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1. Introduction 

We consider here spreads in the sense of Griinbaum (see [3, 41). Let C be a 
closed Jordan curve in the plane, Dc the simply connected domain bounded by 
C, and x H - x a continuous fixpoint free involution on C. A family 2 of Jordan 
arcs (called curues) is said to be a spread provided: 

(i) for each x E C there is one curve L ( x ) E  2 joining x with -x  

(ii) inn r C Dc for each r E 2 (inn r means r minus its endpoints); 
(iii) r, n T2 is a single point for each pair of distinct curves rl, 
(iv) L :  C+ 2 is continuous, the topology of 2 being that induced by the 

Let CA be the family of all connected conponents of A, and let 

( L ( x ) = L ( - x ) ) ;  

E 2; 

Hausdorff metric in the space of compact plane sets. 

M, = {x E Dc: card{r E 2: x E r} 2 a } ,  

P, ={x E D c :  c a r d c { r € z : x  E r p a a ) ,  
T, = { x  E Dc: card{r E 2: x E r} = (Y 1. 

Watson [8] proved that there exist spreads for which M,, = Dc, whence 
T ,  = 0. However, in [ 101 it is proved that, for spreads satisfying certain additional 
continuity conditions, the boundary of M2 is a closed Jordan curve different from 
C. Then int T1 # 0. Such a spread is, for example, that of area bisectors of a 
planar convex body. Also, it is known that for every straight spread (i.e. a spread 
the curves of which are line-segments) TI # 81 [8, 121. What, in general, does TI  
look like for straight spreads? Can M2 be dense in Dc ? Can even M,, be dense 
in Dc ? The last two questions will be answered in this paper. 

The word most will always be used in the sense of those in a residual set, or all, 
except those in a set of first Baire category. 

The following result on general spreads will be used below. 

Proposition 1. If P ,  is dense in Dc, then M,, is residual in Dc. 

Proof. Let 0 C Dc be an open set and p E 0 n P,,. Since p E Pr, (n  E N ) ,  by 
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Corollary 4 in [113 (see also Theorem 2 of [9]), p E int Mzn+l, which shows that 
there is an open set 

0' c M?"+* n o c M. n 0. 

Thus, cMn is nowhere dense in D, and 

Chl,=Cnm= UCMn 
" n 

is of first Baire category. The proof is complete. 

If C is a planar, smooth (differentiable), strictly convex curve, then the family 
of all diameters (i.e. chords admitting parallel tangent lines at their endpoints) of 
C constitutes a spread. In the rest of the paper we shall study (and, without 
contrary mention, always consider) spreads of diameters. The main attention will 
be focused on the strange properties that M,,, may have. 

Consider such a curve C and let x, y E C, y # ? x. Let d(xy ,  z )  denote the 
distance from L ( x )  n L ( y )  to z and put 

where y converges to x from the left. y; (x ) ,  r t (x) ,  and y : ( x )  are defined 
analogously. The following technical lemma, proved elsewhere, will be useful. 

Lemma 1 [ 141. Suppose C includes an arc B of a circle and let x E C be such that 
- - x  EinnB. Then 

(For a definition of the left radius of curvature p - ( x )  and left lower and upper 
radii of curvature p ; ( x )  and p ;(x) - and analogously of the right ones - see for 
instance 111.) 

We denote by % the space of all smooth, strictly convex curves in the plane. 
By results proved independently by Klee [6] and Gruber [2 ] ,  % is residual in the 
Baire space of all convex curves of the plane, the topology being again induced 
by the Hausdorff metric. 

The rest of the paper is organized as follows. In the next section we present an 
example for which Mx,, is residual and null-swept (the definition follows in 
Section 2). Then we investigate, for most convex curves (and always the spread 
of diameters), the set M*, from Baire categories' point of view. Finally, we prove 
some connectivity properties of M,,, for most convex curves. 
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2. MM, can be residual and null-swept 

Let p be the Lebesgue measure in the plane and A the (one-dimensional) 
Hausdorff measure on convex curves. 

For C E %, we say that a set V C Dc is null-swept if there is H C C with 
A (H) = 0 such that V C UxEHL(x). 

