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USING BAIRE CATEGORIES IN GEOMETRY

Summary: In this conference we present properties of most elements of several g omeiri
cally significant Baire spaces, i.e. of all elements of such spaces except those in
a set of first Baire category. Sometimesg these properties are umxpectedly patholo-
gical,

Whilethe well-known Baire category theorem was immediately used in
Analysis, its first application to Convex Geometry is of much more recent
date: In 1959, V. Klee found in Banach spaces applications of accurately
geometric significance. After another surprisingly long period, in 1977,
P. Gruber opened again, independently, the Baire category suit-case, repro-
ving those theorems of Klee and proving several new ones. Since 1977 a num-
ber of interesting geometrical results have been proved by using Baire's theo-
rem. Almost all of them show that we think in a wrong way about several
geometric objects, that we have a lot of prejudice, as we also have regarding
people. One believes, for instance, that typical convex surfaces (and men)
are not smooth; this turns out to be deeply erroneous.

Some of the results we shall mention present typical objects the exi
stence of which was not easy to prove. In some other cases the existence
itself of those objects proven to be typical was unknown. These are most
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interesting, pathological samples. perty that

A set in a topological space is called nowbere dense, if its closure has
empty interior. Any countable union of nowhere dense sets is said to be of 4 |y¢ing here the distance function,
first category. If a sct is not of first category, then it is of second category. A
topological space, each open set of which is of second category, is called a
Baire space.

In R? we use the Euclidean distance, in the space % of all convex
surfaces (defined in the next section) the Hausdorff distance 8 |, on a surface
the intrinsic metric. For some other spaces we shall use again Hausdorff's di-
stance. By the Baire category theorem, all of these are Baire spaces.

Most or typical elements of a Baire space are those in a residual set,
which means the complement of a set of first category.

Ky, ap (v, ) OM=¢

A countable union of porous sets is said to be g-porous. We say that
nearly all clements of a metric Baire space have a certain property, if those
which do not enjoy it form a o -porous set.

Since any @-porous set is of first category, it is clear that the following
result strengthens Theorem 1.

Theorem 2 (38, Nearly all convex surfaces are smooth and strictly convex.

Every smooth convex surface belongs to the class C'. Docs a typical
convex surface also belong to €? ? This question was answered negatively
by Gruber [11]. On the other side, cvery convex surface has points where the

Smoothness and strict convexity of convex surfaces. curvature exists. Thus it makes a sense to ask about the curvature propertics

We understand by a convex surface the boundary and by a convex body GEEIPIGM coavex susiaces.

the closure of an open bounded convex setin IR?. Clearly, a conVex surface
does not need to be smooth (differentiable). But, as Reidemeister [20]in 1921
(for d=3) proved, each convex surface is smooth almost wcry\vﬁure. with
respect to the usual Hausdorff measure. For a more precise result and arbitra-
ry dimension see [3]. Let x be a smooth point of a convex surface S . Since most convex

_ The following result of Klee [9] seems to be the oldest in the field this g fyces are smooth everywhere, this means no restriction. At x  we consi-
article deals with, It was independenlty rediscovered 18 years later by P. Gru- jo; the tangent direction 7, the normal section of § in direction 7 and
ber [111]. the lower and upper radii of curvature g (x) and 7 (x) of the normal

section (see [5], p. 14). The numbers '

The curvature of convex surfaces

Theorem 1. Most convex surfaces are smooth and strictly convex. Vi (x)=pf (x)7 , o¢ (x)=p ()

It is interesting to notice that P. McMullen [ 18] had asked for a measure ye the lower and upper curvatures of S at x in direction 7. If they
in ¢ with respect to which almost all convex surfaces are not smooth, which 4. equal, the common value 47 (x) is the curvatureof S at x in direc:
scems to be the more general case. Theorem 1 shows that from the point of o ¢,
view of B:{?rc categories the contrary is true. R. Schneider and C. Bandt rejec: By a theorem of Aleksandrov [1] (Busemann and Feller [6] for d = 3)
ted t!“' existence (proposed by P. Gruber) of any useful Hausdorff measurc ,, oyery convex surface there exists a finite curvature a.e. in every tangent
on ¥, direction. How behaves the curvature of typical convex surfaces?

