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At least since 1904 we know about  the existence of singular monotone func- 
tions, i.e. continuous monotone  functions of one real variable with vanishing 
derivative a.e. In that year Lebesgue [7] and Minkowski [8] gave their famous 
examples. In 1910 Faber  [4], in 1916 Sierpinski [10] and then many others 
greatly enriched the variety of known examples. By integrating anyone of these 
functions we get a differentiable convex function with vanishing second derivative 
a.e. Thus we obtain smooth convex curves with vanishing curvature a.e. A very 
beautiful and simple example is due to de R h a m  [3J: Take a convex polygon, 
consider on each side the two points dividing it into three equal parts and take 
the convex polygon with all these division points as vertices. Repeat  the procedure. 
As a limit we get a smooth, strictly convex curve with a.e. vanishing curvature! 

The purpose of this paper  is to show that, in the sense of Baire categories, 
most  convex curves have the above property. More generally, most  convex 
surfaces in IR" have a.e. a vanishing sectional curvature in every tangent direction. 

We start with some definitions. 
By a convex surface we shall always understand a closed convex surface in 

Busemann's  sense (see [11, p. 3). A convex curve is a one-dimensional convex 
surface. 

A point x of a convex surface S is called smooth if S is differentiable at x. 
S is smooth if each of its points is smooth. 

Any half-line in a supporting plane (this is a hyperplane, see [1], p. 4) of 
a convex surface S, originating at a point x ~ S will be called supporting direction 
at x. A supporting direction at a smooth point is called tangent direction. 

The union of a circular with a square 2-cell, such that the radius and centre 
of the circle coincide with the side-length and a vertex of the square, is called 
corner-disk. The two points lying on both the circle and the square are called 
touching points of the corner-disk. A 2-cell having the union of half a circle with 
a segment as boundary is called semidisk. The points of the boundary of a semi- 
disk which are not smooth are called corners of the semidisk. The radius of a 
corner-disk or a semidisk is the radius of the circle appearing in their definitions. 
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Fig. 1 

Let x be a point of a convex curve C. A corner-disk Q with x as touching 
point is called supporting corner-disk of C at x if C c Q. A semidisk D with x as 
corner is called supporting semidisk of C at x if D c conv C. 

Let r be a supporting direction of C at x. The supporting corner-disk Q of 
C at x is said to be T-oriented if the line through r supports Q and r c~ Q = {x}. 
The supporting semidisk D of C at x is said to be T-oriented if the line 2 through 
the corners of D is orthogonal to r and both D and ~ lie in the same closed half- 
plane determined by 2. 

Now let z be a supporting direction of the convex surface S at x, such that 
some normal section S(r) of S along z is a convex curve. S is called T-round at x 
if such an S(v) has both a T-oriented supporting corner-disk and a z-oriented 
supporting semidisk at x. 

If x is a smooth point of the convex surface S and r a tangent direction at x, 
then S(z), which is now unique, is a convex curve; let Pi(r) and ps(v) be the lower 
and upper radii of curvature (see [1], p. 14 for a definition) of S(z) in the direction 
r. In the case of an arc A (convex or not) differentiable and having an osculating 
plane at x, pi(z) and ps(z) will also mean the lower and upper radii of curvature 
of A at x in the tangent direction r. Ifpi(z ) = ps(-c), we also write p(z) for the common 
value. 

The word most will always be used in a space of second Baire category, in the 
sense of "all, except those in a set of first Baire category". 

Klee [-6] and Gruber [-5] showed independently that most convex surfaces 
are smooth and strictly convex. The following theorem completes the description 
of most convex surfaces. 

Theorem l. Most  convex surfaces are smooth and strictly convex, and for each point 
x and tangent direction z at x, pi(r)=0 or p~(r)= oo (or both). 

Proof  Let 5 P be the space of all convex surfaces in IR". With the usual Haus- 
dorff metric, Y is isometric to the subspace ~ "  of all n-dimensional compact 
convex sets in IR" of the space X of all compact convex sets in IR". Since X is 
complete and ,)f - Y "  is nowhere dense in ~ ,  S n and hence 5 p too are of second 
Baire category. We first suppose n > 3. 

Let 5#~ be the family of all surfaces S in 5 ~ that possess at some point x a tan- 
gent hyperplane P and a tangent direction z, such that S(r) has a z-oriented sup- 
porting corner-disk Q of radius n and a T-oriented supporting semidisk D of 
radius n - !  at x. 
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Let So~.Y ~, {Sm}2=1 be a sequence of  surfaces f rom c,~ such that  Sm-~So, 
and xm, Pro, Zm, Q,,, Dm be corresponding points, tangent  hyperplanes,  tangent  
directions, suppor t ing corner-disks, and support ing semidisks, resulting f rom 
the definition of ~ .  By taking if necessary a convenient  subsequence, we can 
arrange that  x~ ~ xo, Pm --' Po and z m ~ z o , where xo~So, Po is a suppor t ing plane 
and zo a suppor t ing direction of  S o at x o. (Since we consider the closure of  
in J ,  So is a nondegenera te  convex surface.) Clearly, the sequences {Qm}2=l 
and {Dm}2=t converge,  the first to a corner-disk Qo of radius n, the second to a 
semidisk of  radius n-~, bo th  lying in a (2-dimensional) plane N O th rough  Zo 
or thogona l  to Po. We consider So(To)= S o c~ N o . 

