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INTRODUCTION 

Every planar convex curve such that no rectangle has exactly three vertices on it 
is a circle. 

V. Mizel has asked whether the preceding characterization of the circle is 
true. A. S. Besicovitch [1] presented a not quite elementary proof and invited 
his audience to look for a more elementary one. Soon after, L. Danzer [2] 
provided such a proof and invited his readers to verify whether the 
characterization remains true when non-convex curves are also allowed in the 
competition. I am glad to accept this invitation. Moreover, we shall consider 
the following weaker form of the above property: 

We say that a set in ~z has what we shall call the infinitesimal rectangle 
property if there is some t > 0 such that no rectangle with sidelengths ratio at 
most e has exactly three vertices in the set. 

For e = 1 this property becomes the one used in the above characterization, 
which we shall call the global rectangle property. Of course, decreasing ~ means 
weakening the corresponding infinitesimal rectangle property. 

Our results are: 

T H E O R E M  1. Every Jordan curve satisfying the infinitesimal rectangle 
property is convex and has constant width. 

T H E O R E M  2. Every analytic curve o f  constant width satisfying the infini- 
"tesimal rectangle property is a circle. 

These two results enable us to present our main characterization theorems. 
Combining Theorem 1 with the available characterization using the global 
rectangular property we have at once: 

T H E O R E M  3. Every Jordan curve satisfying the global rectangle property is 
a circle. 

Combining Theorems 1 and 2 we get immediately: 

T H E O R E M  4. Every analytic Jordan curve satisfying the infinitesimal rect- 
angle property is a circle. 

Thanks are due to the referee for his careful criticism. 
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P R O O F S  

We say 'locally at x' when we mean 'in any neighborhood of x'. We also say 
that a point y is 'close to x' if, for any neighborhood N of x, we can arrange that 
y ~ N. We denote by A~y the circular disk with x y  as a diameter. 

P R O O F  OF T H E O R E M  1. Let C be a Jordan curve with the infinitesimal 
rectangle property and suppose it is not convex. Then C \ b d  conv C ¢ Q .  Let 
C* be a component  of C \bd  conv C (this is a Jordan arc with its endpoints 
removed) and let a, b be the endpoints of C* (see figure 1). 

Let S be the line with re_spect to which a and b are symmetrical. Let e be a 

furthest point of C from b. We may suppose that e and a lie in the same closed 
halfplane determined by S, because otherwise we have a symmetrical situation 
with respect to a and a furthest point of C from a. 

Let L be the line through b orthogonal to be. We prove that, in some 
neighborhood of b, C lies in the closed halfplane B with boundary L which 
contains a. Suppose, on the contrary, C meets G B locally at b. Consider the 
open halfspace E with b, e E bd E and a ¢ E. We distinguish three cases: 

CASE 1. C meets E locally at e. Take a line parallel to L in GB. Chosen 
appropriately, this line meets C for the first time in a point b' ~ CB, close to b. 
The parallel line through b' to be meets C for the last time in e' ~ E, close to e. 
The halfline starting at e', parallel to L and intersecting CE, meets C again in 
a point e" close to e, because C lies in the circular disk D with center b and with 
e on its boundary. Then the rectangle b' e' e" x has x ~ C, and a contradiction is 
obtained. 

CASE 2. The arc ae c C (not containing b) mee t s  A b e \ E  locally at e. If e 1 is 
chosen sufficiently close to e in ae c~ Abe \E  , then Abe ~ m e e t s  the arc e-~ (not 

containing a) close to e, say in e 2 (or we are in Case 1). The rectangle e le2bx  has 

x ¢ C, contradicting the hypothesis. 

Fig. 1. 
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CASE 3. The arc ae avoids E and Abe in some neighborhood of  e. Take a line 
L' c CB parallel to L and cutting C. Let q be a point of L' and consider the 
quadrant Q(q) of apex q, with a boundary halfline on L', and such that 
L n  Q(q)= (23 and S c~ Q(q) is unbounded. Let b 1 be the furthest point q of 
L' n E from S n L' such that int Q(q) n C = Q.  For appropriately chosen L', 
the point b~ is close to b. The line through e orthogonal to b 1 e meets ae again in 
some point e 3 close to e, because C c D. Then the rectangle bl ee3 x has x ~ C; 
a contradiction! 

Let F be the open halfplane containing a with the line through b orthogonal 

to ab on its boundary, and let f be a furthest point of C n F from the line 
through a and b. 