In a metric space, a set M s called porous if for any point x, there In 1957, G. de Rham treated in a conference here in Torino the follo
exists 4 positive number a, such that, for any positive number 7y, there is @ ying particular type of convex curves in IR | Take a convex polygon, then
point ¥ in the ball K (x,v) of centre x and radius v with the pro- (he rwo points on every side dividing it into three equal parts, Conalder the
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convex hull of all these points and its boundary polygon. Repeat the procedure
The intersection of " all these infinitely many convex sets is a convex set the
frontier of which is a smooth convex curve with vanishing curvature a.c., as
de Rham has shown [8].

There is another simple way of producing convex curves with vanishing
curvature a.e.: Consider any singular function (also called Vitali function),
ic. a striclty increasing continuous function f:[0,1]—=IR with f'=0
a.e. Then |f isa convex function, the graph of which has a vanishing cur-
vature whercever ( j‘f)" =0, namely a.c.

For typical convex surfaces the following turns out to be true.

Theorem 3 [24]. For most convex surfaces S, at each point x €S and eve-
ry tangent direction T at x ,
¥ @)=0 or 9 (x)==.
Combining Theorem 3 with Aleksandrov’s theorem we get the surprising
conclusion that neither de Rham’s convex curves, nor those obtained by inte-
grating singular functions are too particular:

Theorem 4. For most convex surfaces, ¥" (x)=0 a.c.in every tangent direc-
tion T.

By Aleksandrov’s theorem, on every convex surface a curvature exists
a.e, in every tangent direction. Does it also exist at most points of an arbitrary
convex surface? No explicit example of a surface without this property seems
to be known. However, the next theorem shows that most convex surfaces
do not enjoy it!

Theorem 5 [25] For most convex surfaces, at most points x

v (¥)=0 and ylx)=c
in every tangent direction .

The proof in [25 | used a previously published similar result of R, Schnei-
der [ 21], in which the set of points « | instead of being residual, was only
dense. We give here in the last section a different, direct proof,

A

Do the typical convex surfaces possess only points of the types deseribec
in Theorems 4 and 52 No, certainly not: think about the points of a convey
surface which lie on its circumscribed sphere.

In IR the following holds.

Theorem 6 [34) For most convex curves, y' (x)=o at uncountably, dense
ly many points x  in both tangent directions 1 .

This generalizes as follows to  IR?

Theorem 7 [34 | For most convex surfaces S,
{(x,7):9" (x)="00)
is uncountable and dense in the spherical bundle associated to S,

The proofs of Theorems 6 and 7 show that every convex curve or surface
satisfying the condition of Theorem 4 automatically enjoys the property o
Iheorem 6 or 7. Clearly, the set of points x we speak about is small ir
both senses, that of measure and that of categories.

Problem 1, Is it true that most convex surfaces in IR? possess a point
such that o' (x)=e in every tangent direction v 7

This problem, which has, by Theorem 6, a positive answer for d =
and probably a negative one for d =3, is still open.
Typical convex surfaces also have other types of points than those descri

bed unll now,

Theorem 8 | 34]. For most convex surfaces S,
{(%,7):Q =0T (W)<9" {x)=q] (x) <y (x)=o }

is uncountable and dense in the sphevical bundle associated to S

In Theorem 8, as formulated in [34 ], a lower or upper bound can be pre
seribed for the common value of 47" (x) and 5] (x)
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Problem 2. Is it possible, in Theorem 8, to precisely prescribe the common
value of ~ " (x) and 7] (x)?

Normals to convex surfaces

Closely related to the curvature behaviour of typical convex surfaces is
the aspect of their normals. While for any usual surface most points of IR?
lic on finitely many normals, we shall see that typical convex surfaces behave
completely differently.

Theorem 9 [33]. For most convex surfaces S, most points of IR lie on
infinitely many normals to S .

The case d =2 is easier than the case 4> 3 and was already treated
in [30].

It is interesting to remark that all infinite pencils of concurrept normals
exhibited in the proof of Theorem 9 realise relative maxima for the distance
from the common point. An analog proof can provide pencils realising relative
minima. Two questions arise in connection to this.

