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MOST MONOTONE FUNCTIONS ARE SINGULAR

TUDOR ZAMFIRESCU
Abteilung Mathematik, Universitat Dortmund, Dortmund, West Germany

The history of singular functions, i.e., monotone continuous functions of one real variable
with a.e. vanishing derivative, begins in 1904, when H. Lebesgue [1] and H. Minkowski [2]
produced their well-known examples. Since then many interesting examples have been pub-
lished. One of the most recent is due to L. Takacs [3], who also presents a good bibliography.

The purpose of this note is to present the following result: Most monotone functions are
singular. In fact we shall prove the slightly less easy assertion that most functions of uniformly
bounded variation have an a.e. vanishing derivative. The monotone case can be treated
analogously; therefore a separate proof will not be given. The word most has to be understood in
the sense of all, except those in a set of first Baire category, and will be used only in a space of
second Baire category.

Let C([0, 1]) be the space of continuous real functions on [0, 1] and V(¥") be the family of all
functions in C([0,1]) with variation at most VER. Clearly, V(V) is closed in C([0,1]) and
therefore is a complete metric subspace with respect to the usual supremum-distance. Thus
Y(V) is in itself a space of second Baire category. .

Let £~ and £~ (f;* and f,*) be the left (right) lower and upper Dini derivatives of f:[0, 1]->R.

THEOREM 1. For most functions f € V(V'), we have, at each point x €(0, 1],
Jr(x)=—00 or fT(x)<0<f7(x) or f(x)=0c0;

and, at each point x €[0, 1),
fr(x)=—0 or fH(x)<O<L*(x) or [T (x)=oo.

Proof. Let n€N and let <V, be the family of all functions f €V(V) such that there exists a
point x €[0, 1] for which (i) x—r~!>0 and

n-lg fO)—f(%)

y—x <n (*)

for each point y €(x—n~!,x), or (ii) x+n~! <1 and (*) holds for each point y E(x,x + n=Y.
We show that <V is closed in V(V). Let f,—f with f,,€, and f€V(V). There exists
x,, €[0, 1] with

Jn(P) = fn(¥m)

Y= Xm

n-lg <n (*+)

for each y in (x,,—n~,x,)C[0,1] or each y in (x,,,x,+n~")C[0,1]. We may suppose that x,,
converges to some point x, €[0, 1] and that one of the intervals (x,, — 77", x,,), (X, X, + 7 "), say
the first of these, can be taken for all indices m. (Otherwise consider a subsequence.) Now let
Vo€ (xo—n~",xo). For m large enough, y,E(x,,—n~",x,,) and (=) holds with y =y,. Since f,—f
and x,,—>x,, We get
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n-l< S(¥0) = f(x0)

<n,
Yo~ Xo

which proves f€V.

Now, we show that V(V')—<V is dense in V(V'). Let O be an open set in V(¥), choose f€0,
and let £¢>0 be such that every function at distance at most ¢ from f lies in O. Since f is
uniformly continuous, there is a § >0 such that |x—y| <& implies | f(x)—f(y)| <e. We intro-
duce a partition 0=a,, a,,..., ay, ax,; =1 of [0,1] such that a;<a,,, and a,,, —a, <é(i=
0,..., k). If f(a;)5f(a;+1), let b; €E(a;, a;4,) be such that

f(a+1) —f(a)

b—a; >

otherwise let b;=a;,. We construct a continuous function g:[0,1]->R in the following way:
the restriction of g to [g;,q;,,] is linear from g; to b; and constant on the rest, g(a)=f(a;)
and g(b)=g(a,+1)=fa;+1) (i=0,...,k). Clearly, the distance from f to g does not exceed &
and the variation of g is not greater than that of f. Also, g&V, by construction. Thus
gE(V(V)=V)NO.
Now, since V, is closed and has a dense complement, it is nowhere dense in V(¥).
Let V* be the family of those functions f € V(¥) for which, at some point x €(0, 1],
S (x)>—o0 and f(x)<0
or
7 (x)>0 and f(x)<oo,
or, at some point x €[0, 1),
ff(x)>—-0 and f*(x)<0
or
T (x)>0 and f*(x)<oo.
It is easily seen that each f € V* belongs to V, for a certain n EN. We have

V= U s
n=1

hence V* is of first Baire category and the theorem follows.
Now, if f& V*, then, for every point x €[0, 1], either f is not differentiable at x, or f'(x)=0.
Since f is differentiable a.e., we have the following:

THEOREM 2. For most functions f € V(V), f'=0 a.e..

With the topology derived from the supremum-metric, we can say nothing similar about the
whole space V of functions of bounded variation from C([0, 1]), because

oo
V=U V(n)
n=1
and each V(n) is nowhere dense in V’; hence V is of the first category itself.
However, we can consider the space 9L of all functions in ([0, 1]) that are increasing. Here,
without any restriction on the variation, 9 is closed in C([0,1]), hence is of second Baire
category in itself. In a similar way as for Theorem 1 we can prove:

THEOREM 3. For most functions f €O, we have, at each point x €(0, 1],
fr0)=0 o f(x)=c0,
and, at each point x €[0, 1),
fF(x)=0 or f*(x)=oo.
Since every function f €9 is differentiable a.e., the following holds.
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THEOREM 4. For most functions f €M, f'=0 a.e.

Analogous phenomena happen for first-order Lipschitz maps. We consider those functions
fFE€C([0,1]) for which
2w ST _ g
y—x
for all pairs of distinct points x,y in [0, 1], « and B being fixed real numbers (a <f). Let V g be

the family of all such functions; obviously V, o CV (max{|al,|B]}). V, z is of the second
category. We get analogously:

THEOREM 5. For most functions f€ Y, p» we have, at each point x €(0,1],
fr(x)=a or f7(x)=8,
and, at each point x €[0,1),
frx)=a or f*(x)=B.
THEOREM 6. For most functions f€ Y, g the set

f/—l(a)uf/—l(ﬁ)

.has measure 1.
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AN ALGORITHM-INSPIRED PROOF OF THE SPECTRAL THEOREM IN E”

HERBERT S. WILF
Department of Mathe;natics, University of Pennsylvania, Philadelphia, PA 19104

THROREM. If A is a real symmetric matrix, there is a real orthogonal matrix Q such that QTAQ
is diagonal.

Of course, this is the spectral theorem. It implies that the eigenvalues are real, that there is a
pairwise orthogonal complete set of eigenvectors—namely, the columns of Q—and that the
dimension of an eigenspace is equal to the algebraic multiplicity of the eigenvalue.

Many proofs grapple with the question of finding enough independent eigenvectors for a
multiple eigenvalue, usually one at a time. We shall find the whole matrix Q at once by using the
main idea of Jacobi’s numerical method for calculating the eigenvalues and vectors, together
with a little compactness.

For an nX n real matrix A we shall use Od(A4) for the sum of the squares of the off-diagonal
elements of A4, and O(n) will denote the set (group) of nX n orthogonal matrices.

Suppose we can prove the following.

LeMMA. If A is a nondiagonal real symmetric matrix, then there is a real orthogonal matrix J
such that Od(JTAJ) < Od(A4).

Then the theorem would follow quickly, for let A be real and symmetric. Consider the mapping f
that sends an orthogonal matrix P into f(P)=PTAP. For fixed A this is a continuous mapping
of O(n), a compact set, and so f(O(n)) is compact. Let f(Q)=D be a point at which the
continuous function Od attains its minimum value on the image set of f. This value must be
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