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Abstract. In the sense of Baire categories, most convex curves on a smooth two- 
dimensional closed convex surface are smooth. Moreover, if the set of all closed 
geodesics has empty interior in the space of all convex curves, then most convex curves 
are strictly convex. 

In Geometric Convexity the underlying space is usually Nd. One 
possible natural generalization which entirely keeps the geometric 
character consists in replacing Nd by an arbitrary convex surface N in 
Nd+l, which is by definition the boundary  of  an open convex set, 
different from the union of  two parallel hyperplanes [2]. A shortest 
path joining two points of  5 is called a segment, and a set in S is 
said to be convex if, for any two of  its points, it also contains a 
segment joining those points. ~- 

For  d = 2, a closed Jordan curve in 5 is called 

i) convex if it is the boundary  of  a convex set in ~, 
ii) a closed geodesic if each of  its points has a neighbourhood in 

whose intersection with the curve is a segment. 
Obviously, a closed Jordan curve is convex if and only if it is the 

boundary  of  a "konvexer Bereich" in Aleksandrov's terminology [1]. 
In a Baire space, we say that "most"  elements enjoy a certain 

property if all those which do not enjoy it form a set of  first Baire 
category. Then we also say that a "typical" element of  the space enjoys 
that property. 

KLEE [4] initiated the study of typical convex sets. In several other 
papers, for example in [3], [5]--[9] properties of  typical convex 
surfaces in ~d are described (see the recent survey article [10]). 

* This paper was written during the author's visit at Western Washington 
University, whose substantial support is acknowledged. 
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General problem: Extend the description o f  typical convex surfaces, 
as far  as possible, to the case o f  an arbitrary d-dimensional convex 
surface 5 as underlying space instead o f  ~d. 

While the definition of  a convex surface in 5 can be formulated in a 
straightforward way for any dimension d of  5, a (not differential- 
geometric) theory does not  seem to exist except for d = 2. Thus, we 
restrict our study here to typical convex curves on an arbitrary convex 
surface 5 ~ ~3. 

The space cg of  all convex curves on 5 is a Baire space. Indeed, if we 
add to cg the set 5 p of  all segments on 5 and the set 5 ~ of  all singletons of  
5, we get a set which is closed in the space of  all compact  subsets of  S. 
This nontrivial statement essentially follows from the closedness of  the 
space of  all compact  convex sets on 5, which in turn follows from 
Theorems 10.5, 10.5' and 11.3 in [2]. Thus cgu 5~u  ~ is a complete 
metric space S, hence a Baire space. Since 5 P • ~ is clearly nowhere 
dense in S, cg is a Baire space too. 

We shall assume the knowledge of  a few very simple facts about 
segments and geodesics, all of  which can be found for instance in [1]. 

A Lemma. Let q be the intrinsic metric on 5 and ~ Hausdorff ' s  
metric for compact  subsets of  5 (derived from ~). 

A finite union of  segments 

U 0 u  1 k_)U l u  2k.) . . .  U U  m _ l u m k . ) u  m u  0 

is called apolygon, Uo, u~,. . . ,  Um are its vertices and the above segments 
are its edges. This polygon is denoted by u o Ul. . .  Um UO. 

A curve C c 5 is said to possess an angle in x ~ C if, letting y --+ x 
from one side, the halfline [x,y) = E3 having an endpoint  at x and 
passing through y converges to a halfline H~- and, letting y ~ x from 
the other side, [x, y) converges to a halfline Hx + . Then H~- w H ff is 
called the angle of  C at x. 

We also recall that the tangent cone of  5 at x ~ 5 is the union of  all 
halflines obtained as limits of  [x, y) when y ~ x on 5 in all possible 
ways. 

The angle of  any curve on 5 at a certain point x will always be 
measured on the tangent cone of  5 at x. 

It is well known that the measure of  the angle of  any geodesic of  5 
at every point different f rom an endpoint  is ~. 
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Lemma. I f  C is a closed Jordan curve on ~ and e > 0, then there 

exists a polygon P with vertices on C such that 

(~ (P, C) < e .  

I f  C is not a closed geodesic, then P may be chosen so as not to be a closed 

geodesic. I f  C ~ cg, then we may choose P ~ cg too. 