Problem 3. Is it true, for most convex surfaces, that for every point lying on
infinitely many normals, each of these normals realises a relative maximum or
a relative minimum of the distance from that point to the surface?

Problem 4. Does there exist, for most convex surfaces, a point in R? lying
on uncountably many normals?

It is interesting to notice that the existence of convex surfaces with the
properties of Theorem 9 was unknown before.

In the same spirit are the following reflection considerations. Let x,
y EIR? | S be asmooth convex curvein IR? and M CS with card M =a.
If, for each 2 €M, xz and yz make angles of equal measures with S |
then we say that x sees « fmages of y. In general it can only be said
that x sees 2 images of 3. However, this can be drastically strengthened
for typical convex curves,

(f)

Theorem 10 |30] For maost convex curves, every point of IR sees Ny
mages of most other points.

Regurding pairs of points in - IR? |, the following in true.

Theorem 11 [30]). For maost convex curves, most pairs of points (x, y) € IR* X
XIRY are sweh that x sees B, images of y.

I'he generalizations to [RY  are not yet worked out.

The geodesics of convex surfaces.

A shortest path on a convex surface is called a segment. A curve which
is locally a segment is called a geodesic (see for a precise definition [5], p. 77).
A point of a segment different from its two endpoints will briefly be called
mterior. 1y cach point of a surface an interior point? The answer is casy for
non-smooth surfaces: no conical points is (for any segment) an interior point
(| 2], p. 155). Points which are not for any segment interior will be called end-
points, They are, of course, endpoints of many geodesics. Smooth surfaces
with an endpoint are also known ([2], p. 58-59). But, for cach convex surface
of class €* |, every point is an interior point of a segment in each tangent di-
rection, More generally, this happens at a point x if the lower indicatrix at
every point ¥ in some neighbourhood of x does not contain y as a
boundary point, ([5], p. 92). Clearly, the set of all interior points is uncoun-
tuble and dense, for an arbitrary convex surface.

Thus, it seems that usually convex. surfaces must have many interior
points, But let us look more closely at a typical convex surface: itis of class
', but not of class €*  and at most points the lower indicatrix reduces to
i point (Theorem 5). In fact, we established the following result,

Theorem 12 [ 31). On most convex surfaces in IR, most points are endpoints

It iy well-known that in a certain tangent direction at a point of a convex
surface may not start any segment. Such a tangent direction is called by Alek-
sandrov singular, He shows that there are smooth convex surfaces with a dense
set of singular tangent directions ar o certain point ([2], p. 593 Also, non
smooth surfaces all points of which are of this kind do exist: take, for exam:
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ple, a convex surface with a dense set of conical points. But, again, ‘at any Spreads
point of a convex surface of class €? or with the above indicatrix condition,
a segment starts in cach tangent direction. And for an arbitrary convex surface,
at cach point, the set of singular tangent directions has measure zero, as Alek-
sandrov proved ([2], p. 213). However we have the following theorem. i:bdD->bd D

Let DCI? be a Jordan domain, i.¢. a connected open set with a Jor:
dan elosed curve as boundary. Let

be a fixed point free, continuous involution. Let L be a family of Jordan ares
Theorem 13 [31]. On most convex surfaces in IR, at every point, most tan-iy i gdmitting a surjective continuous function

gent directions are singular. . ;
L :bd D=L

The restriction d=3 is imposed by the proof methods, which essen-

dally use Aleksandrov's concepts and results in [2], such that Lix) has x as an endpoint for any x € bd D and

) Lx)=L(i(x) forall x€bdD,

i) L (x)ynL(y) hasasingle point whenever & {x, 1(x)) .

