.
We intend to show that

infi, 7]
ol

d (%3 ;) =4a

[min [, i]]
d{#sm)=da  * |
and

min [, 7']]

d(yp y)=dat *

These inequalities are of course satisfied if min {7,;} <k. We
proceed by induction on min {i,j}. Thus we take i,j =k and as-
sume the above incqualities hold for each couple of indices, the
minimum of which is smaller than min {i,;}.

At least one of the following inequalities is verified.

d (%5 ¥;) < ad (%;ps Vi)

a
d (% yy.) < ) d (2,5, %)

d (% y;) < d (yj-r» Yi-s)

T —=+8i

(d (x,;-,., yi—s) e d (xi—s*’ yy'—r"‘)) *

r4+r*¥-g—s*

Together with the induction hypothesis, these inequalities yield:

lmin [i-r, y‘—r]J lk—r-l—min [l',f]]

d (%, y;) < ada K = da k
min [i, j]
é Aa[ Ie ]



— 196 —
(min (i-7, i-s]]

a
d (% ;) <ot Ada %

[Ic- max [r, s[—l—i] [miu [1,_]]}
= Add & = Aa -
min [i-r, i-s] min [%, 7']]

d(x; y;) < %; Aa[ k ’ = Aa[ e

min [t-r, j-s] min [i-8%, j-r¥]

d(xi, yj) < ﬁ (Aa[ e J+ Aa[ k ])

a min [, j] - max |7, s] min [4, §] - max [r*, s*JJ

éQ— (Aa{ K J +Aa[ k

[min[i, 7) — max [r, r*, s, §¥%]
= ada k :

[minti.z)
= dat * I
Similarly one can prove that also d(x;, x;) and d(y; y,) are
smaller than Ag!™in 0,71k
It follows that

d(xn’ yn) :—<_' Aa[f] ?
whence d(x,, y,) = 0.

3. ON a-PRECONTRACTIONS AND 0-CONTRACTIONS.

Turorem 1. Let M be a subspace of the metric spaxe X and
f an a-precontraction of M with a < 1. If some orbital sequence has
a limit point z €X, then all orbital sequences converge to z.

Proof. 1f the orbital sequence {x,};>, of x,, which is Cauchy
by the preceding Lemma, has z as a limit point, then x,—> z. By the
same Lemma, for each orbital sequence {y,}:,, d(x,, v.) =0,
which implies y,— z.

Turorem 2.  Let M be a metric space and f an a-precontraction
with o < 1. If each orbit is either finite or nonclosed, then f has
a unique fixed point and all orbital sequences converge to this point.

Proof. Let x, be an arbitrary point in M. If the orbit of x,
is finite, then its orbital sequence {x,}3, must have a periodic
subsequence {x,},2,,, and since {x,}—, is also Cauchy by the
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Lemma, the period must be one, which yields Ry B, if the orbit
of x, is infinite, then it must be nonclosed, i.e. {x,};>, possesses
a limit point, and since it is also Cauchy, it is convergent. Thus, in
any case, there is 2€ M such that x, —=z.

Suppose now z is not a fixed point of f. We have then both
z7 f(z) and, by Theorem 1, f"(z)— z, which imply that the orbit
of z is infinite and closed. This contradiction proves that f has at
least the fixed point z.

To prove the uniqueness of the fixed point, suppose 2’ is a fixed
point of f. By Theorem 1, the orbital sequence of 2z’ converges to z,
which means z = 7". The proof is achieved.

TueoreEm 3. Suppose M is a subspace of a complete metric
space X and f an a-precontraction in M with o < 1. Then all orbital
sequences converge to the same point of X.

Proof. In view of Theorem 1, it suffices to obtain that some
orbital sequence has a limit point in X. This is the case indeed,
since each orbital sequence is, by the Lemma, Cauchy and there-
fore convergent in X.

Tueorem 4. Let M be a metric space and [ an a-contraction
with o < 1. If some orbital sequence has a limit point z, then z is
a unique fixed point of f and all orbital sequences converge to z.

Proof. First we prove that each orbit is finite or not closed.
Suppose, on the contrary, the orbit of a certain point y is infinite
and closed. By Theorem 1, the orbital sequence of y converges to z.
It follows that z belongs to the orbit of y and all the members of
the orbital sequence of z are distinct. Obviously z,—z, where
2w — ["(2).

