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U N I O N S  O F  T W O  S T A R S H A P E D  S E T S  I N  R 2 

ABSTRACT. Let S be a compact set in R 2. For S simply connected, S is a union of two 
starshaped sets if and only if for every F finite, F _= bdry S, there exist a set G _~ bdry S 
arNtrarily close to F and points s, t depending on G such that each point of G is clearly visible 
via S from one of s, t. In the case where ~ S  has at most finitely many components,  the 
necessity of the condition still holds while the sufficiency fails. 

1.  I N T R O D U C T I O N  

We begin with some definitions. Let S be a set in R d. For points x and y in 

S, we say x sees y via S (x is visible from y via S) if the corresponding 

segment [x, y]  lies in S. We say x sees Y c S via S if x sees all points of Y 

via S; also we say x is clearly visible from y via S if there is some 

neighborhood N of x such that y sees each point of N c~ S via S. The set S is 

starshaped if there is some point p in S such that p sees each point of S via S, 

and the set of all such points p is called the (convex) kernel of S. A compact  
set in R d is called simply connected if its complement has one component  

and finitely connected if its complement has finitely many components. 
A well-known theorem of Krasnosel'skii [2] states that if S is a nonempty 

compact  set in R d, then S is starshaped if and only if every d + 1 points of S 

are visible via S from a common point. Furthermore, a stronger result may 

be produced by replacing points of S with boundary points of S. In [1], the 

concept of clear visibility together with work by Lawrence et al. [3] were 

used to obtain the following Krasnosel'skii-type theorem for unions of two 
starshaped sets in R 2. Let S be a compact set in R 2, and assume that for 

each finite set F ~ bdry S there exist points s, t (depending on F) such that 
every point of F is clearly visible via S from at least one of s, t. Then S is a 

union of two starshaped sets. By allowing F to vary over S (instead of bdry 

S), a characterization theorem can be obtained for unions of k compact 

starshaped sets in a linear topological space. However, a characterization 

theorem in terms of bdry S has not been produced, even in the plane. 
In this paper, the following result will be established. Let S be a compact 

finitely connected set in R 2. If S is a union of two starshaped sets, then for F 

finite, F c bdry S, there exist a finite G _~ bdry S arbitrarily close to F and 
two points a~, b a in S (depending on G) such that every point of G is clearly 
visible via S from one of a a, b~. If, in addition, set S is required to be simply 
connected, the converse holds as well. 

The following terminology will be used throughout the paper: cony S, 
cl S, int S, and bdry S will denote the convex hull, closure, interior, and 
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boundary ,  respectively, for set S. For  distinct points x and y, L (x , y )  will be 

the line through x and y and R(x,y)  will be the ray emanat ing from x 

through y. For  x ¢ S, cone (x, S) will represent k.J {R(x, s): s e S}. Finally, 

D~(p) will denote the set of all points at distance at most  e from p in R 2. The 

reader is referred to Valentine [6] and to Lay [4] for a discussion of these 

concepts and to Nadler  [5] for information on the Hausdorff  metric. 

2. MAIN RESULT 

T H E O R E M  1. Let  S be a compact, finitely connected set in R 2. Assume that 

S is a union of  two starshaped sets at a, b in R 2. Then for  Ffini te ,  F ~ bdry S, 

there is a finite G ~_ bdry S arbitrarily close to F (in the sense of  the 

Hausdorff  metric) such that each point o f  G is clearly visible via S f rom one of  
a, b. 

Proof. Let x E F and let N be any spherical ne ighborhood of x. We must 

find some point y in N ~ bdry S with y clearly visible via S from a or b. In 

the case where there is some point Yo of N c~ bdry S not  visible from one of 

a or b (say a), then there is a ne ighborhood N '  of Yo, N '  _~ N, such that  no 

point of N '  c', S sees a via S. Then b sees via S each point of N '  c~ S, and Yo is 

clearly visible f rom b. Thus the theorem is satisfied. 