Proof. Let O~ be the open disk of  radius e/2 around any x E C 
(always with respect to e). Consider a homeomorphism h between 

and the unit sphere $2 in ~3, carrying C onto the great circle S~ 
of $2. In each h (Ox) choose an open disk Dx centered in h (x). Then 
{h -1 (Dx) : x e C} is an open covering of C. Choose a finite subcovering 

-1 k {h (D~)}i=l. Suppose this one possesses no proper subcovering. 
Also, suppose the points h ( x l ) , . . . , h ( x K )  lie in this order on $1. 
Choose 

x[~Sl~DxlC~Dxi+, ( i =  1 , . . . , k -  1), 

x~ ~ S 1 c~ Dxk c~ Dxl . 
Consider the points 

y i = h - l ( x  3 ( i =  1 , . . . , k ) .  
Clearly, 

q(Yi,Y,+l) < e ( i =  1 , . . . , k -  1), 

9 (Yk, Yl)  < e, 
because 

yi, y i+ l~h- l (Dx i+l )  COx ' . ,  ( i =  1 , . . . , k -  1), 

Yk, Ya ~ h - 1 (Dxl) ~ Oxl �9 

Hence each point of the polygon P = y~ Y2 . . .  YkYl is at distance less 
than e/2 from some vertex of P and therefore at distance less than e/2 
from C. Each point of C lies in some Oxl and therefore has distance less 
than e from Yi, hence its distance from P is also less than e. 
Consequently, ~ (C, P) < e. 

Suppose C is not a closed geodesic, but the polygon P happens to 
be one. Then there are two vertices v~, v 2 of P such that the segment 
vl v2 on P is different from the corresponding-arc a on C. Consider the 
point v e v~ v2 which is nearest to v2 such that v V lc  a (thus v may well 
be v~). Now consider a point v 'e  a - v~ v2. If v' is chosen sufficiently 
close to v, then the polygon P '  obtained from P by replacing Vl v2 with 
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v I v t k..) V' V 2 still has Hausdorf fd is tance  less than e from C and has at v~ 
and v2 angles of  measures different from n. 

We show now that P = Y l Y 2 . . . Y k Y ~  can be chosen in cs if C e g .  
Until  now no restriction was imposed on the choice of  the segments 

YlY2,...,YkY~. Thus, they may be chosen in the closed convex set M 
the boundary  of  which is C. We claim that the closure N of  the open 
connected subset o f  M with boundary  P is convex. I f  x , y  are 
consecutive vertices of  P, then that edge of  P lies in N. We shall prove 
that for all other x, y ~ N, any segment x y chosen to lie in M must  also 
lie in N. Choose in this way the segment x y and suppose x y 4: N. Let 
v, w ~ x y be such that for the subsegment v w of  x y ,  

v w n N =  {v ,w}  . 

If  v, w belong to the same edge of  P, then v w lies on that edge, which is 
in N; this is impossible. If  v, w lie on different edges of  P and are 
boundary  points o f  M - N, then they obviously belong to different 
components  of  ( M  - N) w {v, w}. Hence v w - {v, w} q~ M - N, 
again a contradiction. 

Thus N is convex and the polygon P is a convex curve. 

Smoothness of Most Convex Curves. Results of  KLEE [4] and 
GRUBER [3] show that most  convex surfaces in ~a are smooth  and 
strictly convex. The proper  analogue of  smoothness for curves on ~ is 
the following: 

The closed Jordan curve C ~ ~ is smooth  at x e C if C possesses an 
angle in x and this angle, measured on the tangent cone of  5 at x, 
equals ~. 

That  a convex curve C ~ ~g possesses an angle at each of  its points 
is an immediate consequence of  its convexity. On the other hand this 
smoothness of  C at some point  does not  automatically imply its 
differentiability there. 

Theorem 1. M o s t  convex  curves in ~ are smooth.  

