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Typical monotone continuous functions

By

TUDOR ZAMFIRESCU

It is usual to say that a “typical” element of some Baire space has a certain property
if the set of those elements which do not enjoy that property is of first Baire category.
Then we also say that “most” elements have the property.

A rather complete description of typical real continuous functions of one real variable
is known (see for example Bruckner [2]). For instance, it is known that they have no finite
unilateral derivative at any point (Banach [1], Mazurkiewicz [4]), have no infinite deriva-
tive at any point (Jarnik [3]), but have an infinite unilateral derivative at uncountably
many points (Saks [6]). In this paper we find properties in the same spirit of typical
monotone continuous functions.

Let I = [0, 1]. It is well-known that the space % of all continuous functions f:1 - R,
endowed with the usual distance

sup|f(x) — g (x)|

xel

between f, g %, is a Baire space. Also the subspace .# < % of all increasing functions in
% is a Baire space.

For any function fe €, let f; be the lower, f, the upper, f; the left lower, £ the left
upper, f; the right lower and f; the right upper Dini derivative of f.
We recall the following results.

Theorem A (Jarnik [3]). For a typical function fe €, at each point xel,
fix)=—o0 and fi(x)= oo.

Theorem B (Banach [1]). For a typical function fe %, at each point x(0, 1],
fix=—-o or fJ(x)=o0
and, at each point x€[0, 1),

fi=—o o fI(x)=c0.

Theorem C [7]. For a typical function fe #, at each point x (0, 1],
Jr)=0 or fi(x)=o0
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and, at each point x€[0, 1),
[ =0 or fJ(x)=c0.

This theorem has the following immediate consequences.

Corollary A [7). For a typical function fe .4,
f =0 ae

Corollary B. For a typical function fe 4,
J'(x) =0
at densely, uncountably many points x e l.

Proof. Since f is strictly increasing, there exists £~ which, being monotone, is
differentiable a.e. But f has in no point of I a finite derivative different from zero, by
Theorem C. Hence (f 1)’ = 0 a.e., whence f'(x) = oo at densely, uncountably many
points xe I

Notice that Corollary B also follows from Corollary A, because each strictly increasing
function fe.# with f* = 0 a.e. satisfies f'(x) = oo at densely, uncountably many points
x (see the proof of Theorem 2 in [§]).

A function fe ¥ is called nonangular if

fr =f5 and fP<f].
The following result is known (Theorem 2.3 in [2)).

Theorem D. A typical function in € is nonangular.

We constatate that precisely the same is true for monotone continuous functions.

Theorem 1. A typical function in 4 is nonangular.
Since the proof parallels that of Theorem D, we omit it.

There is a far reaching analogy between the properties of typical continuous and those
of typical monotone continuous functions. This is already evident by comparing Banach’s
Theorem B with Theorem C and Theorem D with Theorem 1. Corollary B may be
considered as a monotone pendant of Saks’ theorem. However, it seems that Corollary
A has no corresponding result for continuous functions and Jarnik’s Theorem A seems
to have no proper monotone analog.

Theorem 2. For a typical function fe €,
fix)=fif(®x)=—-w

and
fo @) =1 )=00

at most points xel.
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Proof. Neugebauer [5] proved that, for any function ge ¥,

gi =g/ (x) and g, (x) =g, (%)

at most points x € I. Now, Jarnik’s Theorem A yields the theorem.
Since the above argument uses Jarnik’s result, the question arises whether there is a
monotone analog for Theorem 2. Our main result answers affirmatively this question.

Theorem 3. For a typical function fe 4,
fr =)=

f3 =10 =

at most points xel.

and

Proof. Let fe# and
A={xe(©1):ff(x)=0 and f(x)= ook
For x&(0, 1), put

1. (x)_iggf();) f(X)’ 2 ():y>£f(J;) £(X)

We see that
={xe@,1):f_(x)=0 and f,(x)= o0}

Let & be the family of all functions fe # such that A is not residual. Consider fe &#
and write

={xe©,1):f_(x)<n" ! and f,(x)>nkh

Obviously x,, — x and [, (x,) < n imply f,(x) <n, and x,,—x and f_(x,)=n"!
imply f_ (x) 2 n~ 1. Therefore, for x,, — X,

f+x)Sn or fo(x)zn"! (melN)
implies
f+x)En or fo(x)znh

Hence I — A, is closed. Since
A= 61 4,

is not residual,
I—-A4= QI(I—A,,)

is of second category, whence I — A, is not nowhere dense for some neN. Thus, I — 4,
includes an interval.
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Let %, , be the set of all functions fe# such that I — A, includes, for some index n,
an interval of length m~* (m, n€ N). One verifies by routine arguments that %, , is closed.
Let us prove that 4 — %, , is dense: One can approximate any function fe.# by
piecewise linear, strictly increasing functions g : I — IR. By replacing appropriately linear
restrictions g |, » of g (with b — a < m™!) by increasing functions & : [a, b] — R, defined
such that

ha) =g, hb)=g(D),
hi(@)=0,  hi(a)= oo,

with max|h — g| ([a, b]) small enough, we find functions in .# — %, , approximating f.
Now it is shown that %, , is nowhere dense and

of first category.
Hence, for typical fe.#, A is residual; analogously

B={xe(0,1):ff (x)=0 and f, (x)= o0}

is residual too, which shows that 4 n B is residual.

Hence, contrary to the measure-theoretical point of view (Lebesgue’s theorem), we have
the following

Corollary 1. A typical function fe . # is not differentiable at most points of 1.

For the last two results we need the following simple

Lemma. Let —w fa< f < 0. Iffe¥ and
fi®=a fi)=8

at a dense set of points x, then, for each ke(a, B), there are two dense sets A, and B, such
that

fe@sksfix)
for xe A, and

[SSk=f7 (%)
for xe B,.

Proof. We prove the existence of B,. Let ze 1. There is a point x &[0, 1) as close to
z as we want such that

fi+(x):a7 fs+(x):ﬂ'
Leta < a < k <b < . We can choose x,, x, arbitrarily close to x such that x < x; < x,

and
flx) —fx) a Sxy) —f(x)

Xy — X X, — X

IIA
v

b.
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Then there exists x; €(x,, x,) such that

o)1) _

X3 — X

Let y be an absolute maximum of g|, ..;, where
g(e)=f(t) —kt.

Obviously,
g Mz0, ¢ M=0,

whence
fimzk ff=sk

The existence of A4, is verified similarly.

Theorem 4. For a typical function fe € and any ke R, there exist two dense sets A, and
B, such that

fr®=—ow, fi)=ffx)=k f/()=0
Jor xe A, and

fi¥)=—ow, [fFf)=fix)=k fil)=w
for xe B,.

Proof. By Theorem 2 and by the Lemma with« = — oo, § = o0, for each k€ R there
exist dense sets A4, B such that

fe)Sk<f ()
for x € A; and
fS)SkSfi ()
for x € B;. Now, using Theorem B and Theorem D, it is evident that the equalities of the

theorem hold.

Theorem 5. For a typical function fe M and any k > 0, there exist two dense sets A, and
B, such that

[f)=0 fix=ffx=k fi()=0w
Jor xe A, and

ff=0 fi)=fi®=k fJx)=o00
for xeB,.

Proof. The argument parallels the preceding one and uses Theorem 3, the Lemma
with & = 0, f = oo, Theorem C and Theorem 1.

Concluding, we remark that the Dini derivatives of a typical monotone continuous
function are exactly determined at almost all points, at most points, and at some other
dense sets of points.
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