Therefore, for the remainder of the argument  we may assume that no 

such Yo exists. Then for each y in N c ~, bdry S, both a and b see y via S. If 
N m S ~_ bdry S, then point x itself satisfies the theorem. Hence we assume 

that N meets int S. Moreover ,  if a sees N (7 int S via S or if b sees N ~ int S 

via S, again we are through,  so assume that neither one occurs. 

For  the moment ,  let us suppose that points a, b, x are distinct. Then 

without  loss of generality we may assume that N has been chosen so that a, 

b ¢ c l N .  
The following lemma will be useful. 

L E M M A  1. I f  s ~ N ~ int S and s is not visible via S from b, then there is a 

neighborhood M s of  s, M~ ~_ N ~ int S, such that a sees via S all of  cone (b, 

Ms)c~ N. 
To prove the lemma, choose a disk M~ ___ N ~ int S such that b sees via S 

no point of Ms. Then b sees via S no point of V = ( c o n e ( b , M , ) ~  

conv(b  ~ M~)) c7 N, so no point of V is in bdry S. Likewise, no point of V 

is in ~S ,  since this would force a boundary  point of S in the convex set 

V u Ms, impossible. Hence V _c int S, so V u Ms - int S. Since b sees via S 

no point of V w Ms, a must see via S all points of V u M s. 
Likewise, examine rays R(t, b) for t in M~. Since b sees via S no point of 

Ms, each ray R(t, b) meets bdry S at a first point t '  ~ (t, b). Moreover,  since b 
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sees via S all points of (bdry S)c~ N, t ' ¢  N. This implies that (b, t)c~ N 

int S and conv(b, Ms) ~ N ~ int S. Combining this with our earlier result, 
cone(b, Ms) c~ N _ int S. Clearly, b sees via S no point of cone(b, Ms) ~ N, so 
a sees all these points via S. The lemma is proved. 

To finish this portion of the proof, there are three cases to examine. 

Case 1. Assume that the points a, b, x are noncoUinear. Let rays 

R(a,x)  ,.. [a,x) and R(b,x), ,~ [b,x)  meet bdry N at points a 0 and bo, 
respectively. Label the open half planes determined by lines L(a, bo) , L(b, %), 

L(b, x), L(a, x) so that x • L(a, bo) + ~ L(b, %)+, a • L(b, x)+, b • L(a, x)+. 

Define N o = N c~ L(a, bo) ÷ c~ L(b, ao) + . (See Figure 1.) 

We assert that point b sees via S all points of No c~ int S ~ cl(L(b, x)_). 

To show this, assume on the contrary that for some s • N o n i n t S  

c~ cl(L(b, x) ), [b, s] fl; S. Then by Lemma 1, there is a neighborhood Ms 

of s, M s _c N c~ int S, such that a sees via S cone(b, Ms) ~ N. Select a point 

t • N o c~ M s c~ L(b, x)_.  Then R(b, t) ~ (x, %)  ~ Q,  fording x to lie in int 
conv(a w (R(b, t) c-, N)) ~_ int S, contradicting the fact that x • bdry S. The 
assertion is established. 

By a symmetric argument , the point a sees via S all points of 

N o c ~ i n t S ~ c l ( L ( a , x ) _ ) .  Since both a and b see via S all .points of 

(bdry S) c~ N, this implies that b sees via S all of No ~ S c~ cl(L(b, x)_ ) and a 
sees via S all of No c~ S ~ cl(L(a, x)_ ). 

b o  130 

13 b 

Fig. 1. 
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Therefore, if N o n L ( b , x ) -  meets bdry S at some point y, then y is 

clearly visible via S from b, and y satisfies the theorem. A parallel statement 

holds if N o ~ L ( a , x ) _  meets bdry S. Hence we may assume that 

No ~ L(b, x)_ ~ bdry S = No ~ L(a, x)_ ~ bdry S = Q. 
This leaves two possibilities: either (N O ~ { x } ) n b d r y  S = Q or 

(N O ~ {x})~  bdry S is a nonempty  subset of W = cl(L(a, x ) + ) n  cl(L(b, x)+. 