Following Hammer and Sobczyk [5] ,  a turning point is a limit point of 
L ( x )  fl L ( y )  for y -+ x. Let U be the set of all turning points in Dc. It is easy to 
see that U may consist of finitely many points, but may also not be null-swept 
(see, for instance, the outwardly simple line family constructed at the end of (51). 
We have MM,C U [5]. 

Theorem 1. There exist curves in % such that MM, and U are simultaneously 
residual and null -swept. 

Proof. By Theorem 2 in [13] and the Theorem in [7], most convex curves B E %? 
have the property that: 

(i) at  each point x of a set F C B with A (B - F) = 0 of curvature exists and 
vanishes; and 

(ii) at each point y of a dense set E C B the lower and upper radii of 
curvature (from left) satisfy 

p;(y ) = 0 and p;(y) = m. 

Take such a curve B, an arc A C B at the endpoints of which the tangent lines 
are parallel, and a semicircle S such that A U S is a convex curve C. First, we 
show that, in Dc, M*, is residual. Since, for every x in inn A n E, yn (x) = 0 and 
y ; ( x )  = m, it follows from Lemma 1 that all points of L ( x )  are limit points of 
L ( y )  n L ( x )  for y + x from the left. Thus, inn L ( x )  C I'M,, whence Pn, is dense 
in Dc. By Proposition 1, MM, is residual in Dc. 

Secondly, we prove that 

U c u L(x), 
x E H  

where H = A - E Let p E U. Clearly, p is a limit point of L(y ) r l  L ( x )  for some 
point x E A and y + x from left or from right, say from left. Then x E F, since 
for each z E F the intersection L ( u )  rl L ( z )  converges to - z when u -+ z .  
Hence, p E u X G H L ( x )  and the theorem is proved. 

Hammer and Sobczyk [5] have shown that for every straight spread p(MM,) = 
0. Also, simple examples show that MM,, even M4, may be empty, but the 
preceding example showed that M N ,  can also be residual. What does M,,, look 
like for most convex curves? The answer is given in the next section. 
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3. In most cases M,,,, is residual 

Let gn be the set of all curves C in %' having an arc A of length n - '  such that, 
for each x E inn A, there is an endpoint e of L ( x )  and a component A * of 
A - { x }  such that, for every y € A * ,  d ( x y , e ) s  n-' ( n  E N ) .  

Lemma 2. %,, is closed in %, 

Proof. Let {C,}:=, be a sequence of curves in %" converging to a curve C E %'. By 
choosing, if necessary, a subsequence, we arrange that the corresponding 
sequence of arcs {A,}:=, converges to some arc A of length n - I  on C. Let x be a 
point of inn A.  We can choose x, E A, such that x,  + x .  The corresponding 
endpoints e, coincide with x,  or with - x ,  for infinitely many indices i ,  say with 
x,.  Then we choose e = x. In the same way we may suppose that the sequence of 
the corresponding components AT converges to some component A* of 
A - { x } .  Suppose now there is a point y E A * with d(xy ,  x )  < 6'. We choose 
y,  E AT such that y ,  + y .  For i large enough, the Hausdorff distance from L ( x , )  
to L ( x )  and from L ( y , )  to L ( y )  are so small, that d ( x , y , , x , ) <  n-I, which is a 
contradiction. 

Lemma 3. %,, is nowhere dense in %. 

Proof. It is well known that an arbitrary curve C E 'G: can be approximated as 
well as we like by a polygon. We can replace the sides of the polygon by arcs of 
very large circles and the vertices of the polygon by arcs of very small circles, the 
resulting curve, C' E %. still remaining near enough to C. On the other hand, C 
can be approximated well enough by a curve C"E% with p ' ( x ) = O  and 
p : ( x ) = =  on a dense set E of points x E C" [7]. It is an easy matter now to 
construct a smooth convex curve C* such that on one side of a certain diameter 
of C*, C* coincides with half a curve C' and on the other side with half a curve 
C". Since 

p t ( x )  = 0 ,  pf(x) = =, 

for every point x E C* n E, by Lemma 1 all points of L ( x )  are limit points of 
L ( y )  n L ( x )  for y + x from left as well as from right. It follows that C* !Z V. 
Hence, % - Vn is dense in % and, by Lemma 2, Ce. is nowhere dense in %. 