Problem 5. Prove Theorem 13 for d= 4. ‘ { i i

We notice that the existence of convex surfaces with the properties de- -I:h"'" .'C was called by B. Grii.nhaum a spread. . ‘
The diameters of smooth strictly convex curves, the area biscctors of

scribed in Theorems 12 and 13 was unknown. | ! 2 P
Ksbole aiia ooivek sietloein  IRS i theser of 4l points at intrinsic"lmmr convex bodies, the perimeter bisectors of convex curves, the midpoint
curves of smooth strictly convex curves are all examples of spreads. For more

distance equal to some positive number from a fixed point of the surface. A * )
circle which is a Jordan closed curve will be called a Jordan circle. It is knOWn'"'”r'"mm“, uhou? 5",”'“(15 consult [15], [?7 l | :
that a Jordan circle may possess vertices, i.e. points where the circle is not In the investigation of spreads a special attention was paid to the sets
i el M, =(x€D:card (TEL: x ET}>a)
T={x€E€D:card {(TEL: x ET}=0a).
Theorem 14 [31]. On most convex surfaces in IR, every Jordan circle has
countably, densely many vertices. In 1971 Griinbaum [15] conjectured that M_ # ¢ implies T #¢
Yince always M, #¢ [14], the conjecture includes the assertions that T, T,
md T, are nonempty. Griinbaum'’s conjecture was disproved by K. 5. Wat-
won 23] In his example, M, = D and the arcs in L are polygonal, hence
not smooth (in general).

Take bd D tobe 8!, define i(x)=—x andlet L consist of circu
lar arcs and line segments only. Let the distance between two such spreads £y

We have raised in [31] the question whether each point with infinite cur-
vature in every tangent direction must be an endpoint,

Consider the number o>1 and the surface Z_ expressed in cylin-
drical coordinates (p,p,z) by z=p% ,with 0<p<1 and 0<p<2m.
Complete Z, (add a hemisphere for instance) to a convex surface §_.

Then S_ verifies 7" (0) == for every tangent direction 7 in 0=(0,,0)if
o md Ly be
l=a<2
V. Bangert (private communication) gave a negative answer to the prece- p(Ly, Ly)= R e o (L, (x), Ly (%)),

ding question, providing a proof (sketch) of the following: 0 is an endpoint

Aede HPE vy Y J Sa i, shere L plays in the definition of L the role of L(j=1,2), The space

U of all such spreads is a Baire space,
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Theorem 15 [39 ). For most spreadsin L, My = D. It follows, of course, that typical convex bodies are irreducible,
P.C. Hammer and A, Sobezyk [17] proved that - M, has measure zero,

The above result of A, Zucco and myself shows that simplest smootl !
14 P Ifaset ACD issuch that

curves may serve to exhibit counterexamples to Griinbaum’s conjecture anc
that, in fact, most spreads in L are such counterexamples. A C_ﬂ'\{\, L (x)

For spreads consisting only of line segments, called straight spreads, the g | Ay
situation is different. For every straight spread, T, #¢ [27]and T, =+ Jor some set X ChdD of measure zero, A s said to be null-swept [32].

[23], [28]. Thus, a part of Grinbaum’s conjecture is valid for straight spreads ) course, MM, does not need to hc'“““'-""_"“P[_’ take bd D to be a circle.
What about the:rest? (1L 0t In easy to prove that any null-swept setin D has measure zero,

theorem 17 [32). There exist smooth strictly convex curves such that, for the
ipread of diameters, My s residual and null-swept.

Returning to arbitrary spreads, under certain additional continuity hy ! ® ‘ 25
potheses on [, int M, isa Jordan domain different from D [28]. Thu The "“““"‘fn“t)’ properties of M~ are also surprising.
T, #¢ . It is also proved in[28] that most points of bd M, belongto T, Though it is very casy to see that M_ may be disconnected for o= 4
The mentioned continuity hypotheses are verified, for instance, by the spreal 271, the following is true for typical convex curves.
of all area bisectors of a planar convex body and by that of all perimete
bisectors of a convex curve. :

The spread of all diameters of a convex curve will be examined in thiheorem 18 [32] For most convex curves, M, is connected for every <R,
next section. ! md T, s totally disconnected for every a <%, .

Problem 6. Prove (or disprove) Griinbaum's conjecture for straight spreads

Notice that 7, is connected if and only if D is reducible. Thus we
obtain again the irreducibility of typical convex bodies.

