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This paper is about abnormal convex surfaces and their equally abnormal  
geodesics. We do not feel ashamed of studying them because, in the sense of 
Baire categories, most convex surfaces are abnormal!  Thus, in fact, they should 
be considered normal and vice-versa. 

By a convex surface we always mean a closed one (see Busemann [2], p. 3), 
by a segment a shortest path on the surface ([2], p. 75), by a geodesic a curve 
which is locally a segment (see for a precise definition [2], p. 77). 

In spaces of second Baire category, we use the words most and typical in 
the sense of "all, except those in a set of first Baire category". The space of all 
convex surfaces in IR", endowed with Hausdorfl 's metric, is a Baire space. We 
shall see how abnormal convex surfaces may be, by proving that most of them 
are so. 

Results 

Since any two points of a convex surface are joined by at least one segment, 
the union of all segments equals the surface. A point of a segment different 
from its two endpoints will briefly be called interior. Is each point of a surface 
an interior point'? The answer is easy for non-smooth surfaces: no conical 
point is (for any segment) an interior point ([1], p. 155). Points which are not for 
any segment interior will be called endpoints. They are, of course, endpoints of 
lots of geodesics. Smooth surfaces with an endpoint are also known ([1], p. 58- 
59). But, for each convex surface of class C 2, every point is an interior point of 
a segment in each tangent direction. More generally, this happens at a point x 
if the lower indicatrix at every point y in some neighbourhood of x does not 
contain y as a boundary point (Busemann [2], p. 92). Clearly, the set of all 
interior points is uncountable and dense, for an arbitrary convex surface. 

Thus, it seems that, usually, convex surfaces must have many interior points. 
But let us look more closely at a typical convex surface: it is of class C 1, but 

* Dedicated to Th. Hangan 

0020-9910/82/0069/0253/$01.00 



2 5 4  T .  Z a m f i r e s c u  

not of class C 2 (Klee [4], Gruber  [3]) and at most points the lower indicatrix 
reduces to a point ([5], Theorem 2); thus, it becomes doubtful whether those 
points are all interior. In fact, we establish the following result. 

Theorem 1. On most convex surfaces, most points are endpoints. 

It is known that in a certain tangent direction at a point of a convex sur- 
face may not start any segment. Such a tangent direction is called by Aleksan- 
drov singular. He shows that there are smooth convex surfaces with a dense set 
of singular tangent directions at a certain point ([1], p. 59). Also, non-smooth 
convex surfaces all points of which are of this kind do exist: take any convex 
surface with a dense set of conical points (see [1], p. 60). But, again, at any 
point of a C2-surface or with the above indicatrix condition, a segment starts 
in each tangent direction. And for an arbitrary convex surface, at each point, 
the set of singular tangent directions has measure zero, as Aleksandrov proved 
([1], p. 213). However we get the following theorem; it is given only in 1lt 3, 
because of the essential use of Aleksandrov's concepts and results. 

Theorem 2. On most convex surfaces, at each point, most tangent directions are 
singular. 

A circle (disk) on a convex surface is the set of all points at intrinsic 
distance equal to (less than or equal to) a certain positive number from a fixed 
point of the surface. A circle which is a closed Jordan curve will be called a 
Jordan circle. 

It is known that a Jordan circle may possess vertices, i.e. points where the 
circle is not smooth (see [1], p. 61, though our definition slightly differs from 
Aleksandrov's). 

Corollary. On most convex surfaces no circular arc is smooth. Thus, every Jordan 
circle has infinitely (densely, countably) many vertices. 

Proofs 

Proof  of  Theorem 1. Let S(C) be the set of all interior points of C ~ ,  cg being 
the space of all convex surfaces. We have 

S(C)= 0 S,(C), 
n = l  

where 
s.(c)= U t(s), 

2 ( s )  > n - l 

t(s) denotes the closed middle third and 2(s) the length of the segment s. 
Let 

~4={C6Cg: S(C) is of 2nd category}, 

d , = { C 6 ~ ' :  S,(C) is not nowhere dense}, 

d , ,  m = {C6Cg: 3disk D c C of radius m -1 with S,(C) = D}. 
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Since 

n=l m--1 

we are ready if it is proved that  ~ , , , ,  is nowhere  dense; this is provided by the 
following lemma.  

Lemma.  ~ is nowhere dense. 

