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Typical monotone continuous functions 

By 

TUDOR ZAMFIRESCU 

It  is usual to say that a "typical" element of some Baire space has a certain property 
if the set of those elements which do not enjoy that proper ty  is of first Baire category. 
Then we also say that  "most"  elements have the property. 

A rather complete description of typical real continuous functions of one real variable 
is known (see for example Bruckner [2]). For  instance, it is known that they have no finite 
unilateral derivative at any point (Banach [1], Mazurkiewicz [4]), have no infinite deriva- 
tive at any point (Jarnik [3]), but have an infinite unilateral derivative at uncountably 
many  points (Saks [6]). In this paper  we find properties in the same spirit of typical 
monotone  continuous functions. 

Let I = [0, 1]. It  is well-known that  the space ~g of all continuous functions f :  I ~ N, 
endowed with the usual distance 

sup If(x) - g (x) l 

b e tween f  9 ~ cs is a Baire space. Also the subspace ~ c c~ of all increasing functions in 
cg is a Baire space. 

For  any function f ~  cg, let f'i be the lower, f's the upper, f l  the left lower, f j  the left 
upper, f +  the right lower and f~+ the right upper Dini derivative o f f  

We recall the following results. 

Theorem A (Jarnik 130. For a typical function f ~ cg, at each point  x ~ 1, 

f ' i ( x ) =  - ~ and f ' s ( x ) =  ~ .  

Theorem B (Banach 11]). F o r  a typical function f ~ oK, at each point  x ~ (0, 1], 

f Z  ( x ) =  - ~ or f j  (x) = 

and, at each point x ~ [0, 1), 

f +  (x) = - ~ or f +  ( x ) =  ~ .  

Theorem C 171. For a typical funct ion f ~ d l ,  at each point x ~(0, 1], 

f T  (x) = O or f s  (x) = 
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and, at each point  x ~ [0, 1), 

f +  (x) = O or f~+ (x) = o~. 

This theorem has the following immediate consequences. 

Corollary A [7]. For a typical funct ion f ~ dg, 

f ' = 0  a.e. 

Corollary B. For a typical funct ion f e JCl, 

f '  (x) = ov 

at densely, uncountably many points x ~ I. 

P r o o f. Since f is strictly increasing, there exists f - 1  which, being monotone, is 
differentiable a.e. But f has in no point of I a finite derivative different from zero, by 
Theorem C. Hence ( f -  i), = 0 a.e., whence f '  (x) = oo at densely, uncountably many 
points x ~ I. 

Notice that Corollary B also follows from Corollary A, because each strictly increasing 
function f e  M//withf '  = 0 a.e. satisfies f '  (x) = oe at densely, uncountably many points 
x (see the proof of Theorem 2 in [8]). 

A function f e  ~ is called nonangular if 

f 7  < f +  and f + < f ~ - .  

The following result is known (Theorem 2.3 in [2]). 

Theorem D. A typical funct ion in cg is nonangular. 

We constatate that precisely the same is true for monotone continuous functions. 

Theorem 1. A typical funct ion in J/g is nonangular. 

Since the proof parallels that of Theorem D, we omit it. 

There is a far reaching analogy between the properties of typical continuous and those 
of typical monotone continuous functions. This is already evident by comparing Banach's 
Theorem B with Theorem C and Theorem D with Theorem 1. Corollary B may be 
considered as a monotone pendant of Saks' theorem. However, it seems that Corollary 
A has no corresponding result for continuous functions and Jarnik's Theorem A seems 
to have no proper monotone analog. 

Theorem 2. F o r  a typical funct ion f e off, 

f i -  (x) = f +  (x) = -- oo 

and 

f [  (x) = f~+ (x) = co 

at most  points x E I.  
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P r o o f. Neugebauer [5] proved that, for any function 9 ~ <g, 

0 F ( x ) = 0  +(x) and 9 ; ( x ) = o  +(x) 

at most points x s I. Now, Jarnik's Theorem A yields the theorem. 
Since the above argument uses Jarnik's result, the question arises whether there is a 

monotone  analog for Theorem 2. Our  main result answers affirmatively this question. 

Theorem 3. For a typical function f ~ Jg, 

f:~ (x) = f +  (x) = 0 
and 

f2- (x) = f +  (x) = oe 

at most points x ~ 1. 

P r o o f .  L e t f ~ J / / a n d  

A = {xe(0, 1) :f/+ (x) = 0 and f~+(x)= oo}. 

For  x e (0, 1), put 

f+  (x) = sup f (y)  - f ( x ) . ,  f _  (x) = inf f (y)  - f ( x )  
y > x  y - -  X y > x  y - -  X 

We see that 

A = {xe(0, 1 ) : f_ (x)  = 0 and f+ (x )  = oo}. 