It is not easy to find and investigate higher dimensional analogs of spreads.
Howeyer, all above results on diameters make a sense in IR? ; the proofs

Reducible convex bodies in IR?, introduced by P.C. Hammer [16], AWl to be done, Noteven the case d =3 was s.ttled so far.
characterized in the smooth case by

The diameters of a convex curve

(&
My CD Palrs of convex curves

D being the convex body and £ the family of all essential diameters of 1 We say that two convex curves in IR? are internally tangent,if they have

(for a definition of essential diameters see [16]). For strictly convex bodica common point, at which there is a common supporting line, and both

with smooth boundary, £ coincides with the family of all diameters. Clearlycurves lie on the same side of the line. Let ¥ be the space of all pairs of inter-

at least for smooth reducible convex bodies, M, cannot be dense in D nally tangent convex curves. With the topology induced by the product topo-
The situation is different for typical convex bodies. logy of & X6 % is a Baire space,

Theorem 16 [32] For most convex curves, most points lie on infinitely man Theorem 19 (29| Most pairs in ¥ “intersect each other infinitely many times
diameters ane are tangent at just one point
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Another interesting behaviour we find for internally tangent convex cur
ves without any other common points. The space # of all such pairs is agai
a Baire space, It can be proved that most pairs in # behave like wheels i
gear: none of them can be rotated alone, without cutting the other [35].

All properties of convex curves or surfaces considered until now ha
more or less a local character. The next two sections present global propertie
of typical convex surfaces.

Circumscribed spheres and ellipsoids

An ellipsoid (or sphere) is said to be circumscribed to a convex surface i
IR?, if it has minimal volume and the surface lies in its convex hull. Both th
circumscribed ellipsoid, also called Lowner ellipsoid, and the circumscribe
sphere are unique. The second assertion is obvious, the first was proved b
L. Danzer, D. Laugwitz and H. Lenz [7]. If the ellipsoid E and the spher
F are circumscribed to § € %, then

card (ENS)=d + 1

and, clearly,

card (FNS§)=2 .

How many contact points have typical convex surfaces in common wit
their circumscribed spheres and ellipsoids? The answer is given by the ne
theorem.

Theorem 20. For most convex surfaces S,

card (FNS)=d + 1 [26]

b d(d+3
card (ENS) = —(———) {Gruber [12]),
Notice that the set of surfaces § € % such that
card (FNS)y=d
or

card (E N S)Y< (@ + 3d - 2)/2

" “0%'” il'lll!’. While the ser of those S EY% such that
card (FNS)=a

i
card (E N 5) =ﬁ

I UBOAe I W for every a»d +2 and B=@* +3d+2)2 (o, BEN).

Appraximation by polytopes

I % denotes the set of all polytopal surfaces in € with at most
verties, then, for any surface SE % and n>=>d +1 , there exists P*€E 9?3'
sy thu

6(S,P*)=v(S,n),
where
: v(S,n)=inf§ (S, P).
P

Such a polytopal surface P* s called best approximation of S. Clearly,
the best upproximations of a convex surface do not need to be unique. But
I Gruber and P, Kenderov proved the following result.

Theorem 21 [13] For d=2 andany n>3 . most convex curves admit a
unigue best approximation.

A refinement of this result was given by V. Zhivkov [40]. R. Schneider
anil 1 Wieacker [22] and, independently, P. Gruber and P. Kenderov [13] stu-
died the asymptotic behaviour for n o0 and found.that it is - typically -
Very frregular,

Theorem 22, Let f:IN— [0, ) be arbitrary and g : IN—> [0, %0 ) satisfy
K =0 (1/m*" 1) g5 p o0 . Then, for most convex surfaces S |

v (S, m)<fn)
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for infinitely many n and
v (S, m)>g(n)

for infinitely many n.

Analogous results have also been obtained with respect to other metrics
than Hausdorff’s [13]. _

We shall now leave the Baire spaces of convex surfaces and investigate in
the next two sections the typical aspect of starshaped compact sets and other
related sets.

