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HOW MANY SETS ARE POROUS? 
TUDOR ZAMFIRESCU 

ABSTRACT. The notion of a a-porous set is often used to sharpen results on 
sets of first Baire category or of measure zero. It essentially uses the related 
notion of porosity. We find out in this note that there are quite a few porous 
sets: In complete convex metric spaces, most totally bounded closed sets are 
porous! Then we strengthen this result for the case of a Banach space. 

Let (X, d) be a complete, convex metric space. The convexity means that for any 
distinct points x, y E X there exists a third point z E X such that d(x, z) +d(z, y) = 
d(x,y). It is known (see, for example, [4, pp. 314, 315]) that the space (B(X),6) 
of all bounded closed subsets of X, endowed with the Hausdorff metric 6, is also 
complete. In B(X), the subset B of all totally bounded closed sets M (for which, 
by definition, VE > 0, 3 a finite set F C X such that b(F, M) < e is closed, hence 
(B, 6) is complete. 

For x E X and M E B(X) let 

K(x, p) = {y E X: d(x, y) < p}, 

K?(x,p) = {y E X: d(x,y) < p}, 

K(M,p) = {N E B(X): b(M,N) < p}. 

For G c X, G means the closure of G. 
A set M c X is called porous with coefficient a if Vx E X and E > 0, 3y E K(x, E) 

such that 
K(y, ad(x,y)) nfM = 0. 

A countable union of porous sets (with various coefficients) is called a-porous. A 
countable union of porous sets with coefficient a is said to be a-uniformly a-porous. 

We say that most (or nearly all, or a-nearly all) elements of a Baire metric space 
have a certain property if those elements not enjoying it form a set of first Baire 
category (or a a-porous set, or an a-uniformly a-porous set). 

Besides the many old and new results in analysis involving most elements of 
various spaces, there are recent similar results in the geometry of convex bodies 
(for a survey see [2 or 6]). While several results on nearly all elements of certain 
spaces already appeared in functional analysis, [7] contains the first similar results 
so far in the geometry of convex bodies. 

P. Gruber [3] proved in Euclidean spaces that most compact sets have measure 
zero. The fact that they are also nowhere dense is implicitly contained in C. Kura- 
towski's book [4]. So, the following natural question arises: Are most compact sets 
in Rn porous? The answer is yes, as the following theorems show. 
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THEOREM 1. Let (X, d) be a complete convex metric space. Then, for any 
a E (0, 1), most totally bounded closed sets in X are porous with coefficient a. 

PROOF. Let 

Bn= {M E B: 3y e X s.t., Vx E K(y, n-1), K(x, ad(x,y)) nfM m 0}. 

Obviously, Un Bn is the set of all elements of B which are not porous with coefficient 
a. Thus, to prove the theorem it suffices to show that Bn is nowhere dense for every 
n. 

Let 0 be an open set in B. Consider the finite set F E O. Let 

= min{min{d(x, y): x, y e F, x 54 y}, n-$ }. 

Put 

xEF 5 a 

We claim that, Vy E X, 3x E K(y, n-') such that 

K(x, ad(x,y)) nfG = 0. 

This is obvious if y ? G. Suppose now y E G. Let xo, xl E F be such that 

d(y,xo) =min d(y,x), d(y, x) min d(y, x) 
xEF xEF\{xo} 

Then necessarily y e K(xo, (1 - a) /(5 - a)). 
We have 

(*) d(y,xl) > d(xoxl) - d(yxo) > 1a 4 
5 -a 5- a 

'Since X is complete and convex, by Menger's theorem [5], there exists a geodesic 
path P joining y with xi of length d(y, xi). Let x be the point of P verifying 

d(x, y) = min{ 1 d(y, xi), n-}. 

We have d(x, xi) > d(x, xi) for every xi E F with i :$ 0. Suppose, indeed, d(x, X2) < 

d(x, xl) for some x2 E F. Then 

d(y, x2) < d(y, x) + d(x, X2) < d(y, x) + d(x, xi) = d(y, xi), 
which contradicts the choice of x1. 
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Obviously, x e K(y,rr1). Suppose z E K(x, ad(x,y)) n G. Then there is an 
xi e F such that 

d(z, xi) < 
a 

If i = 0, then 

d(x, y) < d(x, z) + d(z, xo) + d(xo, y) < ad(x, y) + ? ( + 
a 

5 -a 5- a 
whence d(x, y) < 2&(5 - a). 

