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INSCRIBED AND CIRCUMSCRIBED CIRCLES 
TO CONVEX CURVES 

TUDOR ZAMFIRESCU 

ABsTRAcT. A convex planar curve may have 2, 3, . . ., c contact points with its 
inscribed or circumscribed circle. One of these numbers appears in most cases: 3. 

Let e be the space of all closed convex curves in the plane (see [1, p. 3] for a 
precise definition of a closed convex surface, in particular curve). Several patho- 
logical properties of most curves in C (in the sense of Baire categories) are 
described in [4] and [5]. We shall show here that most curves in C( have the 
(expected?) number, 3, of contact points with their inscribed and circumscribed 
circles. It seems that mainly local properties may be pathological for most curves in 
C. 

We say that most elements of a space of second Baire category have a certain 
property if those elements which do not have it form a set of first Baire category. 
Now, e is of second Baire category (see for instance [5]) if we endow it with the 
Hausdorff metric, so it makes sense to speak about most curves in C. 

Let C E C, D be the convex domain with boundary C, Kc the circumscribed 
circle of C, i.e. the smallest circle surrounding D, and kc an inscribed circle of C, 
i.e. a largest circle included in D U C. The circle kc is not unique only if C 
contains parallel segments. Since most curves in e are strictly convex (see [3] or 
[2]), they admit a unique inscribed circle. 

Clearly, card(C n Kc) may be any cardinal number between 2 and c. We prove 

THEOREM 1. For most curves C E C, card(C n Kc) = 3. 

We will use the following elementary Lemma, that we give without proof. 

LEMMA. Let P be a polygon such that P n Kp consists of precisely three points xl, 
X2 X3 determining an acute triangle. Let N1, N2, N3 be neighborhoods of X1, X2, X3. 
Then there is a neighborhood YL of P in C such that, for each C E %, 

CnKcnN,#0 (i=1,2,3) 

and 

C n Kc C N1,U N2 U N3. 

PROOF OF THEOREM 1. We first show that the set C2 of all curves in e satisfying 
card(C n Kc) = 2 is nowhere dense in C. 
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Let e be an open set in C. We choose a polygon P in 0. 
If card(P n Kp) = 2, let x andy be the vertices of P lying on Kp. Let xl, x2 be 

two points such that the segment x1x2 contains x and is orthogonal on xy. Let K' 
be the circle through xl, x2, y. The boundary P' of the convex hull of P U {xl, x2) 
has K' as circumscribed circle. If xl and x2 are close enough to x, P' still lies in (9. 

Obviously 

P' n K' = {XI,X2,y}Y 

If card(P n Kp) > 3, there are three points xl, x2, x3 in P n Kp determining a 
triangle with all angles of measure at most <7/2. By gently cutting all the other 
vertices of P and slightly moving xl if necessary, we obtain a polygon P' still 
belonging to e such that P' n Kp is the vertex-set of an acute triangle. Now, by 
the Lemma, for a neighborhood Dt of P' in C, each curve C E X % meets Kc in at 
least three points. Thus 

e n DL n r2 = 0, 

which proves that 22 is nowhere dense in (B. 
Let C(n) be the set of all curves C in C such that 
(i) card(C n Kc) > 4, and 
(ii) there exist four points xI, x2, X3, X4 E C n Kc such that the side-lengths of 

the convex quadrangle with vertices xl, x2, X3, X4 are at least n1 (n E N). 
We show that (s) is nowhere dense in e. 
Let 0 be an open set in C. We choose like before a polygon P' in ( such that 

P' n Kp, is the vertex-set of an acute triangle. Now let N, be a disk of centre x, and 
radius less than (2n)- 1. By the Lemma, there is a neighborhood S. of P' such that, 
for each curve C E %, 

C n Kc C N1 U N2 U N3, 

and therefore we cannot find 4 points in C n Kc determining a convex quadrangle 
with side-lengths at least n -1. Thus 

0 n % n (n = 0 

and C(n) is nowhere dense in C. 
Let C3 be the set of all curves C E C verifying card(C n Kc) = 3. Every curve 

of C not belonging to (C2 or C3 must be in (n) for some n E N. Thus 
00 

C - C3 = C2 U U C(n), 

where C2 and C(n) (n = 1, 2, 3, . . . ) are nowhere dense; therefore (D-C3 is of first 
Baire category, which proves the theorem. 

Surprisingly enough, the proof of Theorem 2 which follows is so similar to the 
preceding one, that we do not need to give it separately. 

Like in the case of Kc, C n kc may be any cardinal number between 2 and c. 

THEOREM 2. For most curves C E C, card(C n kc) = 3. 
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The above results extend to higher dimensions. Since no technical difficulties 
appear in connection with increased dimension, we choose to present the planar 
case as a typical one. 

Let Sd be the space of all (d-dimensional) closed convex surfaces S in Rd+ . Let 
Ks and ks be the circumscribed and an inscribed hypersphere of S E cd. 

THEOREM 3. For most surfaces S E Sd, 

card(S n Ks) = card(S n ks) = d + 2. 

The proof parallels that of Theorems 1 and 2. 
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