P r o o f  Let sg c c g  be the set of  all convex curves which are not  
smooth  and dn  ~ d the set of  all curves possessing a point  x where the 
angle is at most  ~ - n-~. Clearly, 
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O(3 

d=Udo 
n=l  

and it suffices to show that dn is nowhere dense in cg for each n ~ ~. 
dn is a closed set. Consider, indeed, a convergent sequence 

{Am} ~ of  curves from d,, ,  each of  which has a point Xm where the m=l 
tangent halflines "t'rn and am form an angle of  measure at most  n - n - 1. 
We may suppose (otherwise we find an appropriate subsequence) that 
{Xm} oo converges to some point x and oo oo {~m}m=l {O'm}m= 1 to two m=l 
halflines z and a starting at x. It is easily seen that, if Am ~ A, then 
x ~ A, the angle ~ u ~r contains (in an obvious sense) the tangent angle 
of  A at x and the measure of  T w ~r does not  exceed n - n - 1. Hence 

A ~W,.  
N o w  we show that cg _ d ,  is dense. Let C be open in ~ and C ~ C. 

By the Lemma, there exists a polygon P ~ C with vertices on C. 
Since the set o f  all conical points o f ~  (i.e. points where the tangent 

cones contain no line) is countable, the vertices of  P could be chosen 
not  to be conical points. 

Le t  ~- be (the measure of) the angle of  P at y; and suppose 

~i ~< ~z - n -1. Consider two points z i~Yi- lYi ,  zisYiYi+l such that 

:  (y ,z3 = 7 -  

I f  ~7 is small enough, the angles at z~ and z; in the triangle y~z;z; are 

arbitrarily close to (z~ - ~Q/2. By replacing the edges Yi- 1 Yi and YiYi+l 
of  P by y~_ 1 zi, zgz[ and z;.yg+l, we get a new convex polygon P', which 
still belongs to C if ~7 was small enough. It is clear that, repeating this 
procedure an appropriate number  of  times, we eventually obtain a 
polygon Q e C with all its angles larger than n - n -  1. Thus Q r dn,  
which proves that cg _ d n  is dense. 

Being closed and having a dense complement,  d~ is nowhere dense, 
which achieves the proof. 

Strict Convexity. A convex curve is called strictly convex, if it 
contains no segments. Contrary to the Euclidean case, it can not  be 
said, for arbitrary 5, that most  convex curves are strictly convex ! Let 
be the boundary  of  the convex hull of  the union of  two congruent 
distinct balls in E3 .5  consists of  two closed half-spheres S and S* and 
an (open) ring R. Every circle C in R is a convex curve on 5;  and the 
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entire ball ~ of  radius e around C in ~ consists (for e small enough) of  
translates of  C. Thus the set of  second category ~ consists o f  convex 
curves none of  which is strictly convex. 

On the other hand, it can not  be said that most  convex curves on 
are not  strictly convex, since for each convex curve C c S, and every 
ne ighbourhood Jff of  C in oK, the set of  those curves of  X which are 
strictly convex is of  second category. Moreover,  if C lies in the interior 
of  S, then there is a ne ighbourhood Y of  C in c.g such that most  curves 
of  ~ r  are strictly convex. 

Let f# be the set of  all closed geodesics of  ~g belonging to cs As 
observed above, the interior int f9 of  f# in cg may well be nonvoid. In 
any case, cg _ int f# is a Baire space. 

Theorem 2. M o s t  curves  o f  cg _ int fr are s tr ic t ly  convex .  

Proof .  Let ~ be the set of  all curves in cg _ int f# which are not  
strictly convex and @, ~ ~ the set of  all curves including a segment of  
length n -~. Since 

oo  

n = l  

it suffices to prove that Nn is nowhere dense in ~ - int f~ for each n e N. 
First, it is clear by Theorems 10.5, 10.5' and 11.3 in [2] that ~n is 

closed in ~. Hence ~ ,  is closed in cg _ int f# too. 
Let (9 c cg _ int f# be open and C ~ (9 - f~. Our Lemma provides a 

polygon P ~ (9 with vertices on C, which is not  a closed geodesic. There 
is a vertex v of  P where P is locally not  a segment. Denote  by rn~, m 2 the 
midpoints  of  the two edges sl, s2 meeting at v. Take a point  w e v m 2 
close to v and a segment w ml. The polygon derived from P, with 
vertices ml and w instead of  v, still lies in (9, has instead of  the edge st 
two edges of  lengths close to half the length of  Sl and is not  smooth at 
m~ and w. By repeating this procedure sufficiently many times we get a 
polygon Q e (9 with all its edge lengths less than n - 1 and nonsmooth  at 
all vertices. Thus Q includes no segment of  length n - 1, hence Q r ~ .  It 
follows that ~ ,  is nowhere dense and @ of  first category in ~ - int fq. 
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