Starshaped and »-starshaped compact sets

A compact set M CR? is said to be n-starshaped if there is a point
2 €M such that, for every point x €M, there exists a polygonal line
PCM joining x to z and formed by » segments. 1-starshaped sets arc
also called starshaped. For any n-starshaped set M, the set of all pdssible
points z isthe kernel of M:Let ¥, be the space of all n-starshaped sets.
Each of these spaces, endowed with Hausdorff’s metric, is a Baire space. The
typical starshaped sets have a rather strange aspect:

Theorem 23 [36] Most starshaped sets are nowhere dense and bave a single
point as kernel.

Thus, typical starshaped sets are unions of line segments, each of which
has the kernel as one endpoint. Let M be a typical element of ¥ ,A M)
be the set of the lengths of the above line segments, A (M) be the set of their
directions and

[ (M)=max A (M) .

Theorem 24 [36] For a
[0,1 (M) and O M) isdensein S .

These results admit analogs for 7.

Conslder now the subspace & * of all n-starshaped sets. the kernels ol
which tnelude s wiven sonvex body B, Clearly, no set in ’f;' is nowhere dense .
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Bovwuae 1t ineludes B Also, sets in ‘J'.' are not even outside B nowhere
donse, exeopt B dself. However, for # > 2 the situation changes.

Theorem 23 | 36| Mostsetsin f.* are nowbere dense outside B, for n>2.

Ihe case m =1 is interesting from other points of view. We treat it in
the next section,

Ntarshaped surfaces

Clently, the boundary of any set in y" ishomeomorphictothe (d—1)-
dlmensional sphere. We call it a starshaped surface. In polar coordinates it is
pepresented by o Lipschitz function; hence it is differentiable a.e.

Lot 4 be the Baire space of all starshaped surfaces. We say that a point
VB8, where S=bd M and M € ¥ | sees only B (B is the given convex
by which is included in the kernel of every member of %,"),if for cach
Iine segment xy © M | there exists a point 2 €B collinear with x and y.

The next two theorems on typical starshaped surfaces put in evidence,
GNEE gain, curious surfaces, the existence of which was ignored before.

Theorem 26 [37) For most surfaces S € ./, most points of S see only B.

1 hus, most starshaped surfaces are at most points nondifferentiable.
Let P be the tangent hyperplane at the smooth point x of S€ >

Theorem 27 (37 For most surfaces S€ Y, the hyperplane P exists
wnd supports B for almost all points x €S..

. * . +
It follows that most sets in &7 have precisely B as kernel. Since the

vomvex body B was choosen arbitrarily, this places in a new light an old
typical starshaped set M, A (M) is dense inyuestion of L, FejesToth, whether every compact convex body is the kernel
ol 4 nonconvex set. Constructive answers to Fejes-Toth's question were given

i the plane by K. Post [19], in Banach spaces by V. Klee [10] and, indepen-

dently, o Buchidean spaces by M. Breen [4],

I the kerdels of  starshaped sets (from /) are supposed to include



given k-dimensional compact convex set, then we get a new Baire space /)
o starshaped sets. In particular, ¥4 =1 |

For a description of typical sets in ' ®)  the interested reader should
¢onsult [37]. We mention here only the case k=d —1. We do so, becausc
n this case the aspect of the typical sets in surprisingly nonpathological!
Indeed, while a set in #“1) may be locally disconnected and different
Afrom the closure of its interior, the following holds.

Iheorem 28 [37]. Most sets in ¥ @~V are homeomorphic to a ball.

Convex sets of convex sets

Another ficld, not yet intensively explored, is the convexity in the space
X of all compact convex sets of R .
Let A, BEX. Then

MA+QAQ-NB:AE[0, 1]}

 called the segment of endsets A, B. A set of C X is said to be convex
Al for any two sets A, B € &/ |, the segment of endstts A, B liesin &/ .
Let € be the space of all convex closed bounded sets (not elements!)
ol X, These notions are considered with respect to the Hausdorff distance
W X, We equip € with Hausdorff's metric too. Since X is complete, the
2 J{;L]] closed bounded sets in ' is also complete. Also , being
wlosed in is complete and therefore a Baire space, by Baire’s theorem,

We look now for a description of typical elements in € and present here
‘one result in this direction.

orem 29. Most elements of € are nowhere dense in A~ .

