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ARSTRACT .
" 8 & d
110 Hes in the interior of any convex hull conv § < R, then

Steinitz's Theorem Implies that 0 € "r(()) c conv U [or some scl U of
al most 2d poinits of 5, and some positive r. Il we always assume (hal
the higpest ball about 0 in conv S has radius one, then il is of
interest lo ask [or lower bounds on Lhe size of r, and how lhey
depend on the sel 5 or on the dimension d of the space. Lower bounds

for v arve found for certain cases, and examples are presented which

verily the sharpness.

1. INTRODUCTION.

Suppose a poinl p lies in the inlerior of the convex hull of a
finite d - dimensional sel S (denoled p € inl conv S). Sicinilz's
theorem [ 1] asserts thal there is some subsel U of § of al most 2d
points whose convex hull contains a bhall I}l_(p) around p. We will
investipale how large the radius ¢ may be. In particular, we may
assume wilhoul loss of generalily that p is the origin 0 of I((l,

S l?", and the unit ball is the largest ball cenlered at 0 which is
containcd in conv S.
The example of a cross basis [or md (Lhal ;s, asel S =By -B,

" " ; o :
where B is a lincar basis for R7) shows that il may be necessary for



the subset U in Steinitz's theorem to have 2d points. We (irst show
that r may be bounded below by a number greater than zero when
b

we allow larger subsets U of S.

THEOKREM 1. Suppose § ¢ IRd is finite and conv § contains the unit
ball “1(0)' Then there exists a subsel U of al most

a® points of S for which ﬂl/d(())c conv U,

Proof: Let T be the vertex set of the convex polylope conv S. Then
cach point of T lies at a distance greater than one from 0. Choose
some poinl P, of T and let ”'o"’l""‘pd, be the vertices of a regular

simplex centered at 0. Let v, be the point where the ray [0,pi| meets

the boundary ol conv T. Then vi € “i N conv S = conv (S 1) “i)' where
Hi is a supporting hyperplane to the compact set conv S al vy

Applying Caratheodory's theorem in this hyperplane, we can find

lli C T such that vi € conv Ui and |Ui[ £ d. Define U = (pO) UU‘:;IlJi.
Then U € S5, and U] :.§ | (]2, and since conv U conlains a regular
simplex iuscribed in “1(0)' it also must condaln lil/d(()), the largest
ball contained in this simplex.

PROPOSITION.  Suppose S is finile and conv § o Bl(()). Then, in IR)‘,

some subsel U of at most 5 points of § must have

lll/?(l)) < conv U; in ll(‘l, some subset U of at wost 9

points of S must have l’tl/,;(()) < conv U.
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Proof: Tn the planc, d% ¢+ 1 - 5. 1In IR". rotate the regular simplex

(tetrahedron) in the proofl of theorem | about the line through I().pol
until the ray [(),]vll meels an edge (or betler yet a vertex) of conv 5.
Il such an rolation may be found, we may assume thal the sel v,
containg at most 2 points. Thus the cardinalily of U will he al most
I+ 20 (2)(3) = 9 rather than the | 4 (I2 = 10 of the theorem. I
cach paoint v, (1 = 1,2,3) lies in the inlerior of one face F of conv 1,
then such a rolalion may naol exist. In this case we may rolale the
tetrahedron, keepinpg 0 as the cenler, until vy becomes a vertex of F,

while keeping v, in F. Il we choose the original vertex P, to be the

2

vertex of Foal Vi then the desived rotation of the simplex aboul

[0, p '[ may be found. Similarly in higher dimensions.
«

’ i i « :
Let 77 be a family of Tinite sets in R . We define by lo be
the largest number (a priori possibly zero) such thal, whenever § is
a secl belonging to 7 with Hl(O) < conv S, then there exislts a subsel

U of al most 2d poinls of 5§ wilh B, (0) € conv U. Equivalently,
e

h", - infl max {(r | BA(O) ¢ conv U1
S Ue U(S) '

wheve Y (S) is the collection of all subsels U of 5 of al mos! 2d

3 d
point=. 11 7" is the family of all Tinite sels in R, we put bld) = h'f' $

THEOREM 2. The lower bound b(d) is a monolone decreasing funclion

of the dimension .