Proof Let (5 be an open set in ~r Consider  a polytopal  surface Pe(5. By adding 
if necessary new vertices near the faces of P, we get a new polytopal  surface 
P'e(5 such that  each disk of radius m -1 on P'  contains a vertex v of P'. As a 
conical point,  vr The set S,(P') is compact .  Indeed, let yieS,(P') converge 
to some point  y. Each Yi lies on t(si) for some segment  s~= P'  with 2(s~)>n -1. 
By taking a subsequence if necessary, we may  assume that  {si}~l converges to 
a curve s, i.e. there are paramet r iza t ions  x~(t) of s~ and x(t) of s, where c~<t<[3, 
such that  xi(t)---,x(t) for every t (see Busemann  [2], (10. 5')). Then  s is a 
segment  with )o(s)~n 1 (use Busemann [2], (10. 5) and (11. 3)). The same 
theorems of [2] imply yet(s); hence S,(P') is closed. Thus, there exists a ball 
O~,=IR" with centre v such that  (9,,c~S,(P')=O. We claim that  there is an open 
ne ighbourhood  6"~ of P '  included in (5, such that, for all Q~(5~,, 

o,,~s,(Q)=O. 

To prove  that  this can be assured, suppose there is a sequence {Q~}/~I converg-  
ing to P '  such that  O,,~S,(Q~)+~ for all i's. Then there is a sequence of 
segments  s~=Q~ such that  O,,~ t(si)+O for all i's. By taking again a subsequence 
if necessary, we may  assume that  {si}/21 converges to a curve s (see [2], 
(10. 5')), which is a segment,  and t(si)~t(s ) (use [2], (10. 5) and (11. 3)), whence 
(9,, c~ t(s) + ~, which is impossible. 

Now let V(P') be the set of  vertices of P '  and 

(5"= N 
veV(P') 

There exists a new ne ighbourbood  ( 5 ' " = U '  of P '  such that, for each C~(U" and 
every disk D of radius m -1 on C, int D meetsu{O,, :  v~V(P')}. For, otherwise, 
we find a sequence {Ti}i~ l converging to P' and disks D i = T  i of  radius m -~, 
such that  int D~c~O,=O for every v; this implies that  for any limit disk DcP',  

D r 0~,=0 

for every v, in contradic t ion with the construct ion of P'. 
Thus, since O,,~S,(Q)=O for any Qe(5'" and v~V(P'), 

and ~ , , , ,  is nowhere  dense. 

Proof of Theorem 2. Let G x be the set of directions of  segments  start ing in x. 
Let 

~ =  {Ce(g: 3xEC with G~ of 2nd category}, 

~ , = { C e ( g :  3xeC and angle A at x with Gx,,_,~A}, 
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where Gx, p is the set of directions of the segments xy  with 2(xy)>p, at x, 

.... ={Ce~g: 3xeC and angle A at x with # (A)=m -1 and Gx. . I=A},  

where/~ means measure of angles. Then 

n = l  m = l  

and we only have to prove that ~,, , ,  is nowhere dense. In view of the Lemma, 
the set s~ck, , is nowhere dense for arbitrary k and r; thus it suffices to show that 

for suitable k and r. 
Let Ce~ , ,  m. Consider the point x and the angle A from the definition of 

N',,,,. For  k>=n large enough, the circle with centre x and radius k -1 on C is a 
Jordan circle (see [1], p. 383). Suppose in the circular sector A = xz z '  composed 
by the segments xz, xz' and the arc zz' of the above Jordan circle, satisfying 

;~(x z) = 2(x z') = k-  1, 

~ z x z ' = A ,  

there is a point p not lying on any segment xy  with y on the circular arc zz' of 
the boundary of A. Then there exists a point Y0 on zz' admitting (at least) two 
segments from x to Y0 (see [1], p. 58). The angle between them at x is not zero 
(see [1], p. 131), whence the direction of no segment of length n-1 starting at x 
lies in that angle, which contradicts C~N,,,, .  Thus, all points of A are on 
segments xy. Take a point p on a segment xz" with z" between z and z' on the 
arczz ' ,  such that 2(xp)=(2k) -1, and a disk D around p of radius r 1<(6k)-1,  
contained in A. Then Sk(C ) includes D and therefore C~r r. The theorem is 
proved. 

Proof of the Corollary. In every circular sector xzz '  there is a singular direc- 
tion at x. Thus, there is a point Y0 between z and z' on the circular arc zz' 
admitting at least two segments from x to Yo. Consider those two which 
produce the maximal angle. Since these are orthogonal to the two arcs yo z and 
yo z' in Yo ([1], p. 381), the arc zz' is not smooth at Yo- 

Open Problems 

Several problems arise naturally in connection with this topic. We select two of 
them, which are very easy to state. The first one is suggested by some examples 
of " smooth"  endpoints. 

1. Is each point with infinite sectional curvature in every tangent direction 
an endpoint? 

Even stronger: 

2. Is each point with the lower indicatrix reduced to a point an endpoint? 
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An  a f f i rmat ive  a n s w e r  to  the  s e c o n d  q u e s t i o n  w o u l d  p e r m i t  us to d e d u c e  

T h e o r e m  1 d i rec t ly  f r o m  T h e o r e m  2 in [5] .  

Thanks are due to the referee for several competent remarks. 
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