Now, either d(x, y) = 4 d(y, x1), which implies d(y, x1) < 4/(5 - a), thus con- 
tradicting (*), or d(x, y) = n-1 > (, which yields ( < 24/(5 - a), contradicting the 
choice of a. If i #& 0, then 

d(x, y) < d(x, xi) < d(x, xi) < d(x, z) + d(z, xi) < ad(x, y) + la 

whence d(x,y) < (/(5- a) and either d(x,y) = 2d(y,xi), whence d(y,xi) < 
24/(5- a), in contradiction with (*), or else d(x,y) = n-1 > (, whence < 
(/(5 - a), which again contradicts the choice of a. 

Consider now any set M e 0 verifying 6(M, F) < (1 - a)/(5 - a). Clearly, 
M c G and for every y e X, there is an x e K(y, n-1) such that 

K(x, ad(x,y)) n M = 0. 
Therefore M ? B,. Hence Bn is nowhere dense and the theorem is proved. 

THEOREM 2. In a Banach space X, for any a, 3 > 0 with 2a?+f < 1, a-nearly 
all bounded closed sets are porous with coefficient 3. 

PROOF. We prove that 

Bn = {M e B(X): 3y E X such that Vx e K(y, n-1): K(x, /llx - yll) n M 5 0} 

is porous with coefficient a. 
Let M E B(X) and r E N such that M C K(0, 2r). Then choose a support 

functional of K(O, 2r), i.e. a nonidentically zero linear functional f on X such that, 
letting ,i = supf(K(0,2r)), we can find a point x1A in K(0,2r) n f-1(,O). (By 
the second Bishop-Phelps theorem, the support functionals of any bounded closed 
convex set lie densely in X*, see [1]. In our case a simple corollary of the Hahn- 
Banach theorem suffices.) Of course, 

jixiAll = 2r, f(K(O,2r)) = 

Take v2o =-, -A, Vl .. *,iVnr = O? .. * * 72nr = 0 with v, - v,_1 = O/nr. Let 
2nr 

L= U K(x,rn-1)nUf (Lvi). 
xEM i=O 

We claim that, for any x E M, there exists x* E K(x,n-1) n Ui f1(vi). Indeed, 
since -,u < f(x) < ,i, there is an index i satisfying vli- < f(x) < vi. Suppose 
vi - f(x) < f(x) - vi-1; the other case is similar. We take 

X=X+ vi -f(x)x 
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Then 

iix 
Vj-f( ix 11<V ,t.2r = n 

and 

f(x*) = f(x) + i - f (x)f(x') =Vi. 

Hence 
Mc U K(x,n-1), L c U K(x,'n-), 

xEL xEM 

which yield &(M, L) < nr-. 
Consider now the ball K(L, a& (L, M)). Since &(L, M) < n-1, we have ab(L, M) 

< a/n. Take Q e K(L, a& (L, M)). Let 

Si = f -1 v[^i- _ a 
I vi + 

a 
1 ] 

and S = U2=n Si. 
Then Q c S. Indeed, let q e Q. There exists x e L such that lIq - xll < a/n. 

Let vi = f(x) and suppose f(q) > vi The "<" case is analogous and "=" is clear. 

f(q-x) = 2if (-(q-x)) 

where 112nr(q - x)/all < 2r; whence f (2nr(q - x)/a) < ,u and f(q) < vZi + a,/2nr. 
We now show that Q ? Bn. Take any y e X. If y ? S, it suffices to remark that 

Q c S. If y E S, then y e Si for some index i. Assume, for instance, f(y) > Zi; 
the case f(y) < vi is similar. Consider 

1 
X = Y + 2rxilr 

We have 
jj x- yj 1 

ixt j =n-1 
2nri 

hence x e K(y, n-1). We prove that K(x, 0lhx-yIl)nS = 0. Let z E K(x, Allx-yll). 
Then lIz - xII < f/n. Also, 

f(z-x) = 2rifr(A3(zx)) 

Since 

-x< f ( 
r 

(z-x)) < , 

we have 
-n < f (z-3X) < A 

It follows, using 2a + / < 1, that 

f () >f () - - ? ay ~ 
X)-~ > 14? - > 14 

2nr 2nri 2nr - 2nri 2ri ? 2rir' 
and 

f (z) ? ()+ (x) ? + f 1 z 3 + <v? + (1?a?fl) 2nr = ( ? 2rr nrf<i + 2nri 
< ' (2-a) =vi? /1 =/ _ _1 2nr nr 2nr = -2rir' 

which shows that z ? Si U Si+1 and therefore z ? S. This completes the proof. 



HOW MANY SETS ARE POROUS? 387 

THEOREM 3. In a Banach space X, for any a, f > 0 with 2a?+f < 1, a-nearly 
all totally bounded closed sets are porous with coefficient 3. 

The proof is identical to that of Theorem 2. We only have to add the obvious 
remark that, if M is totally bounded, then L is totally bounded too. 

ACKNOWLEDGMENT. Many thanks are due to the referee, who kindly reported 
an error in the proof of Theorem 2. 
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