Let us consider the (supplementary) inequalities which define
our a-contraction, in the special case of the couple of points z, z,
(n=1). We have at least one of the following inequalities

d (zrn’ Zn+sn) % ‘td (z’ Zn)
d (zrnﬁ Zn+s") <a (d (Z, zTn) 3 d (Z", zﬂ'*‘sg))

d (zr", Znys,) < a(d(2 20y, ) +d (2,5 2,)) »

where r,= r(z,2,), $,=—35(2,2.)
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By taking lim inf, we get on the left side d(z,,, z) for some

n—>o0
ro €M, since r is bounded, and on the right side respectively

0, ad(z, z,,), ad(z,, , z), which implies z=z, , and a contradiction
is found.

Following Theorem 2, f has a unique fixed point 2z’ and all
orbital sequences converge to z’. By Theorem 1 the orbital sequence
of z' converges to z. Hence z— 2" and the theorem is proved.

TueorEM 5. Suppose M is a complete metric space and f an
a-contraction with a < 1. Then f has a unique fixed point and all
orbital sequences converge to this point.

Proof. By Theorem 3, all orbital sequences converge; now the
conclusion follows from Theorem 4.

Any a-pseudocontraction [13], i.e. any function f : M = M such
that for each couple of distinct points x, y €M, at least one of the
following inequalities holds

d(f(x).f(y)) <ad(x, )
d(f (%), f(y)) < ad(x, f(x))
d(f (%), £()) <ad(y, f(y))

d(f(x). /() <% (d @ f()+d(f(*): 7)) »

is also an a-contraction in our sense: choose r(x,y) = r¥(x,y) =1
and s(x,y) = s*(x,y) =0 in the definition of an a-precontraction
and choose r(x,y) =s(x,y) = 1 in the additional part of the defi-
nition of an a-contraction.

Thus Theorem 5 generalizes Theorem 2 in [14] and implicitely
Theorem 2 of Tiberio Bianchini [11], Theorem 1 in [12], Theo-
rem 3 of Reich [8] which coincides with Theorem 1 of Rus [9],
Theorem 2 of Kannan [5] and the classical fixed point theorem
of Banach [1].

Theorem 4 generalizes Theorem 3 in [14] and implicitely
Theorem 2 in [12] and Theorem 1 of Kannan [6].

Since a fortiori an a-pseudocontraction is an a-precontraction,

Theorem 3 generalizes Theorem 4 in [14] and also Theorem 3
ine {127
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If f is such that f” is a-contractive in the classical sense, then
f itself is a | a-contraction: choose r(x,y) = s(x,y)=p (in both
the definitions of an a-precontraction and the rest of the definition
of an a-contraction). Thus the Cacciopoli [3] - Bonsall [2] idea of
replacing f by f” is included in our development.

Finally, Pittnauer’s condition

d(f(x1), f (%)) = @ (d (%, [ () + d (2, [ (3)))

which has to be fulfilled at each triple of points x;, %2, x5 € M implies
that f is acting on couples of points in M x f*(M) a-contractively in
the classical sense, whence f is a } a-contraction: choose r(x,y) =1
for all x,y €EM (respectively r(x,y)=s(x,9)=1) and t=p.
Thus his Satz 4 in [7] is also a corollary of our Theorem 2.

4., ON l-PRECONTRACTIONS.

TueOREM 6. Let M be a metric space and f a continuous 1-pre-
contraction. If some orbital sequence has a limit point z, then z is
a unique fixed point of f.

Proof. Suppose z is a limit point of the orbital sequence
{ %, } oo of %o and put a,= d (%, x,41) (n € 2). Let again

G =10 T 0025 Gpg)

where k£ =t is a common upper bound for r and r*.

First we prove the following « monotony »-property: for each
n =k, there exists [ = k such that a, = a,_;. This is clear if a,= 0.
If a,70, we can see what the eight conditions of the definition of
an a-precontraction say for the couple of points (x,, %,.1) and a==1:

(19 Ay S pa,.,

(29 @5 r—y : (ppt -ty gy)

é y max {a'nAr’ seey an-sul}

(30) Ay < rj s (an-r—i-l +oet an-s)

=y MAX{ Gy op g5, 95, O ) (s>0)
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or
a,< rz (Cpepir + -+ a,)
which implies
PHCES

n r/ 7 (an_,_‘_1 F omckill a)

= Y max {an~r+l’ 220 an—l}

(4°) a, < rﬁ—r"‘;)ﬁ (et o ta, .+ RS SO B
é y max {amin [n-7, n-r*41]2 *= > ama-x [n-s, n—s*—l]} (S = 0)
or
S R R e e By i)
Fear g - © T
which similarly implies
@, < y max {amin [n~r, n-r*4-1]> an-l}
(5°) @y < @y
" 1
(69) Cus (@aor + et @,4)
S ARG, 010 By
1
(79 2% (@pypr + oo+ @)
which yields
G5 DI By 0 @, 1}
1
(89 a,< T (Tpopt oot Oyt o+t )

which implies

/
a, < max \@min [n—r, n-r*41]> ***> an—l} '
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A first consequence of this « monotony »-property is that {a, } s
is bounded : each a, lies in [0, a,]. Now we want to show that this
sequence is convergent. Suppose, on the contrary, b= lim inf q,

n—>o0

an ¢— lim sup a, are distinct. Choose arbitrarily "€ (b, c) and let
i ( } {c kc— b’}
o€ \main N ) ;
, b+ (k—1) c”}
2 k 2

