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TOO LONG SHADOW BOUNDARIES 

TUDOR ZAMFIRESCU 

(Communicated by William J. Davis) 

ABSTRACT. It is shown that, in the sense of Baire categories, most d- 
dimensional convex bodies have infinitely long shadow boundaries if the light 
comes along one of many (d - 2)-dimensional subspaces. This reveals (once 
again!) a striking contrast between the categorical and the measure-theoretical 
points of view. 

This note only adds to several strange properties that most convex bodies enjoy 
(see the survey article [5]) a new one regarding their shadow boundaries. When 
we say "most" convex bodies, we always mean "all of them except those in a set 
of first Baire category". Roughly speaking, we discover that, while most convex 
bodies and their shadows are smooth, most of their shadow boundaries are terribly 
nonsmooth, in contrast to the title of [3]! To be more precise some definitions are 
needed. 

Let X be the space of all convex bodies in Rd. Equipped with Hausdorff's metric, 
X is a Baire space. The following result due to V. Klee [2] and rediscovered by P. 
Gruber [1] and others is fundamental: 

PROPOSITION. Most convex bodies are smooth and strictly convex. 

For a strengthening of the Proposition using the notion of porosity, see [6]. 
Let %k be the grassmannian manifold of all k-dimensional linear subspaces of 

Rd. For any a~ E K-2, let P,, E %2 be orthogonal to a. Now, for any a E 'd-2 and 
K E X, let p,,: K -- P,, be the orthogonal projection. If bd K contains no line- 
segments parallel to a, P, 11bdpa(K) is single-valued and continuous, where bdX 
means the relative boundary of X (the boundary in aff X). The Jordan curve 

F (K, ce) = p, 1 (bd pc, (K) ) 

is called the shadow boundary of K along a. Such a shadow boundary will be called 
singular if all its tangent lines (if any) are parallel to a. 

The preceding notions and following results may be formulated for %k (1 < k < 
d - 2) instead of '?d-2. But on one hand there are obvious complications due to 
the fact that the new "shadow boundary" is no longer a curve, and, on the other, 
the interesting pathological behavior (see also Remark 3 at the end of this paper) 
is already well seen in case k = d - 2. 

THEOREM 1. Let c e Kd-2. For most K E X, F(K, a) is singular. 

PROOF. Since, by the Proposition, the space %+ of all convex bodies without 
line-segments parallel to a on their boundaries is residual in X, it makes sense to 
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speak about F(K, a) and it suffices to show that, for most K EE X+, F(K, a) is 
singular. 

At any point x E Ed, consider the cone 

Kx(p) = {v E Rd: 3w E a with (v-x,w) lv- xll-l llwll-l > 1-p} 

and let 
Lx (n) = Ed\ int Kx (n-) 

If a shadow boundary F(K, a) is not singular then we can find a point x in 
F(K, a) with F(K, a) c Lx(n) for some n E N. We have to show that the set 
X* of all convex bodies K EE X+ with nonsingular F(K, a) is of first category in 

0+ But where X, denotes the set of all K E X+ admitting an 
x E F(K, a) with F(K, a) C L(x(n). Xn is closed. Indeed, let K, E Xn, K, -) K. 
Suppose the sequence of points x? E K, with F (K, a) c L,, (n) converges (otherwise 
choose a subsequence) to some point x E K. Then L,, (n) converges (in an obvious 
sense) to Lx(n). Suppose there exists some y E F(K, a)\L,(n). Let V be a ball 
around y disjoint from Lx(n). Clearly, for some i the supporting hyperplane of K, 
parallel to (and similarly situated as) that of K at y touches K, at a point of V, 
and Lx, (n) is still disjoint from V. Thus F(K,, a) 0 L (n) and a contradiction is 
obtained. Hence F(K, a) c Lx(n) and K E Xn. 