Proposition 2. For most curves C E % the following holds : For every arc A on C 
and every number E > 0 ,  there exists a point x E i n n A  such that, for any 
component A *  of A - { x } ,  there are y , y ' E A *  verifying d ( x y , x ) <  E and 
d ( x y ' ,  - x )  < E .  



Intersecting diameters in convex bodies 315 

Proof. Let %'* be the set of those curves of %' enjoying the property of the 
statement. It is easily checked that 

% ' - % * =  u 5%; 
, = I  

hence %' - %'* is, by Lemma 3, of first Baire category, which proves Proposition 
2. 

Theorem 2. For most convex curves C, most points of Dc belong to infinitely many 
diameters. 

Proof. Let C be a curve enjoying the property of Proposition 2. Put 

E ={x  EC: innL(x)CP.,}. 

We show that E is dense on C. Let A. be an arc on C; we find x 1  E inn A. and 
yl,yjEinnAoonthesamesideof xlsuchthat d ( x l y l , x l ) < l  andd(x,y;, - - x I ) <  
1. We construct the sequences {x,}:='~ { Y , } Z = ~ ,  { Y A } : = ~  inductively as follows. By 
continuity, there is an arc A, C A,-1 containing x, in its interior, such that for all 
x €A,,  d(xy,,x)< n-' and d(xyA, - x ) <  n-'. Again, we can find a point 
xn+' E A. separating x, from y ,  and y A ,  and two points yn+t,  yL+, E A, separat- 
ing from y ,  and yL such that d(~ ,+lyn+l ,xn+l)<(n  +1)-' and 
d (xntlyLt1, - x,+~) < ( n  + l)-'. It is equally guaranteed that d(~ ,+~y, , , ,  xntl) < m-' 
and d(xficlyA7 - x,+~) < m-' for all m S n. 

The sequence { x , , } ~ = ~  converges to some point x € A verifying: 

d(xy, ,x)< n-' and d(xyA, - x ) <  n-', 

for every n E N. Also, y A lies between y.-] and Y , + ~ ,  and y ,  lies between y L ,  and 
y.'+,. Thus, it is clear that innL(x)C Pn, and that E is dense on C. Then P., is 
dense in Dc and the theorem follows from Proposition 1. 

4. In most cases M., is connected 

Simple examples show that, for every cardinal number a > 3, M, may be 
disconnected, and this seems to be the rule. That - from the point of view of 
Baire categories - this is not the case, will prove the next result. 

Theorem 3. For most convex curves, the components of TI are line-segments 
(without one or both endpoints), M2 - M,, is totally disconnected, and M, is 
connected for every a S No. 
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Proof. Let p E T,  and x E C with p E L ( x ) .  Clearly, either innxp or inn - xp 
lies in TI. Say inn xp C TI. There is a maximal line-segment S ending in x such 
that inn S C TI. We show that inn S plus, possibly, the endpoint of S different 
from x is, for most CE%, the component K of TI containing p. Suppose 
q f K - S. Since, for most convex curves, the set E considered in the proof of 
Theorem 2 is dense on C, there exists y E E such that L ( y )  separates p from q. 
Since inn L ( y )  C M,, q$Z K, a contradiction. 

To see that M2 - M,,, is totally disconnected, let s E M2 - M,, and let B be a 
disk around s. We consider x, y E C such that L(x) rl L ( y )  = {s}. We use again 
the above set E and see that there are four points, x', x", y', and y "  in E, such 
that s lies within a quadrangle Q C B, with sides on L(x'), L(x"), L(y ' ) ,  and 
L (y "). Since the sides of Q lie in M,, the component of M2 - M,, containing s is 
a subset of B. 

Finally, we show that M ,  is connected for every a GNo. Let 

2 = U innL(x). 
S E E  

Clearly, Z is arcwise connected (even an Lz(9)-set in the terminology of [9, 
Section 31). Since Z is dense in Dc and 2 C MM,C M,, the assertion follows. 
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