Case I. f ( sbdF .  Let b '~ C \ C * ,  close to b. Then the halfcircle b ' f c  bdAb, I 
which meets ab also meets C* in a point b", close to b. Then the rectangle 
b' b" fx  has x ¢ C, which is impossible. 

Case II, f ~ bd F. In this case, let d be a furthest point of C \ F  from a. Let 

K be the line through a orthogonal to ad. Exactly as in the case orb and L, one 
shows that in some neighborhood of a, C ties in the closed halfplane with 
boundary K which contains b. 

Now, if 9 is a furthest point of C \ F  from the line through a and b, we 

obtain a contradiction with respect to a and 9, exactly as in Case ! above where 
a contradiction was obtained with respect to b and f .  

Thus it is proved that C is convex. 

To finish the proof it remains to show that C has constant width. 

It is true that the proof in [2] carefully avoids using the infinitesimal 
rectangle property even in showing that a convex curve with the global 
rectangle property has exclusively double normals. However, a few lines suffice 
to give the desired version. 

Let mn be a chord of C and M be a supporting line at m orthogonal to mn, 
but suppose that the line through n orthogonal to mn does not support C. If 
{m} = m c~ C, take a line m '  parallel to m such that m '  n C = {m', m"}, the 
two points being close to m for suitable M'. One of them, say m', does not 
belong to ran. The line through m' parallel to mn intersects C again in a point n' 
close to n. Then the rectangle m" m' n' x has x q~ C. If {m} ~ M c~ C, then we 
simply take m' ~ M n C\{m} and see that the rectangle m'mnx has x ¢ C for m' 
sufficiently close to m. The contradiction obtained shows that every normal is 
a double normal. 

Now it is known that a convex curve whose normals are all double normals 
is of constant width (see, for example, [1]), and the proof is finished. 

P R O O F  OF T H E O R E M  2. Let 7(x) be the curvature at x of the analytic 
curve C of constant width w. Let x* be the point on C diametrically opposite to 
x. It is well known that 7(x) -~ + 7(x*) -~ = w for all x ~ C .  Suppose C is not 
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a circle. Then 7(Xo) ~ 2/w for some x o ~ C, say y(Xo) < 2/w. Then ~(x~) > 2/w 
and there exists a point y ~ C  with 7 (y)=  y (y* )=  2/w such that, in any 
neighborhood of y, there are points x to the left ofy  with ~(x) > 2/w and points 
x'  to the right ofy with 7(x') < 2/w. The analyticity of C excludes the possibility 
that ~'(y,) = 0 for some sequence { y,}Oo= 1 convergent to y, except for the case 
7'(Y) -= 0 which is, however, impossible. Thus ~ is monotone on each one of 
two arcs to the left and right of y: more precisely, there are an arc yC~y and an 
arc ; )2  on C such that ~ is decreasing on both arcs, so in fact ~ is decreasing on 

/ 'h g", 
Yl Y2. For  any x e y  1 Y2, consider the disk D x = Ax**. The inequality 7(x) > 
2,~,w vahd on Yl Y\{ Y} yields yl s mt Dy and the inequality 7(x) < 2/w valid on 
Y'f~2\{Y} yields y CDx. Since D~ ~ Dy_ as x ~ y an YYz, there is some point 
z ~ YY2 such that Yl s Dz and yet y ¢ D z. Let t ~ y~y c~ bd D~. We claim that y~y 
and bd D z are not tangent at t. Indeed, if they were tangent, 7(x) > 2/w for all 

t"h 
x ~ty implies ty ~ Dz, which contradicts y ¢ D~. 

For  appropriately chosen yl and Y2, z and t are close to y, whence the vertex 
u of the rectangle ztz*u must lie on C and, since the diagonals are equally long, 
tu must be a diameter of C. It follows that this diameter is not orthogonal to 
C at t, and a contradiction is obtained. 

O P E N  P R O B L E M S  

I invite the readers to verify whether indeed the infinitesimal rectangle 
property characterizes the circle among all convex curves of constant width; in 
other words, to reprove Theorem 2 without the analyticity condition. 
I conjecture this to be true. One should also try further to extend the 
characterization (global or infinitesimal). So, for example, is the circle 

characterized by the above properties among all planar continua different 
from a Jordan arc? 

Finally, I conjecture that the same infinitesimal or global rectangle property 
characterizes in ~a the spheres of dimension less than d. 
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