For this theorem. which is new, we give a proof in the next section.
Many questions regarding typical elements of € can be raised. We state
Diere only two, related to the extremal structure of elements in - & .

For o € &, A € o/ is called an extreme element of & if A belongs only
W an endset to segments in o . Let ext o be the set of all extreme elementy

of o
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lsprove) that, for most of € €

:.,-#
e
Maost
3

ext o is arcwise con-

elements of most o € € lie inext o .

r of Theorem 5. Let 6" be the space of all smooth convex surfaces

ol _ *

A bl B s called internally tangent to S€¢* at x€S if bd B
vontaing x, hoth S and bd B have a common tangent hyperplane H at
W and  both lie on the same side of H.

NG ¢ s called eround at x if, for some tangent direction 7 at
N, the normal section S(r) of S in direction 7, which is a convex
A, I digjoint from the interior of the ball of radius e internally tangent
o 8§ at v SE¥Y iscalled e-corneredat x if, for some tangent direc-
tHon at &, 8(r) lies within some ball of radius e internally tangent to §
i w~ .,

Let @ *€ @ be the set of all surfaces in €+ for which the set of all
polnts & with a tangent direction 7 verifying

Y ®)>0 or 77 (x)<eo
I of second category, Then
W'w(SEY".

where A i the set of all »™!
nered polnts of S Putting

0 A u 0 B is of second category} |

-round pointsand B, thesctof all »*-cor-

@)= (SEC" . A isnot nowhere dense }

w’.‘ﬂ (SE€" . B, isnot nowhere dense},

we hive

e oot o3
¢ CH"I(‘NU»C-'!%H '

-_ Mﬂ\ 1, most elements of @ liec in ¢ *. Thus, we have only to show
wre of flest category in @,
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Smce we work in @ * | the argument in [24], p. 137 proves that on each

SE¥*, A, and B are closed. Hence, if SE%! , thenthereisin S a A, P)<a .

circular disk (with rcspcct to the intrinsic metric of S ) included in A . y ;

Let %! be the subset on %, consisting of all S for which A, includes enough, 2EO | For each PE P, let "

a disk' of ‘radius m™! . Then B,
@i= O dou (A QE4T with §(P,Q)=2 and 7, (bd Q)>¢},
n wom

& 1Q)»e means that v, (x)=¢€ forall points x €EbdQ and

“The same argument from [24], p. 137 provides a proof of the fact that ﬁ“‘m tions r at x . Clearly,

is closed, for any n, m € IN . Analogously, %2 isacountable union of clo-
sed sets ©wom , which consist of all S€ 62 for which B, includes a disk
of radius m |

To see that ¢ — %,\ and €% — 4,2, are dense, take an arbitrary
open set (" € € | a polytopal surface P € (0 with faces of diameter smaller
than m' | and the boundary Z of

§=P12£Pﬁ'},-1=0.

. A={9:A(P.2)<B/2}.

I contains the parallel body K +€ conv %1 of any K€ X,
¢t some point ¥ €EbdQ and some tangent direction T
QE2 and 2 €A . Hence no element of A includes an
of radius ¢ . Since ®N @ isopen, F is nowhere dense.

" .f'.; being nowhere dense,

n=1 j;'"t

conv P+ € conv §41 |

where € <n' . Then, for e small enough,
ZEON 6* and 2¢ 6} U €2 .

Hence %, and 4,2, are nowhere dense in 6% . Therefore, ¢!,

and €2 are, for every n€ IN , of first category and the theorem is proved. st cutegory. Hence, most elements of € belong to

'~ ﬁcf-l,

Proof of Theorem 29. Let 6 and A denote the Hausdorff metrics in A nl
and €, respectively.

Wc show that the set ¥, of all e!ements of € including, as sets of ¥,
a ball of radius e is nowhere dense.

Let @ be openin £ . Take &/ € © . Consider A=U.% and B CaZ?
such that & (A, B)<a. Clearly, for each A€, there is a B,CBH
such that B(A‘, B;)<a. Since B is finite, the fa.rm]y ofall Bs obtamcd
in this way is Briite. Sitice cach A, is convex,

NPty Interior, Being closed, they are nowhere dense, g.e.d.
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