Proofl: For a fixed dimension d and for cach ¢ > 0 we can flind a
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finite set S ¢ R whose convex hull contains the unit ball, and for
which

bld) + €¢/2 > max lr | Ul.(()) C conv U},
U e u(s)

Embed this d - dimensional set in a d - dimensional subspace Il of

d+ 1 o 1 4 X! b y S

i . Choose a point y € I and let T = ly,~y) U S. By choosing
i s X7 N ; L4

ltyll sufficiently large, conv T will contain a ball about 0 in m*

ol radius at least 1 - /2. Any subsel V of at most 2(d ¢ 1) points

of T with 0 & int conv V must contain both y and -y. llence V can

contain at mosl 2d points of S. Thus Il,_(()) C 0O conv (VO )

implies that r < b(d) + /2. 1t follows that bid + 1) < bLld) 4 ¢

The main problems are:

. Is bld) > 0 for cvery d?
2. Il yes, determine b(d). -
We will answer here the first question for d = 2 and do a few more

steps toward resolving 1. and 2.

2. PLANAR RESULTS.

Example 1. Let S consist of the 5 verlices of a regular pentagon
with an inscribed unit circle whose center is al 0. Then letting U
denote any 2d = 4 of the vertices, we sce Ii'_(()) C conv U where

o= osec (/%) cos (21/5) = 0.381966... . This gives an upper bound

on b(2), which we conjecture is sharp.
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Example 2. Let S cousist of the six

3

polnts 5y = Gaal ol S,y = (=1,=¥),

Sq = (Ll ds soale. L S = (1,c),

s = (0,707, 0,707) where ¢ = (/2 = 1).
Then the unit circle € = bd I]l(()) is
contained in, and touches cach of the §

sides of, the penlagon conv S. The poinl

s lies in the interior of the unit dislk.

o 3

Yel it is clear that U = ls:n. Spov Sy 531‘

vis the best choice for the subset U for

which the maximum in the definition of b(d) is alltained. Thus Ihe
search for such a best U may nol, in general, be limiled to (he
vertices of conv S5, or even 1o lhe points of S that lie oulside ILhe

unit disk with center 0,
The next resulls will show that H(2) > 0.

LEMMA, Il 5 is a set of 5 points in the planc for which
HI(U) < conv S then we can [ind 5o € S and
v o> osin (0/10) = 0,309... such that

N (0) < conv (5 - Is }).
r o

P'roof: Assume thal conv S is a penlagon, since if some S, € S lies

conv (5 - (5 1) then the whole unit disk is contained in -
Q

conv (5 - (s )). Label the 5 vertices S of conv § so Lhal lheir
o

projeclions ni' on ﬂ'((l) are in clockwise arder, and identilying

subsciipls mod 5, choose an Indes i which minimizes the angle

= 9295

in
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o= sy ‘L) S5, Assume 0 is such an index. Since the five angles

‘i must swn to 4 on, lo can be at most 41 /5. LEach vertex sl musl
be strictly outside the unit .
dislk, so that the line sl‘s/"
separates 5 and 5, from 0.
Thus it is clear that the disk
with radius r = sin (n /10) and

center O must be in the interior

of conv (S - (s )).
o

THEOREM 3. 0.154... = (1/2) sin (1 /10) < b(2) < sec (n/5) cos (21n/5) =0.381.
Hence, if the convex hull of any set § in the plane
contains the unit disk, then the convex hull of some 4
points of S must contain a disk about 0 of positive
radius r, where r does not depend on the set S.

Proof: Assume S is a finite sel, since otherwise for cach € > 0 we may

choose a linite set I of points on the boundary of Ill(()) so that

IlI _0) ¢ conv F. Apply Caratheodory's Iheorem to cach point of I,

and B (0) lies in (he convex hull of a finite subsel of S.

By Theorem 1 there is a subset U of at most § points of § for

which B (0) € conv U. By the Lemma, the disk about 0 ol radius

1/2
(172) sin (1 /10) must lie in the convex hull of some 4 points of U.
Example 1 proves the upper bound.