If the first occurs, then ( [ a , x ) ~ N o ) w ( [ b , x ) n N o )  ~ _ intS, and we shall 

show that N O ~ S = Q. Otherwise, for q e No ~ S and for a' e [a, x) ~ N O 

and b ' s  [b,x)  c~No, at least one of (a',q), (b',q) would meet 

(bdry S ) ~  N O ~ {x}; impossible. Thus N O ~_ S, forcing x to belong to int S; 

a contradiction. 
Thus the second possibility must occur. Select y e (N O ~ {x}) ~ bdry S c 

W. Then either x and b are on opposite sides of L(a, y) or x and a are on 

opposite sides of L(b, x) (or both). Assume x ~ L(a,y)_.  

Then a sees via S all of N O ~ S ~c l (L(a ,y )_) :  Otherwise, by Lemma 1, a 

fails to see some r ~ N o ~ S ~ L ( a , y ) - ,  and b sees R ( a , r ) ~ N  via S. 

However,  R(a ,r )c~N meets R ( b , y ) ~ [ b , y ] ,  so y ~ i n t c o n v ( b w ( R ( a , r )  

~ N )  _c intS;  impossible. Hence a sees N o ~ S ~ c l ( L ( a , y ) _ ) ,  x is clearly 

visible from a via S, and x satisfies the theorem. 

Case 2. Assume that a, b, x are distinct collinear points. In the case where 

there is some point  y in N ~ b d r y  S ~ L ( a , b ) ,  we select a spherical 

ne ighborhood  Ny of y, Ny ~_ N. The argument  f rom Case 1 may be applied 

to y and N~. to complete the proof. In the case where no such y exists, then 

either N c~ S ~_ L(a, b) (and x itself satisfies the theorem) or N c~ S ~ L(a, b) 

is a nonempty  subset of int S. Assume that  the latter occurs. Then for an 

appropriate  labeling of halfplanes, N c~int S c~ L(a, b)+ # Q.  Moreover,  

since N ~ b d r y S ~ L ( a , b ) +  = Q, it follows that N ~ L ( a , b ) +  ~_S. By 

similar reasoning, since x ~ bdry S, N ~ S ~ L(a, b)- = (7). 
If a sees via S all points of N' c~ L(a, b)+ for some ne ighborhood  N '  of x, 

N '  _~ N, then the argument  is finished. Otherwise, we will show that b has 

this property. Choose  v I ~ N c~ L(a, b)+ such that [a, v i i  ~ S. Then a sees 
via S no point of R(a, vl)c~ N ~_ S, so b necessarily sees all these points via 

S. If b sees via S all points of N in the open convex region bounded by 
R(b, v~) and R(b, x), again the argument  is finished. Otherwise, there is some 

u in this region not seen by b. Then a sees u. However,  by our  assumption 

for a, there is some v 2 in N and on the x side of R(b, u) with [a, vz] ~ S. 

Then I-b, v 2] _~ S. Moreover ,  since b sees v~ and v 2 but not u, there is at least 

one bounded  componen t  K 1 of ~ S  in the open convex region bounded  by 

R(b, Vl ) and R(b, v 2). (In fact, K 1 _t int  conv {b, vl, v2 }.) If b fails to see some 

point of N in the open convex region bounded  by R(b, v2) and R(b;x), 
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repeating the argument  above, we obtain a bounded  componen t  K 2 of ~ S  

in this region, K 2 ~ K 1. Since ~ S  has finitely many  components ,  by an 
obvious induction, in finitely many steps we obtain a point v, in 

N c~ L(a,b)+ such that  b sees via S all points in the open convex region 

bounded by R(b, v,) and R(b, x). Hence b has the required property, and the 

theorem is satisfied. 

Case 3. It remains to examine the case in which points a, b, x are not 

distinct. ,Certainly if a = b, then S is starshaped, so we may assume that 
a 4: b. If either a or b is x, assume a = x and select a spherical neigh- 

borhood  N of x such that b ¢ c l N .  If N contains a point y in 

bdry S ~ L(b, a), we may  select a spherical ne ighborhood Ny of y, Ny _c N, 

a ¢ cl Ny, and apply the argument  from Case 1 to y and N r to complete the 

proof. If N c~ bdry S ,,~ L(a, b) = Q,  then either N ~ S ~_ L(a, b) (and x satis- 

fies the argument),  or N c~int S ¢ Q. In the latter case, it is not  hard to 
show that one of N c~ L(a, b)+, N ~ L(a, b)_ is a subset of S, while the other 

is disjoint f rom S. Again x satisfies the argument.  The theorem is 

established. 