Let o~ be the family of all functions f e  ~gg such that A is not residual. Consider f e  o~ 
and write 

A n =  {xs(O, 1 ) : f _ ( x ) < n  - t  and f+(x)>n}. 

Obviously x,, --* x and f+  (x~) < n imply f+  (x) < n, and Xm ~ X and f_  (x,,) > n -  1 
imply f _  (x) > n -  t. Therefore, for xm --* x, 

f +  (x~) _-< n or f _  (Xm) >= n-  1 (mff IN) 
implies 

f + ( x ) < n  or f _ ( x ) > n - 1 .  

Hence I -- An is closed. Since 

A = N A n  
n = l  

is not  residual, 

I - A =  (~ (I - An) 
n = l  

is of second category, whence I - A, is not  nowhere dense for some n e N. Thus, I - A, 
includes an interval. 
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Let ~m,. be the set of all functions f e ~  such that I - A, includes, for some index n, 
an interval of length m-  1 (m, n e N). One verifies by routine arguments that o~,,,, is closed. 
Let us prove that J g -  ~ , ,  is dense: One can approximate any function f e ~ '  by 
piecewise linear, strictly increasing functions 9 : 1-0  ll.. By replacing appropriately linear 
restrictions 9 [E,, bl of 9 (with b - a < m-  1) by increasing functions h : [a, b] -0 N, defined 
such that 

h (a) = 9 (a), h (b) = g (b), 

h~-(a) = O, h? (a) = o% 

with max ] h - g I ([a, b]) small enough, we find functions in d/Z - fire,, approximating f. 
Now it is shown that ~m,. is nowhere dense and 

m, n 

of first category. 
Hence, for typical f ~  Jg, A is residual; analogously 

B = {x~(0, 1) : fT  (x) -- 0 and f ~ - ( x ) =  co} 

is residual too, which shows that A c~ B is residual. 
Hence, contrary to the measure-theoretical point of view (Lebesgue's theorem), we have 

the following 

Corollary 1. A typical function f c Jg is not differentiable at most points o f  I. 

For  the last two results we need the following simple 

Lemma. Let - oo <= c~ < fl < ~ .  l f  f ~cs and 

f +  (x) = o:, f ~+ (x) = fl 

at a dense set o f  points x, then, for each kE(a, fi), there are two dense sets Ak and B k such 
that 

f 7  (x) <= k <= f +  (x) 

for x ~ A k and 

f +  (x) <= k ~ f 7  (x) 

for x e Bk. 

P r o o f. We prove the existence of Bk. Let z ~ I. There is a point x ~ [0, 1) as close to 
z as we want such that 

f +  (x) = a, f f  (x) = ft. 

Let ~ < a < k < b < ft. We can choose xl ,  x2 arbitrarily close to x such that x < xl < x2 
and 

f(x1) - - f ( x )  <= a, f(x2) - - f ( x )  > b. 
X 1 - -  X X 2 - -  X 
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Then there exists x a e (x  1, x2) such that  

f(Xa) - f (x) _ k. 
X 3 - -  X 

Let y be an absolute maximum of g [r . . . .  1, where 

9(t)  = f ( t )  - k t .  

Obviously,  

whence 

g7 (y) > o, g,+ (y) < o, 

f S  (Y) > k, f +  (y) __< k. 

The existence of A k is verified similarly. 

Theorem 4. For a typical funct ion f 6  cg and any k ~ ~., there exist two dense sets A k and 

B k such that 

f T  (x) = -- ~ f~- (x) = f +  (x) = k, f +  (x) = co 

for  x ~ Ak and 

f +  (x) = - oo, f +  (x) = f ?  (x) = k, f 2 (x) = o~ 

for  x e B  k. 

P r o o f. By Theorem 2 and by the Lemma with ~ = - m, fi = ao, for each k E ]R there 
exist dense sets Ak, B k such that  

f~- (x) < k __< f,+ (x) 

for x ~ Ak and 

f,+ (x) =< k _-< f 7  (x) 

for x ~ Bk. Now, using Theorem B and Theorem D, it is evident that  the equalities of the 
theorem hold. 

Theorem 5. For a typical function f e Jg  and any k > O, there exist two dense sets Ak and 

B k such that 

f T  (x) = O, f s  (x) = f +  (x) = k, f ~+ (x) = o~ 

for  x c A k and 

f [ (x) = O, f + (x) = f T (x) = k, f j (x) = oo 

f o r  x e Bk.  

P r o o f. The argument  parallels the preceding one and uses Theorem 3, the Lemma 
with ~ = 0, fl = 0% Theorem C and Theorem 1. 

Concluding, we remark  that  the Dini  derivatives of a typical monotone  continuous 
function are exactly determined at a lmost  all points, at most  points, and at some other 
dense sets of points. 
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