¢’ = max {yc

Then &' =¢ <c¢<¢”. There exists n; €M such that a, <c¢” for
all n=n,. There also exists n,=n;+k—1 with a, <. Let
ny=ns+1. The inequalities (1°)- (4°) obtained above show that
a,, <yc’ = ¢ The inequality (5°) implies a,,< a,, <c’. (6°) implies

g 4 1 ((r— 1) max{a, _, ..., ana_g} +0,,_,)
r

B i

=
r

From (7°) it follows

1
& < % ((r—1)max{a, .\ 1> - Gy_o ) +an 1)

(r—1)c”+b

r

y i

c .

)
lIA

Analogously (8°) implies a,, <.
In a similar way we can also show that a, ; <c: let us treat,
for example, case 6°:

1
(ann+1—r toe A ang)

Cppt1 < :
1
= = (r—=1)max{a, 1 p» o> Cp 9> Cp} + Ay 1)
= (7‘;1)0;1—5 = c .

r
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Further, for each ] < ky, we can similarly prove that A =c.
Now, a second consequence of the « monotony »-property of { B o
1s that a, = ¢’ for all n = n,. But this contradicts the fact that ¢ is
a limit point; thus it is shown that there exists a€ [0, a,| such
that a,— q.

Let {%, )21 be a subsequence of the orbital sequence of x,,

which converges to z. From the continuity of f it follows that for
each [ =/,

xn.-{-l *:’fl(z) 2

Thus, for all these P

et A(fH (), f1H1(2))

On the other hand @p;1; = a, whence
(/@) [ (@) =a (C=k) .

Suppose a 7 0. Then we can apply again the inequalities defining
an a-precontraction to the couple (f*(z), ) dndl 67 e 13
Each of these implies d(f*(z), 2 <a and this contradiction
shows that =0, i.e. 7 is a fixed point of f.

Suppose 2’ is another fixed point of f. Then, by applying any
one of the eight inequalities defining a 1-precontraction in (2,2)
we get a contradiction,

A slight generalization of the preceding theorem is the following

THEOREM 7. Let M be 4 metric space and f a 1-precontraction

which is continuous on f(M) for some t€ m. If some orbital se-
quence has a limit point z, then ; IS @ unique fixed point of f.

Proof. To verify the theorem it suffices to put on the sequence
{xni}f';l in the proof of Theorem 6 the additional condition ny; = ¢

and to remark that z2Ef(M). Then it follows Znps = f1(2) for

each [ = [, like in the mentioned proof.
A special case, in which the use of Theorem 7 is evident, is given
below.
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Turorem 8. Let M be a metric space and f a 1-precontraction
which is continuous on f'(M) for some ¢t € ®. If f'(M) is compact,
then [ has a unique fixed point.

Proof. Remark that f*(M) is closed and each orbital sequence
has a subsequence in f'(M), hence it has a limit point there; now
Theorem 7 can be applied.

A function f : M = M satisfying at each couple of distinct points
%, y EM at least one of the following inequalities

d(/( F) <@ 9)
4(f(3): £ () < dx £()
SR ION <4010

d(f(x), f(5)) < (d (& () +d(f(%): 7))

is also a 1-contraction: choose r(x,y)=r*(x,y)=1 and s(x,y) =
— s*(x,9) =0 (in the definition of a 1-precontraction), and choose
r(%,7) = s(%,y)=1 (in the remaining part of the definition of a
1-contraction).

Thus Theorem 6 generalizes Theorem 5 in [14] and implicitely
Theorem 5 in [12], Theorem 1 of Edelstein [4] and Theorem 1
of Singh [10].

We finally mention that each function f:M—> M satisfying
the inequality

d(f(x0), f () < (0, f7(x5)) +d (x5, 7 (%5))

for all triples x;, %s, x3 €M with x; 7 x, (Pittnauer [7]) is also
a l-contraction: the fifth condition is satisfied for {= p and choose
for the additional part of the definition of a 1-contraction r(x,y) =
s(x,y) = 1. Thus Korollar 5 in [7] follows from our Theorem 8
since if f satisfies the above condition, it is obviously continuous

on f*(M).

Accettato per la pubblicazione su proposta di F. Fava.
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