The lower bounds of the Lemma and Theorem 3 are obviously not

sharp. 1t would be interesting to know if the d - dimensional analog

of Theorem 3 is true.



The next result supports the conjecture (see FExample 1) thal

h(2) = sec {n /%) cos (2 0/5).

FHEOREM /4. Let 77 be the collection of all sets § ¢ IR” which
contain the verlices of a penlagon circumscribed flo

C = hd nl(n). Then 111 = sec (N /5) cos (21/5) = 0,3819GG. ..

¥. be the pentagon wilh verlices in S € 7 . The

Prool: Lel x %, x.x
I A5

273

indices will he numbered modulo 5, such thai increasing i induces

a direct sense rolation of the ray Oxi.

Case 1. For some index j, the line ><i llel does not strictly separale

0 from Xy Let y; = C€n Ox' for all i. One of the angles xi_'“xi and

xiﬂxl',. say xjﬂxi".

musl measure al least 1 /2. Then the suim of

the lenglhs of the arcs and « (where j + 5 = j) is

TR T

al most 3 1/2. llence one aof them, say y.)”yj'.‘ has lenglh al most

YietYia3

In/4. Thus the distance from 0 to the line y is al leasl

[IARATR

- '
cos (3 n/8). Since the distance from 0 lo x'”xj'3 is even larger and

cos (3 n/8) < sec (/%) cos (21 /5), this case is sctiled.

Case 2. For all indices i, the line X 1% striclly separales 0 from

X We apply the polar transformation delermined by C. The polygon

X XXX, X hecomes a polypon 7,7.7.7,7z. inscribed 1o C, the diagonal

1% ? 8 PRIRON. Ry tadstith 3

Qg =
it

lines X% become the peints #; = 17142

%rs2%-1

<
s <~ N .
Let T4 C7 =+ R be defined by f(zl,zz.z‘,‘.r.{.,zs) - m;n Ilz‘ .
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The theorem will be completely proved if we can show (hat [ atlains
its maxima cxaclty for those (Zl""'z‘i) corresponding to regular

pentagons inscribed to C.

Clearly, f Is continuous and one seecs immediately thal

sup l'(zl,...,zs) is finite. We prove now that

%, .6 C
i

SUp 2y, evanZe) 2 B e VL)
Zié C 1 5 ] o

yields "V"" StaeTYa ||V5'"- where again, v;*' = VieoVict N Vi Viee

for evaery ki
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Suppose on the conlrary "vk'" +06 = I[v('[[ for seme indices k,t
an > o ve slip a q om v
i some e 0. Then move slightly Ve_2 and Y gravy from v, ,
as shown in the Figure. 11 is obvious then, (hat all l[vi'll 's will
increase excepl "Vl "I which will decrease. Perform this movement
such that the modifications of ||v"|| remain less than ¢ /2 for all i.

Then

min flv. ")
i i

will clearly increase, which confradicls

b . S



]l"‘lzs) (1-| & C).

I‘(vl ,...,vS) 2 ((z

llence ||v|'|| = sE = ||v5'.|| as stated.
Now we show thal this implies the regularity of the pentagon
ol o 2 0 X 0 : bt 3 2
APARAATE First, notice that ||v2 | = ||v1' I implies ||v2 vb||
!lv/ - v|||. Now lake the line L orthogonal to Vg, through 0. ®"™ - L
1

consists of two domains l)I containing Vis and I)5 conlaining Ve

Suppose v, € D . Lel Waq be the point of L N C not separated from

3 1
vy by VeV and put
w, = cC N w3w4' - (w,Jl,
Wy € f)w:}vz' - “"3]'
wy'o= WMy N AR
o a waw, N v ,w,
Clearly, it follows that IIVS'” < IIWS'H = IIwI‘" < llvl‘ll, a

contradiction.

Since we gel an analogous contradiction if Vq € D., we conclude
8]

Vigm Wq- By symmetry, Vola 3 v3v1|;mm!0gously, all other pairs of

adjacent sides are equally long, and the theorem is proved.
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