X+\Xn is dense in X+. Indeed, let & c X+ be an open set. We find a 
polytope P E &. For every (maximal) line-segment s in F(P, a), take a circular 
arc A, close to pO(s) and with the same endpoints, but disjoint from intp,(P), 
consider a line 18 C P,I orthogonal to pO(s), take the 2-flat HI7 D s parallel to IS, 
and consider the points 

a1 (s), bi (s), a2(s), b2 (s), . . .,am, (s), bmi (s), am,+? (s) E 1II, 

whose orthogonal projections on P, lie in this order on A,, with the projections 
of al(s) and am,+?(s) as the common endpoints of A, and pa(s). Let z E a and 
consider the points b'(s) = b, (s) + z and the polytope 

Q =conv (PU U{a2(s),a3(8), .. 
,a,,(s),b 

(s),b (s),...,b' (s)} 

If the arcs A. are close enough to p,(s) and llzll is small enough, Q E &. If the 
pieces into which the projections of bi(s), a2(s), b2(s), . . . ,am,(s), bm8(s) divide 

A, are small enough compared with llzll, then the slope (with respect to Pa) of 
the line I through a, (s) and b'(s) or through b'(s) and a,+ (s) becomes as large as 
desired, for example such that I C Kx(1/2n) for any x e 1. Since 

ma 

F(Q, a) = U U (conv{a,(s), b'(s)} U conv{b'(s), a,+?(s)}), 
8 2=1 

it follows that, for no x E F(Q, a), F(Q, a) c Lx(n), whence Q V Xn 

Hence, being closed and having a dense complement, n is nowhere dense; there- 
fore 5* is of first category. 

THEOREM 2. For most K E _%F and a E ffFd-2 F(K, a) is singular. 

PROOF. Let X? be the set of all strictly convex K Ce 2. Since most convex 
bodies belong to %?, it suffices to prove the theorem for 2, instead of .. 
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Let T' be the set of all convex bodies in %O for which the set of all a E d-2 
providing a nonsingular shadow boundary is of second category. Let, for any K E 
c6X0 

An= {a E 2: 3x E P(K, a) with F(K, a) c Lx (n)}. 

Then 

X'= {K E %O: U An is of second category}. 
n=1 

Putting 

Xn= {K E X?: An is not nowhere dense}, 

we may write 
00 

C U Xn 
n=1 

and we only have to prove that Xn is of first category, for every n E N. 

It is a routine matter to prove that An is closed in ?d-2. Thus, for K E Xn, 
there exists a nondegenerate ball in An. Let Xn4,m be the set of all K E Xn for 

which An includes a ball of radius m-1. Then 

00 

n= U Xn,m. 
m=l 

By the Proposition and Theorem 1, for a fixed a E %d-2 and for most convex 
bodies K E X?, Fr(K, a) is singular. 

Let now E be a countable dense set in fd-2. Clearly, 

"= {K E %?: Va E E, F(K, a) is singular} 

is also residual in _Z/?. Since 5" and Xn,m are disjoint for any n, m E N, Xn,m is 
of first category and the proof is complete. 

REMARK 1. Caution! Do not walk on a shadow boundary! If the body happens 
to be one of most of them, you will die before completing your trip. This must 

happen because every singular shadow boundary is nonrectifiable, which in turn 

follows from the fact that every nowhere differentiable function is not of bounded 

variation. 

REMARK 2. A paper on the same topic by P. Gruber and H. Sorger using Sk 
with arbitrary k is in preparation. 

REMARK 3. There is a notable contrast between Theorem 2 and measure- 

theoretical results in [4]. P. Steenaerts [4] works in fact with analogously defined 

shadow boundaries F(K, a) in directions a E 1. He shows that, if -Y, is the nor- 

malized Haar measure on 91 (so that oY, (1) = 1) and Ak denotes the k-dimensional 

Hausdorff measure, then the average measure of shadow boundaries 

A(K) = j Ad 2(F(K, a)) dyl 

and the average measure of boundaries of projections 

E(K) = Ad- 2 (bd p (K)) d&i 
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verify A(K)/E(K) < d1-rwdWdj 1I from which one easily sees that A(K) is finite. 
This in turn implies, as Steenaerts observes, that Ad2 (F(K, a)) is finite for almost 
every a E Cj. In [3] the (more difficult) case a e Sk for arbitrary k is considered, 
while the case a e gd-2 is discussed in [4, 9b], with the same conclusion, namely 
that Al (P(K, a)) < oo for almost every a E -2 . 

Thus, for most K E X, J'(K, a) is singular for most, but almost no a! 
ACKNOWLEDGEMENT. Thanks are due to the referee for his valuable sugges- 

tions. 
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