C O R O L L A R Y  i. Let S be a compact, finitely connected set in R 2. Assume 

that S is a union of two starshaped sets. Then for F finite, F c_ bdry S, there 

exist a finite G ~ bdry S arbitrarily close to F and two points a6, b G in S 

(depending on G) such that every point of G is clearly visible via S from one of 

a G , b 6.  

It is interesting to observe that both the theorem and its (weaker) 

corollary fail without  the requirement that S be finitely connected. Consider 
the following example. 

E X A M P L E  1. Let U denote the unit square in R z having vertices 

t o = (0,0), t 1 = (1,0), t 2 = (1, 1), t 3 = (0, 1). Let a = ( - 2 , 0 ) ,  b = (3,0), and 

let 11", and V b be line segments perpendicular to the x axis at a and b, 

respectively. Define T = V a u V b ~ conv(U w {a, b}). (See Figure 2.) 

Define triangular regions in T ~ U as follows. Let u 1 be a segment from b 

to some point of (a, t3), and let T 1 be the triangular region with edges on ul, 

(a, t3] , and [t3,t0).  Let u 1 ~ ( t l , t 2 )  = {t2} , and let w I be a segment from a 
to some point of (b, t~). Define T'I to be the triangular region with edges on 

wl, (b, t~], and It2, tl). By an obvious induction, we obtain sequences of 
triangular regions {T.}, {T '} ,  n >~ 1. 

Finally, define S -- T ~ w {int(T, w T',): n >/1 }. Observe that each point 

of S sees via S either a or b, so S is a union of two (compact) starshaped 

sets. However,  for x = (½, 0), there is no  boundary  point of S near x which is 
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~a t2 
(0.1) (1.1) 

o (0.01 (1/2.01 (1.01 b 
t o x t I 

Fig. 2. 

clearly visible from a or b. Thus the theorem fails. Moreover, for 

x , ~ V  a ~ {a}, XbeV b ~ {b}, and F = {X,X,,Xb} there are no G, a~, b~ which 

satisfy the corollary. 
Of course, if we do not require G to lie in bdry S, the finite connectedness 

of S is not needed. The proof is elementary. 

3. C O M M E N T S  ON THE MAIN RESULT 

It is interesting to ask how restrictive is the condition of finite connected- 

ness in Theorem 1 and how often the theorem is true without this 

condition: We can answer the question by considering the Baire space 11 of 
all unions of two compact  starshaped sets, endowed with Hausdorff dis- 

tance. This 11 has the obvious decomposition tI = 1I 1 ~ 112, where 1I ~ is 
the family of all connected unions of two compact  starshaped sets and 

112 = 15 - U 1. Both 111 and H 2 are of second category in 1I. 

In [7] it is proved that in 'most '  (which always means 'all, except those in 
a set of first Baire category') members o fU 1 the two starshaped sets meet at 

infinitely many points. By results in [7], most compact  starshaped sets have 

single-point kernels. Similarly, in most members of 1I 1, both starshaped sets 

have single-point kernels. Using a proof in [7], we conclude that for most 
members of H1 the complement has infinitely many components. 

While the condition of finite connectedness in Theorem 1 is not fulfilled 
by most members of U 1, its conclusion is true in more than most cases. 

T H E O R E M  2. For all members S of 11 except those in a nowhere dense set, 

it is true that for any choice of two points in the kernels of the two starshaped 

sets forming S (one in each) and for each finite set F c_ bdry S we may find a 
finite set G ~_ bdry S arbitrarily close to F such that each point of G is clearly 

visible from one of the two points. 
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P r o o f  F r o m  the p roof  of Theo rem 1 it is clear that  its conclusion is true 

wi thout  the condi t ion of finite connectedness if there are no c o m m o n  

boundary  points  of the two s tarshaped sets S~ and $2 forming S, collinear 
with a and b (in the nota t ion  of Theorem 1). 