/ 

Fig. 2 

Suppose D o - cony S o ~=~. Then  we have a point  z in D o and an entire ball B 
a round  z, which does not  meet convS  o. But for some r e > l ,  D,~ meets B and 
convS,~ does not  meet  B. This means that  the inclusion D m c convSm(Tm) does not  
hold, which contradicts  the fact that  D,~, is a support ing semidisk of Sr~(Z,,~) at x~. 
Hence D o c c o n v S  o. Since DocNo, it follows that  Do~convSo(zo). 

Suppose int conv S o c~N o - Q o  + ~ -  Then  we have a point  z' in N o and an 
entire ball B' a round  z' lying in int conv S o - Q o .  Again,  for some m >  1, (2,~ 
does no t  meet B' and cony  Sm(~,n ) meets B'. This means that  the inclusion S,~(zm) 

Qm does not  hold, which contradicts  the fact that  (~m is a support ing corner-  
disk of  Sm(zm) at x m. Hence convSo(zo)-(2ocSo. N o w  it is easily seen that  
So(zo) ~ (20 or conv So(To)c S o (or both). The second inclusion yields the existence 
of a suppor t ing plane of S o including N o . 

In conclusion,  S o is To-round at Xo, or  Po and some hyperplane including N o 
are o r thogona l  suppor t ing planes of  S o at x o. 

Let ~ *  be the family of  all surfaces S in ~ which are T-round for some point  
x ~ S and suppor t ing  direction z at x, or  have two or thogona l  suppor t ing planes 
at some point. We saw that  ~9~c Y*.  

Let (9 be an open set in J .  Let  W be a polytopal  surface in (9. If  the polytopal  
surface V approximates  a hypersphere well enough,  then there is no point  on 
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V with orthogonal  supporting planes through it. For  e > 0  small enough, 
Y= bd cony (W+  e V) still belongs to (9. Y has no point lying on two orthogonal  
supporting planes and, since every normal  planar section is a polygon, is not 
z-round for any point x and supporting direction ~ at x. Thus Y ~ ( 9 - 5  ~*. It  
results that the complement  of 5 P* is dense and therefore 50, nowhere dense in 

Let 5 Pt be the family of all surfaces in ~ which have a smooth point x and 
a tangent direction ~ in x satisfying 

0<p~(~)_-<ps(r)< oo. 

It  is easy to see that these inequalities are verified if and only if the surface is 
~-round at x. Thus 

n- -1  

and 5 P* is of first Baire category in 
Thus, on most  convex surfaces, for every smooth point x and tangent direc- 

tion r at x, pz(~)--0 or ps(~)= or. Combining this with the mentioned result of 
Klee and Gruber,  we get the theorem. 

After having read the proof  for n > 3, the case n = 2 becomes almost trivial. 
Since Meusnier 's theorem holds for arbitrary convex surfaces (see [1], p. 15 

and [2]), we may consider any kind of sections in the next theorem, which follows 
from Theorem 1. 

Theorem 2. On most convex surfaces (which are smooth), in all points where a 
sectional curvature along some tangent direction exists and is finite, hence a.e. 
in all directions, this curvature vanishes. 

On an arbitrary convex surface S, the set E of all points where Euler's theorem 
holds can be strictly included in the set C of those points where a sectional cur- 
vature in every direction exists, but the measure of S -  E is zero ([1], p. 23 and 
[2]). Theorem 2 yields: 

Theorem 3. On most convex surfaces, E =  C and the Dupin indicatrix at x ~ E  is 
the whole tangent hyperplane in x. 

Combining Theorem 1 with Meusnier's theorem we also get: 

Theorem 4. On most convex surfaces (which are smooth) the following happens: 
on each differentiable arc having at every point an osculating plane not lying in 
the tangent hyperplane of  the surface at that point, we have p~(z)= 0 or ps(z)= oo 
(or both) at every point x and tangent direction ~ in x. I f  the curve is planar, then 
p ( z ) = p ( - ~ ) =  oe a.e., where - ' c  is the half-line opposite to "c. 

Before closing the paper, we mention a few other results of the same nature. 
First, we have Gruber 's  result [5] that most  convex surfaces are not of class 
C 2, which follows now immediately from Theorem 2. Schneider [9] proved 
recently that on most convex surfaces there is a dense set of smooth points x 
such that for every tangent direction ~ in x, p~('c) = 0 and p~(~) = oo. Now, it turns 
out that most points of these surfaces are such points x Ell].  On most convex 
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curves there is a dense set F of smooth points, such that p(z)=0 for every x ~ F  
and tangent direction z at x. Also, there is a dense set G of smooth points, such 
that 

0 = p~( 'c) < p~("c) ~- P i (  - -  "c) < Ps(  - -  "c) = oo  

for every x e G  and some tangent direction z at x. There are extensions to higher 
dimensions. These results will be published elsewhere. 
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