We shall show tha t  for all S ~ U except those in a nowhere  dense set, for- 

any choice of two points a, b in the kernels of the two s tarshaped sets S~, S 2 

forming S (one in each) there is no point  in bdry S a c~ bdry S 2 collinear with 
a and b. 

Let O be an open set in 1.[ and choose S E O with S = S 1 k..) $2,  where $ 1 ,  

S 2 are compac t  s tarshaped sets in a, b respectively and a ¢ b. Consider  the 
disk Dr(c ) a round  the midpoint  c of [a, b]. Obviously,  for given e > 0, r can 
be chosen such that  

and 

6($1, S 1 ~ cone(a, Dr(c)) < e 

6(S 2, S 2 ,,, cone(b, Dr(c)) < s. 

Consequently,  6(S, At) < e, where 

A r = (S I ~ cone(a, Dr(c)) w (S 2 ~ cone(b, Dr(c)). 

Thus, A r ~ O for suitable r. 

N o w  choose finite sets Q~, Q2 ~ Ar such that  

S'1 = U [a, z],S'2 = • [b, z] 
zEQ 1 zEQ2 

be not  line segments  and close enough to S i (i = l, 2), so that  S' 1 u S~ e O. 
Evidently, there is a positive c~ < r/2 such that  for any compac t  s tarshaped 

set S* with 6(S*, S'1) < c~, the kernel  lies in Dr/z(a ). Combin ing  this with an 

analogous  a rgumen t  about  S~, we find a positive c~ < r/2 such that  for any 

S + e l l  with 6(S+,S'~ w S 2 ) < ~ ,  S + ~ O  and the two kernels of the star- 

shaped sets S;- and S~- forming S + lie in Dr/z(a ) and Dr/2(b ) respectively. 

Since S' 1 ~ S 2 is disjoint from Dr(c ), no such S + meets Dr_,(c ). Since 
r/2 < r - ct, for simple geometr ic  reasons no three points, one in the kernel 
of S +, ano ther  in the kernel  of S~- and the third in S;- ~ S + 2 , are collinear. 
Since this happens  for all members  of O in a ball a round  S' 1 u S 2 of radius 
ct, the theorem is proved.  

4. CHARACTERIZATION 

Observe  that  the converse of Theo rem 1 can be disproved by a minor  
adap ta t ion  of [1, Ex. 1]. 
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EXAMPLE 2. Let S be the compact set in Figure 3, including the broken- 
line segments and excluding the triangular regions. Only the boundary 
points x and y fail to be clearly visible from one of a, b, yet S is not a union 

of two starshaped sets. 

T H E O R E M  3. Let S be a compact simply connected set in R 2. Assume that 

for every finite set F in bdry S there exist a finite set G ~_ bdry S arbitrarily 

close to F and points s and t (depending on G) such that every point of  G is 

visible via S f rom at least one of  s, t. Then S is a union of  two starshaped sets. 

Proof  By comments following [1, Ex. 1], it suffices to prove that for every 

finite set F in bdry S there exist points s and t (depending on F) such that 
each point of F is visible via S from s or t. Using our hypothesis, for each n 
there exist set G, ~ bdry S within 1In of F and points s,, t, (depending on 
G,) such that each point of G, is visible via S from s, or t,. By standard 
arguments, we pass to subsequences {S,tk)}, {t,c~l } such that {s,(k~ } converges 
to s and {tn(k) } converges to t. Then it is easy to show that each point of F 
sees via S either s or t, and the theorem is proved. 

COROLLARY 2. Let S be a compact, simply connected set in R 2. Then S is 

a union of  two starshaped sets if and only if for  F finite, F ~ bdry S, there 
exist a set G ~ bdry S arbitrarily close to F and points s, t (depending on G) 

such that each point of  G is clearly visible via S f rom one of  s, t. 

The corollary remains true if clear visibility is replaced by visibility. 

I 
o b 

Fig. 3. 
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